ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/main.cpp
Revision: 1.7
Committed: 2009-08-18T18:26:10Z (15 years, 3 months ago) by asvitkine
Branch: MAIN
Changes since 1.6: +2 -2 lines
Log Message:
[Michael Schmitt]
Attached is a patch to SheepShaver to fix memory allocation problems when OS X 10.5 is the host. It also relaxes the 512 MB RAM limit on OS X hosts.


Problem
-------
Some users have been unable to run SheepShaver on OS X 10.5 (Leopard) hosts. The symptom is error "ERROR: Cannot map RAM: File already exists".

SheepShaver allocates RAM at fixed addresses. If it is running in "Real" addressing mode, and can't allocate at address 0, then it was hard-coded to allocate the RAM area at 0x20000000. The ROM area as allocated at 0x40800000.

The normal configuration is for SheepShaver to run under SDL, which is a Cocoa wrapper. By the time SheepShaver does its memory allocations, the Cocoa application has already started. The result is the SheepShaver memory address space already contains libraries, fonts, Input Managers, and IOKit areas.

On Leopard hosts these areas can land on the same addresses SheepShaver needs, so SheepShaver's memory allocation fails.


Solution
--------
The approach is to change SheepShaver (on Unix & OS X hosts) to allocate the RAM area anywhere it can find the space, rather than at a fixed address.

This could result in the RAM allocated higher than the ROM area, which causes a crash. To prevent this from occurring, the RAM and ROM areas are allocated contiguously.

Previously the ROM starting address was a constant ROM_BASE, which was used throughout the source files. The ROM start address is now a variable ROMBase. ROMBase is allocated and set by main_*.cpp just like RAMBase.

A side-effect of this change is that it lifts the 512 MB RAM limit for OS X hosts. The limit was because the fixed RAM and ROM addresses were such that the RAM could only be 512 MB before it overlapped the ROM area.


Impact
------
The change to make ROMBase a variable is throughout all hosts & addressing modes.

The RAM and ROM areas will only shift when run on Unix & OS X hosts, otherwise the same fixed allocation address is used as before.

This change is limited to "Real" addressing mode. Unlike Basilisk II, SheepShaver *pre-calculates* the offset for "Direct" addressing mode; the offset is compiled into the program. If the RAM address were allowed to shift, it could result in the RAM area wrapping around address 0.


Changes to main_unix.cpp
------------------------
1. Real addressing mode no longer defines a RAM_BASE constant.

2. The base address of the Mac ROM (ROMBase) is defined and exported by this program.

3. Memory management helper vm_mac_acquire is renamed to vm_mac_acquire_fixed. Added a new memory management helper vm_mac_acquire, which allocates memory at any address.

4. Changed and rearranged the allocation of RAM and ROM areas.

Before it worked like this:

  - Allocate ROM area
  - If can, attempt to allocate RAM at address zero
  - If RAM not allocated at 0, allocate at fixed address

We still want to try allocating the RAM at zero, and if using DIRECT addressing we're still going to use the fixed addresses. So we don't know where the ROM should be until after we do the RAM. The new logic is:

  - If can, attempt to allocate RAM at address zero
  - If RAM not allocated at 0
      if REAL addressing
         allocate RAM and ROM together. The ROM address is aligned to a 1 MB boundary
      else (direct addressing)
         allocate RAM at fixed address
  - If ROM hasn't been allocated yet, allocate at fixed address

5. Calculate ROMBase and ROMBaseHost based on where the ROM was loaded.

6. There is a crash if the RAM is allocated too high. To try and catch this, check if it was allocated higher than the kernel data address.

7. Change subsequent code from using constant ROM_BASE to variable ROMBase.


Changes to Other Programs
-------------------------
emul_op.cpp, main.cpp, name_registery.cpp, rom_patches.cpp, rsrc_patches.cpp, emul_ppc.cpp, sheepshaver_glue.cpp, ppc-translate-cpp:
Change from constant ROM_BASE to variable ROMBase.

ppc_asm.S: It was setting register to a hard-coded literal address: 0x40b0d000. Changed to set it to ROMBase + 0x30d000.

ppc_asm.tmpl: It defined a macro ASM_LO16 but it assumed that the macro would always be used with operands that included a register specification. This is not true. Moved the register specification from the macro to the macro invocations.

main_beos.cpp, main_windows.cpp: Since the subprograms are all expecting a variable ROMBase, all the main_*.cpp pgrams have to define and export it. The ROM_BASE constant is moved here for consistency. The mains for beos and windows just allocate the ROM at the same fixed address as before, set ROMBaseHost and ROMBase to that address, and then use ROMBase for the subsequent code.

cpu_emulation.h: removed ROM_BASE constant. This value is moved to the main_*.cpp modules, to be consistent with RAM_BASE.

user_strings_unix.cpp, user_strings_unix.h: Added new error messages related to errors that occur when the RAM and ROM are allocated anywhere.

File Contents

# Content
1 /*
2 * main.cpp - ROM patches
3 *
4 * SheepShaver (C) 1997-2008 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22
23 #include "main.h"
24 #include "version.h"
25 #include "prefs.h"
26 #include "prefs_editor.h"
27 #include "cpu_emulation.h"
28 #include "emul_op.h"
29 #include "xlowmem.h"
30 #include "xpram.h"
31 #include "timer.h"
32 #include "adb.h"
33 #include "sony.h"
34 #include "disk.h"
35 #include "cdrom.h"
36 #include "scsi.h"
37 #include "video.h"
38 #include "audio.h"
39 #include "ether.h"
40 #include "serial.h"
41 #include "clip.h"
42 #include "extfs.h"
43 #include "sys.h"
44 #include "macos_util.h"
45 #include "rom_patches.h"
46 #include "user_strings.h"
47 #include "vm_alloc.h"
48 #include "sigsegv.h"
49 #include "thunks.h"
50
51 #define DEBUG 0
52 #include "debug.h"
53
54 #ifdef ENABLE_MON
55 #include "mon.h"
56
57 static uint32 sheepshaver_read_byte(uintptr adr)
58 {
59 return ReadMacInt8(adr);
60 }
61
62 static void sheepshaver_write_byte(uintptr adr, uint32 b)
63 {
64 WriteMacInt8(adr, b);
65 }
66 #endif
67
68
69 /*
70 * Initialize everything, returns false on error
71 */
72
73 bool InitAll(const char *vmdir)
74 {
75 // Load NVRAM
76 XPRAMInit(vmdir);
77
78 // Load XPRAM default values if signature not found
79 if (XPRAM[0x130c] != 0x4e || XPRAM[0x130d] != 0x75
80 || XPRAM[0x130e] != 0x4d || XPRAM[0x130f] != 0x63) {
81 D(bug("Loading XPRAM default values\n"));
82 memset(XPRAM + 0x1300, 0, 0x100);
83 XPRAM[0x130c] = 0x4e; // "NuMc" signature
84 XPRAM[0x130d] = 0x75;
85 XPRAM[0x130e] = 0x4d;
86 XPRAM[0x130f] = 0x63;
87 XPRAM[0x1301] = 0x80; // InternalWaitFlags = DynWait (don't wait for SCSI devices upon bootup)
88 XPRAM[0x1310] = 0xa8; // Standard PRAM values
89 XPRAM[0x1311] = 0x00;
90 XPRAM[0x1312] = 0x00;
91 XPRAM[0x1313] = 0x22;
92 XPRAM[0x1314] = 0xcc;
93 XPRAM[0x1315] = 0x0a;
94 XPRAM[0x1316] = 0xcc;
95 XPRAM[0x1317] = 0x0a;
96 XPRAM[0x131c] = 0x00;
97 XPRAM[0x131d] = 0x02;
98 XPRAM[0x131e] = 0x63;
99 XPRAM[0x131f] = 0x00;
100 XPRAM[0x1308] = 0x13;
101 XPRAM[0x1309] = 0x88;
102 XPRAM[0x130a] = 0x00;
103 XPRAM[0x130b] = 0xcc;
104 XPRAM[0x1376] = 0x00; // OSDefault = MacOS
105 XPRAM[0x1377] = 0x01;
106 }
107
108 // Set boot volume
109 int16 i16 = PrefsFindInt32("bootdrive");
110 XPRAM[0x1378] = i16 >> 8;
111 XPRAM[0x1379] = i16 & 0xff;
112 i16 = PrefsFindInt32("bootdriver");
113 XPRAM[0x137a] = i16 >> 8;
114 XPRAM[0x137b] = i16 & 0xff;
115
116 // Create BootGlobs at top of Mac memory
117 memset(RAMBaseHost + RAMSize - 4096, 0, 4096);
118 BootGlobsAddr = RAMBase + RAMSize - 0x1c;
119 WriteMacInt32(BootGlobsAddr - 5 * 4, RAMBase + RAMSize); // MemTop
120 WriteMacInt32(BootGlobsAddr + 0 * 4, RAMBase); // First RAM bank
121 WriteMacInt32(BootGlobsAddr + 1 * 4, RAMSize);
122 WriteMacInt32(BootGlobsAddr + 2 * 4, (uint32)-1); // End of bank table
123
124 // Init thunks
125 if (!ThunksInit())
126 return false;
127
128 // Init drivers
129 SonyInit();
130 DiskInit();
131 CDROMInit();
132 SCSIInit();
133
134 // Init external file system
135 ExtFSInit();
136
137 // Init ADB
138 ADBInit();
139
140 // Init audio
141 AudioInit();
142
143 // Init network
144 EtherInit();
145
146 // Init serial ports
147 SerialInit();
148
149 // Init Time Manager
150 TimerInit();
151
152 // Init clipboard
153 ClipInit();
154
155 // Init video
156 if (!VideoInit())
157 return false;
158
159 // Install ROM patches
160 if (!PatchROM()) {
161 ErrorAlert(GetString(STR_UNSUPPORTED_ROM_TYPE_ERR));
162 return false;
163 }
164
165 // Initialize Kernel Data
166 KernelData *kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
167 memset(kernel_data, 0, sizeof(KernelData));
168 if (ROMType == ROMTYPE_NEWWORLD) {
169 uint32 of_dev_tree = SheepMem::Reserve(4 * sizeof(uint32));
170 Mac_memset(of_dev_tree, 0, 4 * sizeof(uint32));
171 uint32 vector_lookup_tbl = SheepMem::Reserve(128);
172 uint32 vector_mask_tbl = SheepMem::Reserve(64);
173 memset((uint8 *)kernel_data + 0xb80, 0x3d, 0x80);
174 Mac_memset(vector_lookup_tbl, 0, 128);
175 Mac_memset(vector_mask_tbl, 0, 64);
176 kernel_data->v[0xb80 >> 2] = htonl(ROMBase);
177 kernel_data->v[0xb84 >> 2] = htonl(of_dev_tree); // OF device tree base
178 kernel_data->v[0xb90 >> 2] = htonl(vector_lookup_tbl);
179 kernel_data->v[0xb94 >> 2] = htonl(vector_mask_tbl);
180 kernel_data->v[0xb98 >> 2] = htonl(ROMBase); // OpenPIC base
181 kernel_data->v[0xbb0 >> 2] = htonl(0); // ADB base
182 kernel_data->v[0xc20 >> 2] = htonl(RAMSize);
183 kernel_data->v[0xc24 >> 2] = htonl(RAMSize);
184 kernel_data->v[0xc30 >> 2] = htonl(RAMSize);
185 kernel_data->v[0xc34 >> 2] = htonl(RAMSize);
186 kernel_data->v[0xc38 >> 2] = htonl(0x00010020);
187 kernel_data->v[0xc3c >> 2] = htonl(0x00200001);
188 kernel_data->v[0xc40 >> 2] = htonl(0x00010000);
189 kernel_data->v[0xc50 >> 2] = htonl(RAMBase);
190 kernel_data->v[0xc54 >> 2] = htonl(RAMSize);
191 kernel_data->v[0xf60 >> 2] = htonl(PVR);
192 kernel_data->v[0xf64 >> 2] = htonl(CPUClockSpeed); // clock-frequency
193 kernel_data->v[0xf68 >> 2] = htonl(BusClockSpeed); // bus-frequency
194 kernel_data->v[0xf6c >> 2] = htonl(TimebaseSpeed); // timebase-frequency
195 } else if (ROMType == ROMTYPE_GOSSAMER) {
196 kernel_data->v[0xc80 >> 2] = htonl(RAMSize);
197 kernel_data->v[0xc84 >> 2] = htonl(RAMSize);
198 kernel_data->v[0xc90 >> 2] = htonl(RAMSize);
199 kernel_data->v[0xc94 >> 2] = htonl(RAMSize);
200 kernel_data->v[0xc98 >> 2] = htonl(0x00010020);
201 kernel_data->v[0xc9c >> 2] = htonl(0x00200001);
202 kernel_data->v[0xca0 >> 2] = htonl(0x00010000);
203 kernel_data->v[0xcb0 >> 2] = htonl(RAMBase);
204 kernel_data->v[0xcb4 >> 2] = htonl(RAMSize);
205 kernel_data->v[0xf60 >> 2] = htonl(PVR);
206 kernel_data->v[0xf64 >> 2] = htonl(CPUClockSpeed); // clock-frequency
207 kernel_data->v[0xf68 >> 2] = htonl(BusClockSpeed); // bus-frequency
208 kernel_data->v[0xf6c >> 2] = htonl(TimebaseSpeed); // timebase-frequency
209 } else {
210 kernel_data->v[0xc80 >> 2] = htonl(RAMSize);
211 kernel_data->v[0xc84 >> 2] = htonl(RAMSize);
212 kernel_data->v[0xc90 >> 2] = htonl(RAMSize);
213 kernel_data->v[0xc94 >> 2] = htonl(RAMSize);
214 kernel_data->v[0xc98 >> 2] = htonl(0x00010020);
215 kernel_data->v[0xc9c >> 2] = htonl(0x00200001);
216 kernel_data->v[0xca0 >> 2] = htonl(0x00010000);
217 kernel_data->v[0xcb0 >> 2] = htonl(RAMBase);
218 kernel_data->v[0xcb4 >> 2] = htonl(RAMSize);
219 kernel_data->v[0xf80 >> 2] = htonl(PVR);
220 kernel_data->v[0xf84 >> 2] = htonl(CPUClockSpeed); // clock-frequency
221 kernel_data->v[0xf88 >> 2] = htonl(BusClockSpeed); // bus-frequency
222 kernel_data->v[0xf8c >> 2] = htonl(TimebaseSpeed); // timebase-frequency
223 }
224
225 // Initialize extra low memory
226 D(bug("Initializing Low Memory...\n"));
227 Mac_memset(0, 0, 0x3000);
228 WriteMacInt32(XLM_SIGNATURE, FOURCC('B','a','a','h')); // Signature to detect SheepShaver
229 WriteMacInt32(XLM_KERNEL_DATA, KernelDataAddr); // For trap replacement routines
230 WriteMacInt32(XLM_PVR, PVR); // Theoretical PVR
231 WriteMacInt32(XLM_BUS_CLOCK, BusClockSpeed); // For DriverServicesLib patch
232 WriteMacInt16(XLM_EXEC_RETURN_OPCODE, M68K_EXEC_RETURN); // For Execute68k() (RTS from the executed 68k code will jump here and end 68k mode)
233 WriteMacInt32(XLM_ZERO_PAGE, SheepMem::ZeroPage()); // Pointer to read-only page with all bits set to 0
234 #if !EMULATED_PPC
235 #ifdef SYSTEM_CLOBBERS_R2
236 WriteMacInt32(XLM_TOC, (uint32)TOC); // TOC pointer of emulator
237 #endif
238 #ifdef SYSTEM_CLOBBERS_R13
239 WriteMacInt32(XLM_R13, (uint32)R13); // TLS register
240 #endif
241 #endif
242
243 WriteMacInt32(XLM_ETHER_AO_GET_HWADDR, NativeFunction(NATIVE_ETHER_AO_GET_HWADDR)); // Low level ethernet driver functions
244 WriteMacInt32(XLM_ETHER_AO_ADD_MULTI, NativeFunction(NATIVE_ETHER_AO_ADD_MULTI));
245 WriteMacInt32(XLM_ETHER_AO_DEL_MULTI, NativeFunction(NATIVE_ETHER_AO_DEL_MULTI));
246 WriteMacInt32(XLM_ETHER_AO_SEND_PACKET, NativeFunction(NATIVE_ETHER_AO_SEND_PACKET));
247
248 WriteMacInt32(XLM_ETHER_INIT, NativeFunction(NATIVE_ETHER_INIT)); // DLPI ethernet driver functions
249 WriteMacInt32(XLM_ETHER_TERM, NativeFunction(NATIVE_ETHER_TERM));
250 WriteMacInt32(XLM_ETHER_OPEN, NativeFunction(NATIVE_ETHER_OPEN));
251 WriteMacInt32(XLM_ETHER_CLOSE, NativeFunction(NATIVE_ETHER_CLOSE));
252 WriteMacInt32(XLM_ETHER_WPUT, NativeFunction(NATIVE_ETHER_WPUT));
253 WriteMacInt32(XLM_ETHER_RSRV, NativeFunction(NATIVE_ETHER_RSRV));
254 WriteMacInt32(XLM_VIDEO_DOIO, NativeFunction(NATIVE_VIDEO_DO_DRIVER_IO));
255 D(bug("Low Memory initialized\n"));
256
257 #if ENABLE_MON
258 // Initialize mon
259 mon_init();
260 mon_read_byte = sheepshaver_read_byte;
261 mon_write_byte = sheepshaver_write_byte;
262 #endif
263
264 return true;
265 }
266
267
268 /*
269 * Deinitialize everything
270 */
271
272 void ExitAll(void)
273 {
274 #if ENABLE_MON
275 // Deinitialize mon
276 mon_exit();
277 #endif
278
279 // Save NVRAM
280 XPRAMExit();
281
282 // Exit clipboard
283 ClipExit();
284
285 // Exit Time Manager
286 TimerExit();
287
288 // Exit serial
289 SerialExit();
290
291 // Exit network
292 EtherExit();
293
294 // Exit audio
295 AudioExit();
296
297 // Exit ADB
298 ADBExit();
299
300 // Exit video
301 VideoExit();
302
303 // Exit external file system
304 ExtFSExit();
305
306 // Exit drivers
307 SCSIExit();
308 CDROMExit();
309 DiskExit();
310 SonyExit();
311
312 // Delete thunks
313 ThunksExit();
314 }
315
316
317 /*
318 * Patch things after system startup (gets called by disk driver accRun routine)
319 */
320
321 void PatchAfterStartup(void)
322 {
323 ExecuteNative(NATIVE_VIDEO_INSTALL_ACCEL);
324 InstallExtFS();
325 }