ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.26
Committed: 2004-01-24T11:28:06Z (20 years, 4 months ago) by gbeauche
Branch: MAIN
Changes since 1.25: +137 -22 lines
Log Message:
Generate PowerPC code wrapping GetResource() replacements. That way, it's
a normal PPC function invocation that can be JIT compiled to native code
instead of nesting execute() calls which may lead to use the interpreter
(this took around 11% of total execution time on boot, downto 3%).

Also, optimize some SheepShaver EmulOps and actually report non-CTI.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43
44 #if ENABLE_MON
45 #include "mon.h"
46 #include "mon_disass.h"
47 #endif
48
49 #define DEBUG 0
50 #include "debug.h"
51
52 // Emulation time statistics
53 #define EMUL_TIME_STATS 1
54
55 #if EMUL_TIME_STATS
56 static clock_t emul_start_time;
57 static uint32 interrupt_count = 0;
58 static clock_t interrupt_time = 0;
59 static uint32 exec68k_count = 0;
60 static clock_t exec68k_time = 0;
61 static uint32 native_exec_count = 0;
62 static clock_t native_exec_time = 0;
63 static uint32 macos_exec_count = 0;
64 static clock_t macos_exec_time = 0;
65 #endif
66
67 static void enter_mon(void)
68 {
69 // Start up mon in real-mode
70 #if ENABLE_MON
71 char *arg[4] = {"mon", "-m", "-r", NULL};
72 mon(3, arg);
73 #endif
74 }
75
76 // From main_*.cpp
77 extern uintptr SignalStackBase();
78
79 // From rsrc_patches.cpp
80 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
81
82 // PowerPC EmulOp to exit from emulation looop
83 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
84
85 // Enable multicore (main/interrupts) cpu emulation?
86 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87
88 // Enable Execute68k() safety checks?
89 #define SAFE_EXEC_68K 1
90
91 // Save FP state in Execute68k()?
92 #define SAVE_FP_EXEC_68K 1
93
94 // Interrupts in EMUL_OP mode?
95 #define INTERRUPTS_IN_EMUL_OP_MODE 1
96
97 // Interrupts in native mode?
98 #define INTERRUPTS_IN_NATIVE_MODE 1
99
100 // Pointer to Kernel Data
101 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
102
103 // SIGSEGV handler
104 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
105
106 // JIT Compiler enabled?
107 static inline bool enable_jit_p()
108 {
109 return PrefsFindBool("jit");
110 }
111
112
113 /**
114 * PowerPC emulator glue with special 'sheep' opcodes
115 **/
116
117 enum {
118 PPC_I(SHEEP) = PPC_I(MAX),
119 PPC_I(SHEEP_MAX)
120 };
121
122 class sheepshaver_cpu
123 : public powerpc_cpu
124 {
125 void init_decoder();
126 void execute_sheep(uint32 opcode);
127
128 public:
129
130 // Constructor
131 sheepshaver_cpu();
132
133 // CR & XER accessors
134 uint32 get_cr() const { return cr().get(); }
135 void set_cr(uint32 v) { cr().set(v); }
136 uint32 get_xer() const { return xer().get(); }
137 void set_xer(uint32 v) { xer().set(v); }
138
139 // Execute EMUL_OP routine
140 void execute_emul_op(uint32 emul_op);
141
142 // Execute 68k routine
143 void execute_68k(uint32 entry, M68kRegisters *r);
144
145 // Execute ppc routine
146 void execute_ppc(uint32 entry);
147
148 // Execute MacOS/PPC code
149 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
150
151 // Compile one instruction
152 virtual bool compile1(codegen_context_t & cg_context);
153
154 // Resource manager thunk
155 void get_resource(uint32 old_get_resource);
156
157 // Handle MacOS interrupt
158 void interrupt(uint32 entry);
159 void handle_interrupt();
160
161 // Lazy memory allocator (one item at a time)
162 void *operator new(size_t size)
163 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
164 void operator delete(void *p)
165 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
166 // FIXME: really make surre array allocation fail at link time?
167 void *operator new[](size_t);
168 void operator delete[](void *p);
169
170 // Make sure the SIGSEGV handler can access CPU registers
171 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
172 };
173
174 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
175
176 sheepshaver_cpu::sheepshaver_cpu()
177 : powerpc_cpu(enable_jit_p())
178 {
179 init_decoder();
180 }
181
182 void sheepshaver_cpu::init_decoder()
183 {
184 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
185 static bool initialized = false;
186 if (initialized)
187 return;
188 initialized = true;
189 #endif
190
191 static const instr_info_t sheep_ii_table[] = {
192 { "sheep",
193 (execute_pmf)&sheepshaver_cpu::execute_sheep,
194 NULL,
195 PPC_I(SHEEP),
196 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
197 }
198 };
199
200 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
201 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
202
203 for (int i = 0; i < ii_count; i++) {
204 const instr_info_t * ii = &sheep_ii_table[i];
205 init_decoder_entry(ii);
206 }
207 }
208
209 // Forward declaration for native opcode handler
210 static void NativeOp(int selector);
211
212 /* NativeOp instruction format:
213 +------------+--------------------------+--+----------+------------+
214 | 6 | |FN| OP | 2 |
215 +------------+--------------------------+--+----------+------------+
216 0 5 |6 19 20 21 25 26 31
217 */
218
219 typedef bit_field< 20, 20 > FN_field;
220 typedef bit_field< 21, 25 > NATIVE_OP_field;
221 typedef bit_field< 26, 31 > EMUL_OP_field;
222
223 // Execute EMUL_OP routine
224 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
225 {
226 M68kRegisters r68;
227 WriteMacInt32(XLM_68K_R25, gpr(25));
228 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
229 for (int i = 0; i < 8; i++)
230 r68.d[i] = gpr(8 + i);
231 for (int i = 0; i < 7; i++)
232 r68.a[i] = gpr(16 + i);
233 r68.a[7] = gpr(1);
234 uint32 saved_cr = get_cr() & CR_field<2>::mask();
235 uint32 saved_xer = get_xer();
236 EmulOp(&r68, gpr(24), emul_op);
237 set_cr(saved_cr);
238 set_xer(saved_xer);
239 for (int i = 0; i < 8; i++)
240 gpr(8 + i) = r68.d[i];
241 for (int i = 0; i < 7; i++)
242 gpr(16 + i) = r68.a[i];
243 gpr(1) = r68.a[7];
244 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
245 }
246
247 // Execute SheepShaver instruction
248 void sheepshaver_cpu::execute_sheep(uint32 opcode)
249 {
250 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
251 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
252
253 switch (opcode & 0x3f) {
254 case 0: // EMUL_RETURN
255 QuitEmulator();
256 break;
257
258 case 1: // EXEC_RETURN
259 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
260 break;
261
262 case 2: // EXEC_NATIVE
263 NativeOp(NATIVE_OP_field::extract(opcode));
264 if (FN_field::test(opcode))
265 pc() = lr();
266 else
267 pc() += 4;
268 break;
269
270 default: // EMUL_OP
271 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
272 pc() += 4;
273 break;
274 }
275 }
276
277 // Compile one instruction
278 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
279 {
280 #if PPC_ENABLE_JIT
281 const instr_info_t *ii = cg_context.instr_info;
282 if (ii->mnemo != PPC_I(SHEEP))
283 return false;
284
285 bool compiled = false;
286 powerpc_dyngen & dg = cg_context.codegen;
287 uint32 opcode = cg_context.opcode;
288
289 switch (opcode & 0x3f) {
290 case 0: // EMUL_RETURN
291 dg.gen_invoke(QuitEmulator);
292 compiled = true;
293 break;
294
295 case 1: // EXEC_RETURN
296 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
297 compiled = true;
298 break;
299
300 case 2: { // EXEC_NATIVE
301 uint32 selector = NATIVE_OP_field::extract(opcode);
302 switch (selector) {
303 case NATIVE_PATCH_NAME_REGISTRY:
304 dg.gen_invoke(DoPatchNameRegistry);
305 compiled = true;
306 break;
307 case NATIVE_VIDEO_INSTALL_ACCEL:
308 dg.gen_invoke(VideoInstallAccel);
309 compiled = true;
310 break;
311 case NATIVE_VIDEO_VBL:
312 dg.gen_invoke(VideoVBL);
313 compiled = true;
314 break;
315 case NATIVE_GET_RESOURCE:
316 case NATIVE_GET_1_RESOURCE:
317 case NATIVE_GET_IND_RESOURCE:
318 case NATIVE_GET_1_IND_RESOURCE:
319 case NATIVE_R_GET_RESOURCE: {
320 static const uint32 get_resource_ptr[] = {
321 XLM_GET_RESOURCE,
322 XLM_GET_1_RESOURCE,
323 XLM_GET_IND_RESOURCE,
324 XLM_GET_1_IND_RESOURCE,
325 XLM_R_GET_RESOURCE
326 };
327 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
328 typedef void (*func_t)(dyngen_cpu_base, uint32);
329 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
330 dg.gen_invoke_CPU_im(func, old_get_resource);
331 compiled = true;
332 break;
333 }
334 case NATIVE_DISABLE_INTERRUPT:
335 dg.gen_invoke(DisableInterrupt);
336 compiled = true;
337 break;
338 case NATIVE_ENABLE_INTERRUPT:
339 dg.gen_invoke(EnableInterrupt);
340 compiled = true;
341 break;
342 case NATIVE_CHECK_LOAD_INVOC:
343 dg.gen_load_T0_GPR(3);
344 dg.gen_load_T1_GPR(4);
345 dg.gen_se_16_32_T1();
346 dg.gen_load_T2_GPR(5);
347 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
348 compiled = true;
349 break;
350 }
351 if (FN_field::test(opcode)) {
352 if (compiled) {
353 dg.gen_load_A0_LR();
354 dg.gen_set_PC_A0();
355 }
356 cg_context.done_compile = true;
357 }
358 else
359 cg_context.done_compile = false;
360 break;
361 }
362
363 default: { // EMUL_OP
364 typedef void (*func_t)(dyngen_cpu_base, uint32);
365 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
366 dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
367 cg_context.done_compile = false;
368 compiled = true;
369 break;
370 }
371 }
372 return compiled;
373 #endif
374 return false;
375 }
376
377 // Handle MacOS interrupt
378 void sheepshaver_cpu::interrupt(uint32 entry)
379 {
380 #if EMUL_TIME_STATS
381 interrupt_count++;
382 const clock_t interrupt_start = clock();
383 #endif
384
385 #if !MULTICORE_CPU
386 // Save program counters and branch registers
387 uint32 saved_pc = pc();
388 uint32 saved_lr = lr();
389 uint32 saved_ctr= ctr();
390 uint32 saved_sp = gpr(1);
391 #endif
392
393 // Initialize stack pointer to SheepShaver alternate stack base
394 gpr(1) = SignalStackBase() - 64;
395
396 // Build trampoline to return from interrupt
397 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
398
399 // Prepare registers for nanokernel interrupt routine
400 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
401 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
402
403 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
404 assert(gpr(6) != 0);
405 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
406 WriteMacInt32(gpr(6) + 0x144, gpr(8));
407 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
408 WriteMacInt32(gpr(6) + 0x154, gpr(10));
409 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
410 WriteMacInt32(gpr(6) + 0x164, gpr(12));
411 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
412
413 gpr(1) = KernelDataAddr;
414 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
415 gpr(8) = 0;
416 gpr(10) = trampoline.addr();
417 gpr(12) = trampoline.addr();
418 gpr(13) = get_cr();
419
420 // rlwimi. r7,r7,8,0,0
421 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
422 record_cr0(result);
423 gpr(7) = result;
424
425 gpr(11) = 0xf072; // MSR (SRR1)
426 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
427
428 // Enter nanokernel
429 execute(entry);
430
431 #if !MULTICORE_CPU
432 // Restore program counters and branch registers
433 pc() = saved_pc;
434 lr() = saved_lr;
435 ctr()= saved_ctr;
436 gpr(1) = saved_sp;
437 #endif
438
439 #if EMUL_TIME_STATS
440 interrupt_time += (clock() - interrupt_start);
441 #endif
442 }
443
444 // Execute 68k routine
445 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
446 {
447 #if EMUL_TIME_STATS
448 exec68k_count++;
449 const clock_t exec68k_start = clock();
450 #endif
451
452 #if SAFE_EXEC_68K
453 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
454 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
455 #endif
456
457 // Save program counters and branch registers
458 uint32 saved_pc = pc();
459 uint32 saved_lr = lr();
460 uint32 saved_ctr= ctr();
461 uint32 saved_cr = get_cr();
462
463 // Create MacOS stack frame
464 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
465 uint32 sp = gpr(1);
466 gpr(1) -= 56;
467 WriteMacInt32(gpr(1), sp);
468
469 // Save PowerPC registers
470 uint32 saved_GPRs[19];
471 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
472 #if SAVE_FP_EXEC_68K
473 double saved_FPRs[18];
474 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
475 #endif
476
477 // Setup registers for 68k emulator
478 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
479 for (int i = 0; i < 8; i++) // d[0]..d[7]
480 gpr(8 + i) = r->d[i];
481 for (int i = 0; i < 7; i++) // a[0]..a[6]
482 gpr(16 + i) = r->a[i];
483 gpr(23) = 0;
484 gpr(24) = entry;
485 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
486 gpr(26) = 0;
487 gpr(28) = 0; // VBR
488 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
489 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
490 gpr(31) = KernelDataAddr + 0x1000;
491
492 // Push return address (points to EXEC_RETURN opcode) on stack
493 gpr(1) -= 4;
494 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
495
496 // Rentering 68k emulator
497 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
498
499 // Set r0 to 0 for 68k emulator
500 gpr(0) = 0;
501
502 // Execute 68k opcode
503 uint32 opcode = ReadMacInt16(gpr(24));
504 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
505 gpr(29) += opcode * 8;
506 execute(gpr(29));
507
508 // Save r25 (contains current 68k interrupt level)
509 WriteMacInt32(XLM_68K_R25, gpr(25));
510
511 // Reentering EMUL_OP mode
512 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
513
514 // Save 68k registers
515 for (int i = 0; i < 8; i++) // d[0]..d[7]
516 r->d[i] = gpr(8 + i);
517 for (int i = 0; i < 7; i++) // a[0]..a[6]
518 r->a[i] = gpr(16 + i);
519
520 // Restore PowerPC registers
521 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
522 #if SAVE_FP_EXEC_68K
523 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
524 #endif
525
526 // Cleanup stack
527 gpr(1) += 56;
528
529 // Restore program counters and branch registers
530 pc() = saved_pc;
531 lr() = saved_lr;
532 ctr()= saved_ctr;
533 set_cr(saved_cr);
534
535 #if EMUL_TIME_STATS
536 exec68k_time += (clock() - exec68k_start);
537 #endif
538 }
539
540 // Call MacOS PPC code
541 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
542 {
543 #if EMUL_TIME_STATS
544 macos_exec_count++;
545 const clock_t macos_exec_start = clock();
546 #endif
547
548 // Save program counters and branch registers
549 uint32 saved_pc = pc();
550 uint32 saved_lr = lr();
551 uint32 saved_ctr= ctr();
552
553 // Build trampoline with EXEC_RETURN
554 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
555 lr() = trampoline.addr();
556
557 gpr(1) -= 64; // Create stack frame
558 uint32 proc = ReadMacInt32(tvect); // Get routine address
559 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
560
561 // Save PowerPC registers
562 uint32 regs[8];
563 regs[0] = gpr(2);
564 for (int i = 0; i < nargs; i++)
565 regs[i + 1] = gpr(i + 3);
566
567 // Prepare and call MacOS routine
568 gpr(2) = toc;
569 for (int i = 0; i < nargs; i++)
570 gpr(i + 3) = args[i];
571 execute(proc);
572 uint32 retval = gpr(3);
573
574 // Restore PowerPC registers
575 for (int i = 0; i <= nargs; i++)
576 gpr(i + 2) = regs[i];
577
578 // Cleanup stack
579 gpr(1) += 64;
580
581 // Restore program counters and branch registers
582 pc() = saved_pc;
583 lr() = saved_lr;
584 ctr()= saved_ctr;
585
586 #if EMUL_TIME_STATS
587 macos_exec_time += (clock() - macos_exec_start);
588 #endif
589
590 return retval;
591 }
592
593 // Execute ppc routine
594 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
595 {
596 // Save branch registers
597 uint32 saved_lr = lr();
598
599 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
600 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
601 lr() = trampoline.addr();
602
603 execute(entry);
604
605 // Restore branch registers
606 lr() = saved_lr;
607 }
608
609 // Resource Manager thunk
610 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
611 {
612 uint32 type = gpr(3);
613 int16 id = gpr(4);
614
615 // Create stack frame
616 gpr(1) -= 56;
617
618 // Call old routine
619 execute_ppc(old_get_resource);
620
621 // Call CheckLoad()
622 uint32 handle = gpr(3);
623 check_load_invoc(type, id, handle);
624 gpr(3) = handle;
625
626 // Cleanup stack
627 gpr(1) += 56;
628 }
629
630
631 /**
632 * SheepShaver CPU engine interface
633 **/
634
635 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
636 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
637 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
638
639 void FlushCodeCache(uintptr start, uintptr end)
640 {
641 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
642 main_cpu->invalidate_cache_range(start, end);
643 #if MULTICORE_CPU
644 interrupt_cpu->invalidate_cache_range(start, end);
645 #endif
646 }
647
648 static inline void cpu_push(sheepshaver_cpu *new_cpu)
649 {
650 #if MULTICORE_CPU
651 current_cpu = new_cpu;
652 #endif
653 }
654
655 static inline void cpu_pop()
656 {
657 #if MULTICORE_CPU
658 current_cpu = main_cpu;
659 #endif
660 }
661
662 // Dump PPC registers
663 static void dump_registers(void)
664 {
665 current_cpu->dump_registers();
666 }
667
668 // Dump log
669 static void dump_log(void)
670 {
671 current_cpu->dump_log();
672 }
673
674 /*
675 * Initialize CPU emulation
676 */
677
678 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
679 {
680 #if ENABLE_VOSF
681 // Handle screen fault
682 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
683 if (Screen_fault_handler(fault_address, fault_instruction))
684 return SIGSEGV_RETURN_SUCCESS;
685 #endif
686
687 const uintptr addr = (uintptr)fault_address;
688 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
689 // Ignore writes to ROM
690 if ((addr - ROM_BASE) < ROM_SIZE)
691 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
692
693 // Get program counter of target CPU
694 sheepshaver_cpu * const cpu = current_cpu;
695 const uint32 pc = cpu->pc();
696
697 // Fault in Mac ROM or RAM?
698 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
699 if (mac_fault) {
700
701 // "VM settings" during MacOS 8 installation
702 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
703 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
704
705 // MacOS 8.5 installation
706 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
707 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
708
709 // MacOS 8 serial drivers on startup
710 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
711 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
712
713 // MacOS 8.1 serial drivers on startup
714 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
715 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
716 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
717 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718
719 // Ignore all other faults, if requested
720 if (PrefsFindBool("ignoresegv"))
721 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
722 }
723 #else
724 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
725 #endif
726
727 printf("SIGSEGV\n");
728 printf(" pc %p\n", fault_instruction);
729 printf(" ea %p\n", fault_address);
730 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
731 dump_registers();
732 current_cpu->dump_log();
733 enter_mon();
734 QuitEmulator();
735
736 return SIGSEGV_RETURN_FAILURE;
737 }
738
739 void init_emul_ppc(void)
740 {
741 // Initialize main CPU emulator
742 main_cpu = new sheepshaver_cpu();
743 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
744 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
745 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
746
747 #if MULTICORE_CPU
748 // Initialize alternate CPU emulator to handle interrupts
749 interrupt_cpu = new sheepshaver_cpu();
750 #endif
751
752 // Install the handler for SIGSEGV
753 sigsegv_install_handler(sigsegv_handler);
754
755 #if ENABLE_MON
756 // Install "regs" command in cxmon
757 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
758 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
759 #endif
760
761 #if EMUL_TIME_STATS
762 emul_start_time = clock();
763 #endif
764 }
765
766 /*
767 * Deinitialize emulation
768 */
769
770 void exit_emul_ppc(void)
771 {
772 #if EMUL_TIME_STATS
773 clock_t emul_end_time = clock();
774
775 printf("### Statistics for SheepShaver emulation parts\n");
776 const clock_t emul_time = emul_end_time - emul_start_time;
777 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
778 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
779 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
780
781 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
782 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
783 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
784 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
785 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
786 } while (0)
787
788 PRINT_STATS("Execute68k[Trap] execution", exec68k);
789 PRINT_STATS("NativeOp execution", native_exec);
790 PRINT_STATS("MacOS routine execution", macos_exec);
791
792 #undef PRINT_STATS
793 printf("\n");
794 #endif
795
796 delete main_cpu;
797 #if MULTICORE_CPU
798 delete interrupt_cpu;
799 #endif
800 }
801
802 /*
803 * Emulation loop
804 */
805
806 void emul_ppc(uint32 entry)
807 {
808 current_cpu = main_cpu;
809 #if 0
810 current_cpu->start_log();
811 #endif
812 // start emulation loop and enable code translation or caching
813 current_cpu->execute(entry);
814 }
815
816 /*
817 * Handle PowerPC interrupt
818 */
819
820 #if ASYNC_IRQ
821 void HandleInterrupt(void)
822 {
823 main_cpu->handle_interrupt();
824 }
825 #else
826 void TriggerInterrupt(void)
827 {
828 #if 0
829 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
830 #else
831 // Trigger interrupt to main cpu only
832 if (main_cpu)
833 main_cpu->trigger_interrupt();
834 #endif
835 }
836 #endif
837
838 void sheepshaver_cpu::handle_interrupt(void)
839 {
840 // Do nothing if interrupts are disabled
841 if (*(int32 *)XLM_IRQ_NEST > 0)
842 return;
843
844 // Do nothing if there is no interrupt pending
845 if (InterruptFlags == 0)
846 return;
847
848 // Disable MacOS stack sniffer
849 WriteMacInt32(0x110, 0);
850
851 // Interrupt action depends on current run mode
852 switch (ReadMacInt32(XLM_RUN_MODE)) {
853 case MODE_68K:
854 // 68k emulator active, trigger 68k interrupt level 1
855 assert(current_cpu == main_cpu);
856 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
857 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
858 break;
859
860 #if INTERRUPTS_IN_NATIVE_MODE
861 case MODE_NATIVE:
862 // 68k emulator inactive, in nanokernel?
863 assert(current_cpu == main_cpu);
864 if (gpr(1) != KernelDataAddr) {
865 // Prepare for 68k interrupt level 1
866 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
867 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
868 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
869 | tswap32(kernel_data->v[0x674 >> 2]));
870
871 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
872 DisableInterrupt();
873 cpu_push(interrupt_cpu);
874 if (ROMType == ROMTYPE_NEWWORLD)
875 current_cpu->interrupt(ROM_BASE + 0x312b1c);
876 else
877 current_cpu->interrupt(ROM_BASE + 0x312a3c);
878 cpu_pop();
879 }
880 break;
881 #endif
882
883 #if INTERRUPTS_IN_EMUL_OP_MODE
884 case MODE_EMUL_OP:
885 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
886 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
887 #if 1
888 // Execute full 68k interrupt routine
889 M68kRegisters r;
890 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
891 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
892 static const uint8 proc[] = {
893 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
894 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
895 0x40, 0xe7, // move sr,-(sp) (saved SR)
896 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
897 0x4e, 0xd0, // jmp (a0)
898 M68K_RTS >> 8, M68K_RTS & 0xff // @1
899 };
900 Execute68k((uint32)proc, &r);
901 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
902 #else
903 // Only update cursor
904 if (HasMacStarted()) {
905 if (InterruptFlags & INTFLAG_VIA) {
906 ClearInterruptFlag(INTFLAG_VIA);
907 ADBInterrupt();
908 ExecuteNative(NATIVE_VIDEO_VBL);
909 }
910 }
911 #endif
912 }
913 break;
914 #endif
915 }
916 }
917
918 static void get_resource(void);
919 static void get_1_resource(void);
920 static void get_ind_resource(void);
921 static void get_1_ind_resource(void);
922 static void r_get_resource(void);
923
924 #define GPR(REG) current_cpu->gpr(REG)
925
926 static void NativeOp(int selector)
927 {
928 #if EMUL_TIME_STATS
929 native_exec_count++;
930 const clock_t native_exec_start = clock();
931 #endif
932
933 switch (selector) {
934 case NATIVE_PATCH_NAME_REGISTRY:
935 DoPatchNameRegistry();
936 break;
937 case NATIVE_VIDEO_INSTALL_ACCEL:
938 VideoInstallAccel();
939 break;
940 case NATIVE_VIDEO_VBL:
941 VideoVBL();
942 break;
943 case NATIVE_VIDEO_DO_DRIVER_IO:
944 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
945 (void *)GPR(5), GPR(6), GPR(7));
946 break;
947 #ifdef WORDS_BIGENDIAN
948 case NATIVE_ETHER_IRQ:
949 EtherIRQ();
950 break;
951 case NATIVE_ETHER_INIT:
952 GPR(3) = InitStreamModule((void *)GPR(3));
953 break;
954 case NATIVE_ETHER_TERM:
955 TerminateStreamModule();
956 break;
957 case NATIVE_ETHER_OPEN:
958 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
959 break;
960 case NATIVE_ETHER_CLOSE:
961 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
962 break;
963 case NATIVE_ETHER_WPUT:
964 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
965 break;
966 case NATIVE_ETHER_RSRV:
967 GPR(3) = ether_rsrv((queue_t *)GPR(3));
968 break;
969 #else
970 case NATIVE_ETHER_INIT:
971 // FIXME: needs more complicated thunks
972 GPR(3) = false;
973 break;
974 #endif
975 case NATIVE_SERIAL_NOTHING:
976 case NATIVE_SERIAL_OPEN:
977 case NATIVE_SERIAL_PRIME_IN:
978 case NATIVE_SERIAL_PRIME_OUT:
979 case NATIVE_SERIAL_CONTROL:
980 case NATIVE_SERIAL_STATUS:
981 case NATIVE_SERIAL_CLOSE: {
982 typedef int16 (*SerialCallback)(uint32, uint32);
983 static const SerialCallback serial_callbacks[] = {
984 SerialNothing,
985 SerialOpen,
986 SerialPrimeIn,
987 SerialPrimeOut,
988 SerialControl,
989 SerialStatus,
990 SerialClose
991 };
992 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
993 break;
994 }
995 case NATIVE_GET_RESOURCE:
996 case NATIVE_GET_1_RESOURCE:
997 case NATIVE_GET_IND_RESOURCE:
998 case NATIVE_GET_1_IND_RESOURCE:
999 case NATIVE_R_GET_RESOURCE: {
1000 typedef void (*GetResourceCallback)(void);
1001 static const GetResourceCallback get_resource_callbacks[] = {
1002 get_resource,
1003 get_1_resource,
1004 get_ind_resource,
1005 get_1_ind_resource,
1006 r_get_resource
1007 };
1008 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1009 break;
1010 }
1011 case NATIVE_DISABLE_INTERRUPT:
1012 DisableInterrupt();
1013 break;
1014 case NATIVE_ENABLE_INTERRUPT:
1015 EnableInterrupt();
1016 break;
1017 case NATIVE_MAKE_EXECUTABLE:
1018 MakeExecutable(0, (void *)GPR(4), GPR(5));
1019 break;
1020 case NATIVE_CHECK_LOAD_INVOC:
1021 check_load_invoc(GPR(3), GPR(4), GPR(5));
1022 break;
1023 default:
1024 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1025 QuitEmulator();
1026 break;
1027 }
1028
1029 #if EMUL_TIME_STATS
1030 native_exec_time += (clock() - native_exec_start);
1031 #endif
1032 }
1033
1034 /*
1035 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1036 * This must only be called by the emul_thread when in EMUL_OP mode
1037 * r->a[7] is unused, the routine runs on the caller's stack
1038 */
1039
1040 void Execute68k(uint32 pc, M68kRegisters *r)
1041 {
1042 current_cpu->execute_68k(pc, r);
1043 }
1044
1045 /*
1046 * Execute 68k A-Trap from EMUL_OP routine
1047 * r->a[7] is unused, the routine runs on the caller's stack
1048 */
1049
1050 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1051 {
1052 SheepVar proc_var(4);
1053 uint32 proc = proc_var.addr();
1054 WriteMacInt16(proc, trap);
1055 WriteMacInt16(proc + 2, M68K_RTS);
1056 Execute68k(proc, r);
1057 }
1058
1059 /*
1060 * Call MacOS PPC code
1061 */
1062
1063 uint32 call_macos(uint32 tvect)
1064 {
1065 return current_cpu->execute_macos_code(tvect, 0, NULL);
1066 }
1067
1068 uint32 call_macos1(uint32 tvect, uint32 arg1)
1069 {
1070 const uint32 args[] = { arg1 };
1071 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1072 }
1073
1074 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1075 {
1076 const uint32 args[] = { arg1, arg2 };
1077 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1078 }
1079
1080 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1081 {
1082 const uint32 args[] = { arg1, arg2, arg3 };
1083 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1084 }
1085
1086 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1087 {
1088 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1089 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1090 }
1091
1092 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1093 {
1094 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1095 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1096 }
1097
1098 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1099 {
1100 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1101 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1102 }
1103
1104 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1105 {
1106 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1107 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1108 }
1109
1110 /*
1111 * Resource Manager thunks
1112 */
1113
1114 void get_resource(void)
1115 {
1116 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1117 }
1118
1119 void get_1_resource(void)
1120 {
1121 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1122 }
1123
1124 void get_ind_resource(void)
1125 {
1126 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1127 }
1128
1129 void get_1_ind_resource(void)
1130 {
1131 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1132 }
1133
1134 void r_get_resource(void)
1135 {
1136 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1137 }