ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.65
Committed: 2005-07-03T22:02:01Z (18 years, 11 months ago) by gbeauche
Branch: MAIN
Changes since 1.64: +12 -0 lines
Log Message:
Minor tweaks to support compilation of ether.cpp within MacOS. i.e. mostly
migrate the Ethernet driver to the MacOS side. This is enabled for
DIRECT_ADDRESSING cases. I didn't want to alter much of ether.cpp (as it
would have required to support that mode). Of course, in REAL_ADDRESSING
mode (the default) and for debugging purposes, the old driver is still
available.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92
93 // PowerPC EmulOp to exit from emulation looop
94 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95
96 // Enable Execute68k() safety checks?
97 #define SAFE_EXEC_68K 1
98
99 // Save FP state in Execute68k()?
100 #define SAVE_FP_EXEC_68K 1
101
102 // Interrupts in EMUL_OP mode?
103 #define INTERRUPTS_IN_EMUL_OP_MODE 1
104
105 // Interrupts in native mode?
106 #define INTERRUPTS_IN_NATIVE_MODE 1
107
108 // Pointer to Kernel Data
109 static KernelData * kernel_data;
110
111 // SIGSEGV handler
112 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113
114 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115 // Special trampolines for EmulOp and NativeOp
116 static uint8 *emul_op_trampoline;
117 static uint8 *native_op_trampoline;
118 #endif
119
120 // JIT Compiler enabled?
121 static inline bool enable_jit_p()
122 {
123 return PrefsFindBool("jit");
124 }
125
126
127 /**
128 * PowerPC emulator glue with special 'sheep' opcodes
129 **/
130
131 enum {
132 PPC_I(SHEEP) = PPC_I(MAX),
133 PPC_I(SHEEP_MAX)
134 };
135
136 class sheepshaver_cpu
137 : public powerpc_cpu
138 {
139 void init_decoder();
140 void execute_sheep(uint32 opcode);
141
142 public:
143
144 // Constructor
145 sheepshaver_cpu();
146
147 // CR & XER accessors
148 uint32 get_cr() const { return cr().get(); }
149 void set_cr(uint32 v) { cr().set(v); }
150 uint32 get_xer() const { return xer().get(); }
151 void set_xer(uint32 v) { xer().set(v); }
152
153 // Execute NATIVE_OP routine
154 void execute_native_op(uint32 native_op);
155
156 // Execute EMUL_OP routine
157 void execute_emul_op(uint32 emul_op);
158
159 // Execute 68k routine
160 void execute_68k(uint32 entry, M68kRegisters *r);
161
162 // Execute ppc routine
163 void execute_ppc(uint32 entry);
164
165 // Execute MacOS/PPC code
166 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167
168 #if PPC_ENABLE_JIT
169 // Compile one instruction
170 virtual int compile1(codegen_context_t & cg_context);
171 #endif
172 // Resource manager thunk
173 void get_resource(uint32 old_get_resource);
174
175 // Handle MacOS interrupt
176 void interrupt(uint32 entry);
177
178 // Make sure the SIGSEGV handler can access CPU registers
179 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180
181 // Memory allocator returning areas aligned on 16-byte boundaries
182 void *operator new(size_t size);
183 void operator delete(void *p);
184 };
185
186 // Memory allocator returning sheepshaver_cpu objects aligned on 16-byte boundaries
187 // FORMAT: [ alignment ] magic identifier, offset to malloc'ed data, sheepshaver_cpu data
188 void *sheepshaver_cpu::operator new(size_t size)
189 {
190 const int ALIGN = 16;
191
192 // Allocate enough space for sheepshaver_cpu data + signature + align pad
193 uint8 *ptr = (uint8 *)malloc(size + ALIGN * 2);
194 if (ptr == NULL)
195 throw std::bad_alloc();
196
197 // Align memory
198 int ofs = 0;
199 while ((((uintptr)ptr) % ALIGN) != 0)
200 ofs++, ptr++;
201
202 // Insert signature and offset
203 struct aligned_block_t {
204 uint32 pad[(ALIGN - 8) / 4];
205 uint32 signature;
206 uint32 offset;
207 uint8 data[sizeof(sheepshaver_cpu)];
208 };
209 aligned_block_t *blk = (aligned_block_t *)ptr;
210 blk->signature = FOURCC('S','C','P','U');
211 blk->offset = ofs + (&blk->data[0] - (uint8 *)blk);
212 assert((((uintptr)&blk->data) % ALIGN) == 0);
213 return &blk->data[0];
214 }
215
216 void sheepshaver_cpu::operator delete(void *p)
217 {
218 uint32 *blk = (uint32 *)p;
219 assert(blk[-2] == FOURCC('S','C','P','U'));
220 void *ptr = (void *)(((uintptr)p) - blk[-1]);
221 free(ptr);
222 }
223
224 sheepshaver_cpu::sheepshaver_cpu()
225 : powerpc_cpu(enable_jit_p())
226 {
227 init_decoder();
228 }
229
230 void sheepshaver_cpu::init_decoder()
231 {
232 static const instr_info_t sheep_ii_table[] = {
233 { "sheep",
234 (execute_pmf)&sheepshaver_cpu::execute_sheep,
235 NULL,
236 PPC_I(SHEEP),
237 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
238 }
239 };
240
241 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
242 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
243
244 for (int i = 0; i < ii_count; i++) {
245 const instr_info_t * ii = &sheep_ii_table[i];
246 init_decoder_entry(ii);
247 }
248 }
249
250 /* NativeOp instruction format:
251 +------------+-------------------------+--+-----------+------------+
252 | 6 | |FN| OP | 2 |
253 +------------+-------------------------+--+-----------+------------+
254 0 5 |6 18 19 20 25 26 31
255 */
256
257 typedef bit_field< 19, 19 > FN_field;
258 typedef bit_field< 20, 25 > NATIVE_OP_field;
259 typedef bit_field< 26, 31 > EMUL_OP_field;
260
261 // Execute EMUL_OP routine
262 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
263 {
264 M68kRegisters r68;
265 WriteMacInt32(XLM_68K_R25, gpr(25));
266 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
267 for (int i = 0; i < 8; i++)
268 r68.d[i] = gpr(8 + i);
269 for (int i = 0; i < 7; i++)
270 r68.a[i] = gpr(16 + i);
271 r68.a[7] = gpr(1);
272 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
273 uint32 saved_xer = get_xer();
274 EmulOp(&r68, gpr(24), emul_op);
275 set_cr(saved_cr);
276 set_xer(saved_xer);
277 for (int i = 0; i < 8; i++)
278 gpr(8 + i) = r68.d[i];
279 for (int i = 0; i < 7; i++)
280 gpr(16 + i) = r68.a[i];
281 gpr(1) = r68.a[7];
282 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
283 }
284
285 // Execute SheepShaver instruction
286 void sheepshaver_cpu::execute_sheep(uint32 opcode)
287 {
288 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
289 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
290
291 switch (opcode & 0x3f) {
292 case 0: // EMUL_RETURN
293 QuitEmulator();
294 break;
295
296 case 1: // EXEC_RETURN
297 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
298 break;
299
300 case 2: // EXEC_NATIVE
301 execute_native_op(NATIVE_OP_field::extract(opcode));
302 if (FN_field::test(opcode))
303 pc() = lr();
304 else
305 pc() += 4;
306 break;
307
308 default: // EMUL_OP
309 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
310 pc() += 4;
311 break;
312 }
313 }
314
315 // Compile one instruction
316 #if PPC_ENABLE_JIT
317 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
318 {
319 const instr_info_t *ii = cg_context.instr_info;
320 if (ii->mnemo != PPC_I(SHEEP))
321 return COMPILE_FAILURE;
322
323 int status = COMPILE_FAILURE;
324 powerpc_dyngen & dg = cg_context.codegen;
325 uint32 opcode = cg_context.opcode;
326
327 switch (opcode & 0x3f) {
328 case 0: // EMUL_RETURN
329 dg.gen_invoke(QuitEmulator);
330 status = COMPILE_CODE_OK;
331 break;
332
333 case 1: // EXEC_RETURN
334 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
335 // Don't check for pending interrupts, we do know we have to
336 // get out of this block ASAP
337 dg.gen_exec_return();
338 status = COMPILE_EPILOGUE_OK;
339 break;
340
341 case 2: { // EXEC_NATIVE
342 uint32 selector = NATIVE_OP_field::extract(opcode);
343 switch (selector) {
344 #if !PPC_REENTRANT_JIT
345 // Filter out functions that may invoke Execute68k() or
346 // CallMacOS(), this would break reentrancy as they could
347 // invalidate the translation cache and even overwrite
348 // continuation code when we are done with them.
349 case NATIVE_PATCH_NAME_REGISTRY:
350 dg.gen_invoke(DoPatchNameRegistry);
351 status = COMPILE_CODE_OK;
352 break;
353 case NATIVE_VIDEO_INSTALL_ACCEL:
354 dg.gen_invoke(VideoInstallAccel);
355 status = COMPILE_CODE_OK;
356 break;
357 case NATIVE_VIDEO_VBL:
358 dg.gen_invoke(VideoVBL);
359 status = COMPILE_CODE_OK;
360 break;
361 case NATIVE_GET_RESOURCE:
362 case NATIVE_GET_1_RESOURCE:
363 case NATIVE_GET_IND_RESOURCE:
364 case NATIVE_GET_1_IND_RESOURCE:
365 case NATIVE_R_GET_RESOURCE: {
366 static const uint32 get_resource_ptr[] = {
367 XLM_GET_RESOURCE,
368 XLM_GET_1_RESOURCE,
369 XLM_GET_IND_RESOURCE,
370 XLM_GET_1_IND_RESOURCE,
371 XLM_R_GET_RESOURCE
372 };
373 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
374 typedef void (*func_t)(dyngen_cpu_base, uint32);
375 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
376 dg.gen_invoke_CPU_im(func, old_get_resource);
377 status = COMPILE_CODE_OK;
378 break;
379 }
380 case NATIVE_CHECK_LOAD_INVOC:
381 dg.gen_load_T0_GPR(3);
382 dg.gen_load_T1_GPR(4);
383 dg.gen_se_16_32_T1();
384 dg.gen_load_T2_GPR(5);
385 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
386 status = COMPILE_CODE_OK;
387 break;
388 #endif
389 case NATIVE_BITBLT:
390 dg.gen_load_T0_GPR(3);
391 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
392 status = COMPILE_CODE_OK;
393 break;
394 case NATIVE_INVRECT:
395 dg.gen_load_T0_GPR(3);
396 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
397 status = COMPILE_CODE_OK;
398 break;
399 case NATIVE_FILLRECT:
400 dg.gen_load_T0_GPR(3);
401 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
402 status = COMPILE_CODE_OK;
403 break;
404 }
405 // Could we fully translate this NativeOp?
406 if (status == COMPILE_CODE_OK) {
407 if (!FN_field::test(opcode))
408 cg_context.done_compile = false;
409 else {
410 dg.gen_load_A0_LR();
411 dg.gen_set_PC_A0();
412 cg_context.done_compile = true;
413 }
414 break;
415 }
416 #if PPC_REENTRANT_JIT
417 // Try to execute NativeOp trampoline
418 if (!FN_field::test(opcode))
419 dg.gen_set_PC_im(cg_context.pc + 4);
420 else {
421 dg.gen_load_A0_LR();
422 dg.gen_set_PC_A0();
423 }
424 dg.gen_mov_32_T0_im(selector);
425 dg.gen_jmp(native_op_trampoline);
426 cg_context.done_compile = true;
427 status = COMPILE_EPILOGUE_OK;
428 break;
429 #endif
430 // Invoke NativeOp handler
431 if (!FN_field::test(opcode)) {
432 typedef void (*func_t)(dyngen_cpu_base, uint32);
433 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
434 dg.gen_invoke_CPU_im(func, selector);
435 cg_context.done_compile = false;
436 status = COMPILE_CODE_OK;
437 }
438 // Otherwise, let it generate a call to execute_sheep() which
439 // will cause necessary updates to the program counter
440 break;
441 }
442
443 default: { // EMUL_OP
444 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
445 #if PPC_REENTRANT_JIT
446 // Try to execute EmulOp trampoline
447 dg.gen_set_PC_im(cg_context.pc + 4);
448 dg.gen_mov_32_T0_im(emul_op);
449 dg.gen_jmp(emul_op_trampoline);
450 cg_context.done_compile = true;
451 status = COMPILE_EPILOGUE_OK;
452 break;
453 #endif
454 // Invoke EmulOp handler
455 typedef void (*func_t)(dyngen_cpu_base, uint32);
456 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
457 dg.gen_invoke_CPU_im(func, emul_op);
458 cg_context.done_compile = false;
459 status = COMPILE_CODE_OK;
460 break;
461 }
462 }
463 return status;
464 }
465 #endif
466
467 // Handle MacOS interrupt
468 void sheepshaver_cpu::interrupt(uint32 entry)
469 {
470 #if EMUL_TIME_STATS
471 ppc_interrupt_count++;
472 const clock_t interrupt_start = clock();
473 #endif
474
475 // Save program counters and branch registers
476 uint32 saved_pc = pc();
477 uint32 saved_lr = lr();
478 uint32 saved_ctr= ctr();
479 uint32 saved_sp = gpr(1);
480
481 // Initialize stack pointer to SheepShaver alternate stack base
482 gpr(1) = SignalStackBase() - 64;
483
484 // Build trampoline to return from interrupt
485 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
486
487 // Prepare registers for nanokernel interrupt routine
488 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
489 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
490
491 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
492 assert(gpr(6) != 0);
493 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
494 WriteMacInt32(gpr(6) + 0x144, gpr(8));
495 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
496 WriteMacInt32(gpr(6) + 0x154, gpr(10));
497 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
498 WriteMacInt32(gpr(6) + 0x164, gpr(12));
499 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
500
501 gpr(1) = KernelDataAddr;
502 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
503 gpr(8) = 0;
504 gpr(10) = trampoline.addr();
505 gpr(12) = trampoline.addr();
506 gpr(13) = get_cr();
507
508 // rlwimi. r7,r7,8,0,0
509 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
510 record_cr0(result);
511 gpr(7) = result;
512
513 gpr(11) = 0xf072; // MSR (SRR1)
514 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
515
516 // Enter nanokernel
517 execute(entry);
518
519 // Restore program counters and branch registers
520 pc() = saved_pc;
521 lr() = saved_lr;
522 ctr()= saved_ctr;
523 gpr(1) = saved_sp;
524
525 #if EMUL_TIME_STATS
526 interrupt_time += (clock() - interrupt_start);
527 #endif
528 }
529
530 // Execute 68k routine
531 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
532 {
533 #if EMUL_TIME_STATS
534 exec68k_count++;
535 const clock_t exec68k_start = clock();
536 #endif
537
538 #if SAFE_EXEC_68K
539 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
540 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
541 #endif
542
543 // Save program counters and branch registers
544 uint32 saved_pc = pc();
545 uint32 saved_lr = lr();
546 uint32 saved_ctr= ctr();
547 uint32 saved_cr = get_cr();
548
549 // Create MacOS stack frame
550 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
551 uint32 sp = gpr(1);
552 gpr(1) -= 56;
553 WriteMacInt32(gpr(1), sp);
554
555 // Save PowerPC registers
556 uint32 saved_GPRs[19];
557 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
558 #if SAVE_FP_EXEC_68K
559 double saved_FPRs[18];
560 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
561 #endif
562
563 // Setup registers for 68k emulator
564 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
565 for (int i = 0; i < 8; i++) // d[0]..d[7]
566 gpr(8 + i) = r->d[i];
567 for (int i = 0; i < 7; i++) // a[0]..a[6]
568 gpr(16 + i) = r->a[i];
569 gpr(23) = 0;
570 gpr(24) = entry;
571 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
572 gpr(26) = 0;
573 gpr(28) = 0; // VBR
574 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
575 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
576 gpr(31) = KernelDataAddr + 0x1000;
577
578 // Push return address (points to EXEC_RETURN opcode) on stack
579 gpr(1) -= 4;
580 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
581
582 // Rentering 68k emulator
583 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
584
585 // Set r0 to 0 for 68k emulator
586 gpr(0) = 0;
587
588 // Execute 68k opcode
589 uint32 opcode = ReadMacInt16(gpr(24));
590 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
591 gpr(29) += opcode * 8;
592 execute(gpr(29));
593
594 // Save r25 (contains current 68k interrupt level)
595 WriteMacInt32(XLM_68K_R25, gpr(25));
596
597 // Reentering EMUL_OP mode
598 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
599
600 // Save 68k registers
601 for (int i = 0; i < 8; i++) // d[0]..d[7]
602 r->d[i] = gpr(8 + i);
603 for (int i = 0; i < 7; i++) // a[0]..a[6]
604 r->a[i] = gpr(16 + i);
605
606 // Restore PowerPC registers
607 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
608 #if SAVE_FP_EXEC_68K
609 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
610 #endif
611
612 // Cleanup stack
613 gpr(1) += 56;
614
615 // Restore program counters and branch registers
616 pc() = saved_pc;
617 lr() = saved_lr;
618 ctr()= saved_ctr;
619 set_cr(saved_cr);
620
621 #if EMUL_TIME_STATS
622 exec68k_time += (clock() - exec68k_start);
623 #endif
624 }
625
626 // Call MacOS PPC code
627 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
628 {
629 #if EMUL_TIME_STATS
630 macos_exec_count++;
631 const clock_t macos_exec_start = clock();
632 #endif
633
634 // Save program counters and branch registers
635 uint32 saved_pc = pc();
636 uint32 saved_lr = lr();
637 uint32 saved_ctr= ctr();
638
639 // Build trampoline with EXEC_RETURN
640 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
641 lr() = trampoline.addr();
642
643 gpr(1) -= 64; // Create stack frame
644 uint32 proc = ReadMacInt32(tvect); // Get routine address
645 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
646
647 // Save PowerPC registers
648 uint32 regs[8];
649 regs[0] = gpr(2);
650 for (int i = 0; i < nargs; i++)
651 regs[i + 1] = gpr(i + 3);
652
653 // Prepare and call MacOS routine
654 gpr(2) = toc;
655 for (int i = 0; i < nargs; i++)
656 gpr(i + 3) = args[i];
657 execute(proc);
658 uint32 retval = gpr(3);
659
660 // Restore PowerPC registers
661 for (int i = 0; i <= nargs; i++)
662 gpr(i + 2) = regs[i];
663
664 // Cleanup stack
665 gpr(1) += 64;
666
667 // Restore program counters and branch registers
668 pc() = saved_pc;
669 lr() = saved_lr;
670 ctr()= saved_ctr;
671
672 #if EMUL_TIME_STATS
673 macos_exec_time += (clock() - macos_exec_start);
674 #endif
675
676 return retval;
677 }
678
679 // Execute ppc routine
680 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
681 {
682 // Save branch registers
683 uint32 saved_lr = lr();
684
685 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
686 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
687 lr() = trampoline.addr();
688
689 execute(entry);
690
691 // Restore branch registers
692 lr() = saved_lr;
693 }
694
695 // Resource Manager thunk
696 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
697 {
698 uint32 type = gpr(3);
699 int16 id = gpr(4);
700
701 // Create stack frame
702 gpr(1) -= 56;
703
704 // Call old routine
705 execute_ppc(old_get_resource);
706
707 // Call CheckLoad()
708 uint32 handle = gpr(3);
709 check_load_invoc(type, id, handle);
710 gpr(3) = handle;
711
712 // Cleanup stack
713 gpr(1) += 56;
714 }
715
716
717 /**
718 * SheepShaver CPU engine interface
719 **/
720
721 // PowerPC CPU emulator
722 static sheepshaver_cpu *ppc_cpu = NULL;
723
724 void FlushCodeCache(uintptr start, uintptr end)
725 {
726 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
727 ppc_cpu->invalidate_cache_range(start, end);
728 }
729
730 // Dump PPC registers
731 static void dump_registers(void)
732 {
733 ppc_cpu->dump_registers();
734 }
735
736 // Dump log
737 static void dump_log(void)
738 {
739 ppc_cpu->dump_log();
740 }
741
742 /*
743 * Initialize CPU emulation
744 */
745
746 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
747 {
748 #if ENABLE_VOSF
749 // Handle screen fault
750 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
751 if (Screen_fault_handler(fault_address, fault_instruction))
752 return SIGSEGV_RETURN_SUCCESS;
753 #endif
754
755 const uintptr addr = (uintptr)fault_address;
756 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
757 // Ignore writes to ROM
758 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
759 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
760
761 // Get program counter of target CPU
762 sheepshaver_cpu * const cpu = ppc_cpu;
763 const uint32 pc = cpu->pc();
764
765 // Fault in Mac ROM or RAM?
766 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
767 if (mac_fault) {
768
769 // "VM settings" during MacOS 8 installation
770 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
771 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
772
773 // MacOS 8.5 installation
774 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
775 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
776
777 // MacOS 8 serial drivers on startup
778 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
779 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780
781 // MacOS 8.1 serial drivers on startup
782 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
783 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
784 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
785 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786
787 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
788 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
789 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
790 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
791 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
792
793 // Ignore writes to the zero page
794 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
795 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
796
797 // Ignore all other faults, if requested
798 if (PrefsFindBool("ignoresegv"))
799 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
800 }
801 #else
802 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
803 #endif
804
805 fprintf(stderr, "SIGSEGV\n");
806 fprintf(stderr, " pc %p\n", fault_instruction);
807 fprintf(stderr, " ea %p\n", fault_address);
808 dump_registers();
809 ppc_cpu->dump_log();
810 enter_mon();
811 QuitEmulator();
812
813 return SIGSEGV_RETURN_FAILURE;
814 }
815
816 void init_emul_ppc(void)
817 {
818 // Get pointer to KernelData in host address space
819 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
820
821 // Initialize main CPU emulator
822 ppc_cpu = new sheepshaver_cpu();
823 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
824 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
825 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
826
827 #if ENABLE_MON
828 // Install "regs" command in cxmon
829 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
830 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
831 #endif
832
833 #if EMUL_TIME_STATS
834 emul_start_time = clock();
835 #endif
836 }
837
838 /*
839 * Deinitialize emulation
840 */
841
842 void exit_emul_ppc(void)
843 {
844 #if EMUL_TIME_STATS
845 clock_t emul_end_time = clock();
846
847 printf("### Statistics for SheepShaver emulation parts\n");
848 const clock_t emul_time = emul_end_time - emul_start_time;
849 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
850 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
851 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
852 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
853 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
854
855 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
856 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
857 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
858 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
859 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
860 } while (0)
861
862 PRINT_STATS("Execute68k[Trap] execution", exec68k);
863 PRINT_STATS("NativeOp execution", native_exec);
864 PRINT_STATS("MacOS routine execution", macos_exec);
865
866 #undef PRINT_STATS
867 printf("\n");
868 #endif
869
870 delete ppc_cpu;
871 }
872
873 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
874 // Initialize EmulOp trampolines
875 void init_emul_op_trampolines(basic_dyngen & dg)
876 {
877 typedef void (*func_t)(dyngen_cpu_base, uint32);
878 func_t func;
879
880 // EmulOp
881 emul_op_trampoline = dg.gen_start();
882 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
883 dg.gen_invoke_CPU_T0(func);
884 dg.gen_exec_return();
885 dg.gen_end();
886
887 // NativeOp
888 native_op_trampoline = dg.gen_start();
889 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
890 dg.gen_invoke_CPU_T0(func);
891 dg.gen_exec_return();
892 dg.gen_end();
893
894 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
895 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
896 }
897 #endif
898
899 /*
900 * Emulation loop
901 */
902
903 void emul_ppc(uint32 entry)
904 {
905 #if 0
906 ppc_cpu->start_log();
907 #endif
908 // start emulation loop and enable code translation or caching
909 ppc_cpu->execute(entry);
910 }
911
912 /*
913 * Handle PowerPC interrupt
914 */
915
916 void TriggerInterrupt(void)
917 {
918 idle_resume();
919 #if 0
920 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
921 #else
922 // Trigger interrupt to main cpu only
923 if (ppc_cpu)
924 ppc_cpu->trigger_interrupt();
925 #endif
926 }
927
928 void HandleInterrupt(powerpc_registers *r)
929 {
930 #ifdef USE_SDL_VIDEO
931 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
932 SDL_PumpEvents();
933 #endif
934
935 // Do nothing if interrupts are disabled
936 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
937 return;
938
939 // Update interrupt count
940 #if EMUL_TIME_STATS
941 interrupt_count++;
942 #endif
943
944 // Interrupt action depends on current run mode
945 switch (ReadMacInt32(XLM_RUN_MODE)) {
946 case MODE_68K:
947 // 68k emulator active, trigger 68k interrupt level 1
948 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
949 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
950 break;
951
952 #if INTERRUPTS_IN_NATIVE_MODE
953 case MODE_NATIVE:
954 // 68k emulator inactive, in nanokernel?
955 if (r->gpr[1] != KernelDataAddr) {
956
957 // Prepare for 68k interrupt level 1
958 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
959 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
960 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
961 | tswap32(kernel_data->v[0x674 >> 2]));
962
963 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
964 DisableInterrupt();
965 if (ROMType == ROMTYPE_NEWWORLD)
966 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
967 else
968 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
969 }
970 break;
971 #endif
972
973 #if INTERRUPTS_IN_EMUL_OP_MODE
974 case MODE_EMUL_OP:
975 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
976 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
977 #if EMUL_TIME_STATS
978 const clock_t interrupt_start = clock();
979 #endif
980 #if 1
981 // Execute full 68k interrupt routine
982 M68kRegisters r;
983 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
984 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
985 static const uint8 proc_template[] = {
986 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
987 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
988 0x40, 0xe7, // move sr,-(sp) (saved SR)
989 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
990 0x4e, 0xd0, // jmp (a0)
991 M68K_RTS >> 8, M68K_RTS & 0xff // @1
992 };
993 BUILD_SHEEPSHAVER_PROCEDURE(proc);
994 Execute68k(proc, &r);
995 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
996 #else
997 // Only update cursor
998 if (HasMacStarted()) {
999 if (InterruptFlags & INTFLAG_VIA) {
1000 ClearInterruptFlag(INTFLAG_VIA);
1001 ADBInterrupt();
1002 ExecuteNative(NATIVE_VIDEO_VBL);
1003 }
1004 }
1005 #endif
1006 #if EMUL_TIME_STATS
1007 interrupt_time += (clock() - interrupt_start);
1008 #endif
1009 }
1010 break;
1011 #endif
1012 }
1013 }
1014
1015 static void get_resource(void);
1016 static void get_1_resource(void);
1017 static void get_ind_resource(void);
1018 static void get_1_ind_resource(void);
1019 static void r_get_resource(void);
1020
1021 // Execute NATIVE_OP routine
1022 void sheepshaver_cpu::execute_native_op(uint32 selector)
1023 {
1024 #if EMUL_TIME_STATS
1025 native_exec_count++;
1026 const clock_t native_exec_start = clock();
1027 #endif
1028
1029 switch (selector) {
1030 case NATIVE_PATCH_NAME_REGISTRY:
1031 DoPatchNameRegistry();
1032 break;
1033 case NATIVE_VIDEO_INSTALL_ACCEL:
1034 VideoInstallAccel();
1035 break;
1036 case NATIVE_VIDEO_VBL:
1037 VideoVBL();
1038 break;
1039 case NATIVE_VIDEO_DO_DRIVER_IO:
1040 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1041 break;
1042 case NATIVE_ETHER_AO_GET_HWADDR:
1043 AO_get_ethernet_address(gpr(3));
1044 break;
1045 case NATIVE_ETHER_AO_ADD_MULTI:
1046 AO_enable_multicast(gpr(3));
1047 break;
1048 case NATIVE_ETHER_AO_DEL_MULTI:
1049 AO_disable_multicast(gpr(3));
1050 break;
1051 case NATIVE_ETHER_AO_SEND_PACKET:
1052 AO_transmit_packet(gpr(3));
1053 break;
1054 case NATIVE_ETHER_IRQ:
1055 EtherIRQ();
1056 break;
1057 case NATIVE_ETHER_INIT:
1058 gpr(3) = InitStreamModule((void *)gpr(3));
1059 break;
1060 case NATIVE_ETHER_TERM:
1061 TerminateStreamModule();
1062 break;
1063 case NATIVE_ETHER_OPEN:
1064 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1065 break;
1066 case NATIVE_ETHER_CLOSE:
1067 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1068 break;
1069 case NATIVE_ETHER_WPUT:
1070 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1071 break;
1072 case NATIVE_ETHER_RSRV:
1073 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1074 break;
1075 case NATIVE_SYNC_HOOK:
1076 gpr(3) = NQD_sync_hook(gpr(3));
1077 break;
1078 case NATIVE_BITBLT_HOOK:
1079 gpr(3) = NQD_bitblt_hook(gpr(3));
1080 break;
1081 case NATIVE_BITBLT:
1082 NQD_bitblt(gpr(3));
1083 break;
1084 case NATIVE_FILLRECT_HOOK:
1085 gpr(3) = NQD_fillrect_hook(gpr(3));
1086 break;
1087 case NATIVE_INVRECT:
1088 NQD_invrect(gpr(3));
1089 break;
1090 case NATIVE_FILLRECT:
1091 NQD_fillrect(gpr(3));
1092 break;
1093 case NATIVE_SERIAL_NOTHING:
1094 case NATIVE_SERIAL_OPEN:
1095 case NATIVE_SERIAL_PRIME_IN:
1096 case NATIVE_SERIAL_PRIME_OUT:
1097 case NATIVE_SERIAL_CONTROL:
1098 case NATIVE_SERIAL_STATUS:
1099 case NATIVE_SERIAL_CLOSE: {
1100 typedef int16 (*SerialCallback)(uint32, uint32);
1101 static const SerialCallback serial_callbacks[] = {
1102 SerialNothing,
1103 SerialOpen,
1104 SerialPrimeIn,
1105 SerialPrimeOut,
1106 SerialControl,
1107 SerialStatus,
1108 SerialClose
1109 };
1110 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1111 break;
1112 }
1113 case NATIVE_GET_RESOURCE:
1114 case NATIVE_GET_1_RESOURCE:
1115 case NATIVE_GET_IND_RESOURCE:
1116 case NATIVE_GET_1_IND_RESOURCE:
1117 case NATIVE_R_GET_RESOURCE: {
1118 typedef void (*GetResourceCallback)(void);
1119 static const GetResourceCallback get_resource_callbacks[] = {
1120 ::get_resource,
1121 ::get_1_resource,
1122 ::get_ind_resource,
1123 ::get_1_ind_resource,
1124 ::r_get_resource
1125 };
1126 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1127 break;
1128 }
1129 case NATIVE_MAKE_EXECUTABLE:
1130 MakeExecutable(0, gpr(4), gpr(5));
1131 break;
1132 case NATIVE_CHECK_LOAD_INVOC:
1133 check_load_invoc(gpr(3), gpr(4), gpr(5));
1134 break;
1135 default:
1136 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1137 QuitEmulator();
1138 break;
1139 }
1140
1141 #if EMUL_TIME_STATS
1142 native_exec_time += (clock() - native_exec_start);
1143 #endif
1144 }
1145
1146 /*
1147 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1148 * This must only be called by the emul_thread when in EMUL_OP mode
1149 * r->a[7] is unused, the routine runs on the caller's stack
1150 */
1151
1152 void Execute68k(uint32 pc, M68kRegisters *r)
1153 {
1154 ppc_cpu->execute_68k(pc, r);
1155 }
1156
1157 /*
1158 * Execute 68k A-Trap from EMUL_OP routine
1159 * r->a[7] is unused, the routine runs on the caller's stack
1160 */
1161
1162 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1163 {
1164 SheepVar proc_var(4);
1165 uint32 proc = proc_var.addr();
1166 WriteMacInt16(proc, trap);
1167 WriteMacInt16(proc + 2, M68K_RTS);
1168 Execute68k(proc, r);
1169 }
1170
1171 /*
1172 * Call MacOS PPC code
1173 */
1174
1175 uint32 call_macos(uint32 tvect)
1176 {
1177 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1178 }
1179
1180 uint32 call_macos1(uint32 tvect, uint32 arg1)
1181 {
1182 const uint32 args[] = { arg1 };
1183 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1184 }
1185
1186 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1187 {
1188 const uint32 args[] = { arg1, arg2 };
1189 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1190 }
1191
1192 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1193 {
1194 const uint32 args[] = { arg1, arg2, arg3 };
1195 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1196 }
1197
1198 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1199 {
1200 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1201 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1202 }
1203
1204 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1205 {
1206 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1207 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1208 }
1209
1210 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1211 {
1212 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1213 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1214 }
1215
1216 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1217 {
1218 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1219 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1220 }
1221
1222 /*
1223 * Resource Manager thunks
1224 */
1225
1226 void get_resource(void)
1227 {
1228 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1229 }
1230
1231 void get_1_resource(void)
1232 {
1233 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1234 }
1235
1236 void get_ind_resource(void)
1237 {
1238 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1239 }
1240
1241 void get_1_ind_resource(void)
1242 {
1243 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1244 }
1245
1246 void r_get_resource(void)
1247 {
1248 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1249 }