ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.59
Committed: 2005-03-05T18:33:30Z (19 years, 8 months ago) by gbeauche
Branch: MAIN
Changes since 1.58: +11 -2 lines
Log Message:
Revert to no nested native ppc interrupt processing, also filter out cases
where InterruptFlags is 0.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92
93 // PowerPC EmulOp to exit from emulation looop
94 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95
96 // Enable Execute68k() safety checks?
97 #define SAFE_EXEC_68K 1
98
99 // Save FP state in Execute68k()?
100 #define SAVE_FP_EXEC_68K 1
101
102 // Interrupts in EMUL_OP mode?
103 #define INTERRUPTS_IN_EMUL_OP_MODE 1
104
105 // Interrupts in native mode?
106 #define INTERRUPTS_IN_NATIVE_MODE 1
107
108 // Pointer to Kernel Data
109 static KernelData * kernel_data;
110
111 // SIGSEGV handler
112 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113
114 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115 // Special trampolines for EmulOp and NativeOp
116 static uint8 *emul_op_trampoline;
117 static uint8 *native_op_trampoline;
118 #endif
119
120 // JIT Compiler enabled?
121 static inline bool enable_jit_p()
122 {
123 return PrefsFindBool("jit");
124 }
125
126
127 /**
128 * PowerPC emulator glue with special 'sheep' opcodes
129 **/
130
131 enum {
132 PPC_I(SHEEP) = PPC_I(MAX),
133 PPC_I(SHEEP_MAX)
134 };
135
136 class sheepshaver_cpu
137 : public powerpc_cpu
138 {
139 void init_decoder();
140 void execute_sheep(uint32 opcode);
141
142 public:
143
144 // Constructor
145 sheepshaver_cpu();
146
147 // CR & XER accessors
148 uint32 get_cr() const { return cr().get(); }
149 void set_cr(uint32 v) { cr().set(v); }
150 uint32 get_xer() const { return xer().get(); }
151 void set_xer(uint32 v) { xer().set(v); }
152
153 // Execute NATIVE_OP routine
154 void execute_native_op(uint32 native_op);
155
156 // Execute EMUL_OP routine
157 void execute_emul_op(uint32 emul_op);
158
159 // Execute 68k routine
160 void execute_68k(uint32 entry, M68kRegisters *r);
161
162 // Execute ppc routine
163 void execute_ppc(uint32 entry);
164
165 // Execute MacOS/PPC code
166 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167
168 #if PPC_ENABLE_JIT
169 // Compile one instruction
170 virtual int compile1(codegen_context_t & cg_context);
171 #endif
172 // Resource manager thunk
173 void get_resource(uint32 old_get_resource);
174
175 // Handle MacOS interrupt
176 void interrupt(uint32 entry);
177
178 // Make sure the SIGSEGV handler can access CPU registers
179 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180
181 // Memory allocator returning areas aligned on 16-byte boundaries
182 void *operator new(size_t size);
183 void operator delete(void *p);
184 };
185
186 // Memory allocator returning areas aligned on 16-byte boundaries
187 void *sheepshaver_cpu::operator new(size_t size)
188 {
189 void *p;
190
191 #if defined(HAVE_POSIX_MEMALIGN)
192 if (posix_memalign(&p, 16, size) != 0)
193 throw std::bad_alloc();
194 #elif defined(HAVE_MEMALIGN)
195 p = memalign(16, size);
196 #elif defined(HAVE_VALLOC)
197 p = valloc(size); // page-aligned!
198 #else
199 /* XXX: handle padding ourselves */
200 p = malloc(size);
201 #endif
202
203 return p;
204 }
205
206 void sheepshaver_cpu::operator delete(void *p)
207 {
208 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
209 #if defined(__GLIBC__)
210 // this is known to work only with GNU libc
211 free(p);
212 #endif
213 #else
214 free(p);
215 #endif
216 }
217
218 sheepshaver_cpu::sheepshaver_cpu()
219 : powerpc_cpu(enable_jit_p())
220 {
221 init_decoder();
222 }
223
224 void sheepshaver_cpu::init_decoder()
225 {
226 static const instr_info_t sheep_ii_table[] = {
227 { "sheep",
228 (execute_pmf)&sheepshaver_cpu::execute_sheep,
229 NULL,
230 PPC_I(SHEEP),
231 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
232 }
233 };
234
235 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
236 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
237
238 for (int i = 0; i < ii_count; i++) {
239 const instr_info_t * ii = &sheep_ii_table[i];
240 init_decoder_entry(ii);
241 }
242 }
243
244 /* NativeOp instruction format:
245 +------------+-------------------------+--+-----------+------------+
246 | 6 | |FN| OP | 2 |
247 +------------+-------------------------+--+-----------+------------+
248 0 5 |6 18 19 20 25 26 31
249 */
250
251 typedef bit_field< 19, 19 > FN_field;
252 typedef bit_field< 20, 25 > NATIVE_OP_field;
253 typedef bit_field< 26, 31 > EMUL_OP_field;
254
255 // Execute EMUL_OP routine
256 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
257 {
258 M68kRegisters r68;
259 WriteMacInt32(XLM_68K_R25, gpr(25));
260 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
261 for (int i = 0; i < 8; i++)
262 r68.d[i] = gpr(8 + i);
263 for (int i = 0; i < 7; i++)
264 r68.a[i] = gpr(16 + i);
265 r68.a[7] = gpr(1);
266 uint32 saved_cr = get_cr() & CR_field<2>::mask();
267 uint32 saved_xer = get_xer();
268 EmulOp(&r68, gpr(24), emul_op);
269 set_cr(saved_cr);
270 set_xer(saved_xer);
271 for (int i = 0; i < 8; i++)
272 gpr(8 + i) = r68.d[i];
273 for (int i = 0; i < 7; i++)
274 gpr(16 + i) = r68.a[i];
275 gpr(1) = r68.a[7];
276 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
277 }
278
279 // Execute SheepShaver instruction
280 void sheepshaver_cpu::execute_sheep(uint32 opcode)
281 {
282 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
283 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
284
285 switch (opcode & 0x3f) {
286 case 0: // EMUL_RETURN
287 QuitEmulator();
288 break;
289
290 case 1: // EXEC_RETURN
291 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
292 break;
293
294 case 2: // EXEC_NATIVE
295 execute_native_op(NATIVE_OP_field::extract(opcode));
296 if (FN_field::test(opcode))
297 pc() = lr();
298 else
299 pc() += 4;
300 break;
301
302 default: // EMUL_OP
303 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
304 pc() += 4;
305 break;
306 }
307 }
308
309 // Compile one instruction
310 #if PPC_ENABLE_JIT
311 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
312 {
313 const instr_info_t *ii = cg_context.instr_info;
314 if (ii->mnemo != PPC_I(SHEEP))
315 return COMPILE_FAILURE;
316
317 int status = COMPILE_FAILURE;
318 powerpc_dyngen & dg = cg_context.codegen;
319 uint32 opcode = cg_context.opcode;
320
321 switch (opcode & 0x3f) {
322 case 0: // EMUL_RETURN
323 dg.gen_invoke(QuitEmulator);
324 status = COMPILE_CODE_OK;
325 break;
326
327 case 1: // EXEC_RETURN
328 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
329 // Don't check for pending interrupts, we do know we have to
330 // get out of this block ASAP
331 dg.gen_exec_return();
332 status = COMPILE_EPILOGUE_OK;
333 break;
334
335 case 2: { // EXEC_NATIVE
336 uint32 selector = NATIVE_OP_field::extract(opcode);
337 switch (selector) {
338 #if !PPC_REENTRANT_JIT
339 // Filter out functions that may invoke Execute68k() or
340 // CallMacOS(), this would break reentrancy as they could
341 // invalidate the translation cache and even overwrite
342 // continuation code when we are done with them.
343 case NATIVE_PATCH_NAME_REGISTRY:
344 dg.gen_invoke(DoPatchNameRegistry);
345 status = COMPILE_CODE_OK;
346 break;
347 case NATIVE_VIDEO_INSTALL_ACCEL:
348 dg.gen_invoke(VideoInstallAccel);
349 status = COMPILE_CODE_OK;
350 break;
351 case NATIVE_VIDEO_VBL:
352 dg.gen_invoke(VideoVBL);
353 status = COMPILE_CODE_OK;
354 break;
355 case NATIVE_GET_RESOURCE:
356 case NATIVE_GET_1_RESOURCE:
357 case NATIVE_GET_IND_RESOURCE:
358 case NATIVE_GET_1_IND_RESOURCE:
359 case NATIVE_R_GET_RESOURCE: {
360 static const uint32 get_resource_ptr[] = {
361 XLM_GET_RESOURCE,
362 XLM_GET_1_RESOURCE,
363 XLM_GET_IND_RESOURCE,
364 XLM_GET_1_IND_RESOURCE,
365 XLM_R_GET_RESOURCE
366 };
367 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
368 typedef void (*func_t)(dyngen_cpu_base, uint32);
369 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
370 dg.gen_invoke_CPU_im(func, old_get_resource);
371 status = COMPILE_CODE_OK;
372 break;
373 }
374 case NATIVE_CHECK_LOAD_INVOC:
375 dg.gen_load_T0_GPR(3);
376 dg.gen_load_T1_GPR(4);
377 dg.gen_se_16_32_T1();
378 dg.gen_load_T2_GPR(5);
379 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
380 status = COMPILE_CODE_OK;
381 break;
382 #endif
383 case NATIVE_BITBLT:
384 dg.gen_load_T0_GPR(3);
385 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
386 status = COMPILE_CODE_OK;
387 break;
388 case NATIVE_INVRECT:
389 dg.gen_load_T0_GPR(3);
390 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
391 status = COMPILE_CODE_OK;
392 break;
393 case NATIVE_FILLRECT:
394 dg.gen_load_T0_GPR(3);
395 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
396 status = COMPILE_CODE_OK;
397 break;
398 }
399 // Could we fully translate this NativeOp?
400 if (status == COMPILE_CODE_OK) {
401 if (!FN_field::test(opcode))
402 cg_context.done_compile = false;
403 else {
404 dg.gen_load_A0_LR();
405 dg.gen_set_PC_A0();
406 cg_context.done_compile = true;
407 }
408 break;
409 }
410 #if PPC_REENTRANT_JIT
411 // Try to execute NativeOp trampoline
412 if (!FN_field::test(opcode))
413 dg.gen_set_PC_im(cg_context.pc + 4);
414 else {
415 dg.gen_load_A0_LR();
416 dg.gen_set_PC_A0();
417 }
418 dg.gen_mov_32_T0_im(selector);
419 dg.gen_jmp(native_op_trampoline);
420 cg_context.done_compile = true;
421 status = COMPILE_EPILOGUE_OK;
422 break;
423 #endif
424 // Invoke NativeOp handler
425 if (!FN_field::test(opcode)) {
426 typedef void (*func_t)(dyngen_cpu_base, uint32);
427 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
428 dg.gen_invoke_CPU_im(func, selector);
429 cg_context.done_compile = false;
430 status = COMPILE_CODE_OK;
431 }
432 // Otherwise, let it generate a call to execute_sheep() which
433 // will cause necessary updates to the program counter
434 break;
435 }
436
437 default: { // EMUL_OP
438 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
439 #if PPC_REENTRANT_JIT
440 // Try to execute EmulOp trampoline
441 dg.gen_set_PC_im(cg_context.pc + 4);
442 dg.gen_mov_32_T0_im(emul_op);
443 dg.gen_jmp(emul_op_trampoline);
444 cg_context.done_compile = true;
445 status = COMPILE_EPILOGUE_OK;
446 break;
447 #endif
448 // Invoke EmulOp handler
449 typedef void (*func_t)(dyngen_cpu_base, uint32);
450 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
451 dg.gen_invoke_CPU_im(func, emul_op);
452 cg_context.done_compile = false;
453 status = COMPILE_CODE_OK;
454 break;
455 }
456 }
457 return status;
458 }
459 #endif
460
461 // Handle MacOS interrupt
462 void sheepshaver_cpu::interrupt(uint32 entry)
463 {
464 #if EMUL_TIME_STATS
465 ppc_interrupt_count++;
466 const clock_t interrupt_start = clock();
467 #endif
468
469 // Save program counters and branch registers
470 uint32 saved_pc = pc();
471 uint32 saved_lr = lr();
472 uint32 saved_ctr= ctr();
473 uint32 saved_sp = gpr(1);
474
475 // Initialize stack pointer to SheepShaver alternate stack base
476 gpr(1) = SignalStackBase() - 64;
477
478 // Build trampoline to return from interrupt
479 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
480
481 // Prepare registers for nanokernel interrupt routine
482 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
483 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
484
485 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
486 assert(gpr(6) != 0);
487 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
488 WriteMacInt32(gpr(6) + 0x144, gpr(8));
489 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
490 WriteMacInt32(gpr(6) + 0x154, gpr(10));
491 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
492 WriteMacInt32(gpr(6) + 0x164, gpr(12));
493 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
494
495 gpr(1) = KernelDataAddr;
496 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
497 gpr(8) = 0;
498 gpr(10) = trampoline.addr();
499 gpr(12) = trampoline.addr();
500 gpr(13) = get_cr();
501
502 // rlwimi. r7,r7,8,0,0
503 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
504 record_cr0(result);
505 gpr(7) = result;
506
507 gpr(11) = 0xf072; // MSR (SRR1)
508 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
509
510 // Enter nanokernel
511 execute(entry);
512
513 // Restore program counters and branch registers
514 pc() = saved_pc;
515 lr() = saved_lr;
516 ctr()= saved_ctr;
517 gpr(1) = saved_sp;
518
519 #if EMUL_TIME_STATS
520 interrupt_time += (clock() - interrupt_start);
521 #endif
522 }
523
524 // Execute 68k routine
525 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
526 {
527 #if EMUL_TIME_STATS
528 exec68k_count++;
529 const clock_t exec68k_start = clock();
530 #endif
531
532 #if SAFE_EXEC_68K
533 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
534 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
535 #endif
536
537 // Save program counters and branch registers
538 uint32 saved_pc = pc();
539 uint32 saved_lr = lr();
540 uint32 saved_ctr= ctr();
541 uint32 saved_cr = get_cr();
542
543 // Create MacOS stack frame
544 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
545 uint32 sp = gpr(1);
546 gpr(1) -= 56;
547 WriteMacInt32(gpr(1), sp);
548
549 // Save PowerPC registers
550 uint32 saved_GPRs[19];
551 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
552 #if SAVE_FP_EXEC_68K
553 double saved_FPRs[18];
554 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
555 #endif
556
557 // Setup registers for 68k emulator
558 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
559 for (int i = 0; i < 8; i++) // d[0]..d[7]
560 gpr(8 + i) = r->d[i];
561 for (int i = 0; i < 7; i++) // a[0]..a[6]
562 gpr(16 + i) = r->a[i];
563 gpr(23) = 0;
564 gpr(24) = entry;
565 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
566 gpr(26) = 0;
567 gpr(28) = 0; // VBR
568 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
569 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
570 gpr(31) = KernelDataAddr + 0x1000;
571
572 // Push return address (points to EXEC_RETURN opcode) on stack
573 gpr(1) -= 4;
574 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
575
576 // Rentering 68k emulator
577 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
578
579 // Set r0 to 0 for 68k emulator
580 gpr(0) = 0;
581
582 // Execute 68k opcode
583 uint32 opcode = ReadMacInt16(gpr(24));
584 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
585 gpr(29) += opcode * 8;
586 execute(gpr(29));
587
588 // Save r25 (contains current 68k interrupt level)
589 WriteMacInt32(XLM_68K_R25, gpr(25));
590
591 // Reentering EMUL_OP mode
592 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
593
594 // Save 68k registers
595 for (int i = 0; i < 8; i++) // d[0]..d[7]
596 r->d[i] = gpr(8 + i);
597 for (int i = 0; i < 7; i++) // a[0]..a[6]
598 r->a[i] = gpr(16 + i);
599
600 // Restore PowerPC registers
601 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
602 #if SAVE_FP_EXEC_68K
603 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
604 #endif
605
606 // Cleanup stack
607 gpr(1) += 56;
608
609 // Restore program counters and branch registers
610 pc() = saved_pc;
611 lr() = saved_lr;
612 ctr()= saved_ctr;
613 set_cr(saved_cr);
614
615 #if EMUL_TIME_STATS
616 exec68k_time += (clock() - exec68k_start);
617 #endif
618 }
619
620 // Call MacOS PPC code
621 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
622 {
623 #if EMUL_TIME_STATS
624 macos_exec_count++;
625 const clock_t macos_exec_start = clock();
626 #endif
627
628 // Save program counters and branch registers
629 uint32 saved_pc = pc();
630 uint32 saved_lr = lr();
631 uint32 saved_ctr= ctr();
632
633 // Build trampoline with EXEC_RETURN
634 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
635 lr() = trampoline.addr();
636
637 gpr(1) -= 64; // Create stack frame
638 uint32 proc = ReadMacInt32(tvect); // Get routine address
639 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
640
641 // Save PowerPC registers
642 uint32 regs[8];
643 regs[0] = gpr(2);
644 for (int i = 0; i < nargs; i++)
645 regs[i + 1] = gpr(i + 3);
646
647 // Prepare and call MacOS routine
648 gpr(2) = toc;
649 for (int i = 0; i < nargs; i++)
650 gpr(i + 3) = args[i];
651 execute(proc);
652 uint32 retval = gpr(3);
653
654 // Restore PowerPC registers
655 for (int i = 0; i <= nargs; i++)
656 gpr(i + 2) = regs[i];
657
658 // Cleanup stack
659 gpr(1) += 64;
660
661 // Restore program counters and branch registers
662 pc() = saved_pc;
663 lr() = saved_lr;
664 ctr()= saved_ctr;
665
666 #if EMUL_TIME_STATS
667 macos_exec_time += (clock() - macos_exec_start);
668 #endif
669
670 return retval;
671 }
672
673 // Execute ppc routine
674 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
675 {
676 // Save branch registers
677 uint32 saved_lr = lr();
678
679 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
680 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
681 lr() = trampoline.addr();
682
683 execute(entry);
684
685 // Restore branch registers
686 lr() = saved_lr;
687 }
688
689 // Resource Manager thunk
690 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
691 {
692 uint32 type = gpr(3);
693 int16 id = gpr(4);
694
695 // Create stack frame
696 gpr(1) -= 56;
697
698 // Call old routine
699 execute_ppc(old_get_resource);
700
701 // Call CheckLoad()
702 uint32 handle = gpr(3);
703 check_load_invoc(type, id, handle);
704 gpr(3) = handle;
705
706 // Cleanup stack
707 gpr(1) += 56;
708 }
709
710
711 /**
712 * SheepShaver CPU engine interface
713 **/
714
715 // PowerPC CPU emulator
716 static sheepshaver_cpu *ppc_cpu = NULL;
717
718 void FlushCodeCache(uintptr start, uintptr end)
719 {
720 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
721 ppc_cpu->invalidate_cache_range(start, end);
722 }
723
724 // Dump PPC registers
725 static void dump_registers(void)
726 {
727 ppc_cpu->dump_registers();
728 }
729
730 // Dump log
731 static void dump_log(void)
732 {
733 ppc_cpu->dump_log();
734 }
735
736 /*
737 * Initialize CPU emulation
738 */
739
740 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
741 {
742 #if ENABLE_VOSF
743 // Handle screen fault
744 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
745 if (Screen_fault_handler(fault_address, fault_instruction))
746 return SIGSEGV_RETURN_SUCCESS;
747 #endif
748
749 const uintptr addr = (uintptr)fault_address;
750 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
751 // Ignore writes to ROM
752 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
753 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
754
755 // Get program counter of target CPU
756 sheepshaver_cpu * const cpu = ppc_cpu;
757 const uint32 pc = cpu->pc();
758
759 // Fault in Mac ROM or RAM?
760 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
761 if (mac_fault) {
762
763 // "VM settings" during MacOS 8 installation
764 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
765 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
766
767 // MacOS 8.5 installation
768 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
769 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
770
771 // MacOS 8 serial drivers on startup
772 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
773 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
774
775 // MacOS 8.1 serial drivers on startup
776 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
777 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
778 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
779 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780
781 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
782 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
783 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
784 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
785 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786
787 // Ignore writes to the zero page
788 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
789 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
790
791 // Ignore all other faults, if requested
792 if (PrefsFindBool("ignoresegv"))
793 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
794 }
795 #else
796 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
797 #endif
798
799 printf("SIGSEGV\n");
800 printf(" pc %p\n", fault_instruction);
801 printf(" ea %p\n", fault_address);
802 dump_registers();
803 ppc_cpu->dump_log();
804 enter_mon();
805 QuitEmulator();
806
807 return SIGSEGV_RETURN_FAILURE;
808 }
809
810 void init_emul_ppc(void)
811 {
812 // Get pointer to KernelData in host address space
813 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
814
815 // Initialize main CPU emulator
816 ppc_cpu = new sheepshaver_cpu();
817 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
818 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
819 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
820
821 #if ENABLE_MON
822 // Install "regs" command in cxmon
823 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
824 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
825 #endif
826
827 #if EMUL_TIME_STATS
828 emul_start_time = clock();
829 #endif
830 }
831
832 /*
833 * Deinitialize emulation
834 */
835
836 void exit_emul_ppc(void)
837 {
838 #if EMUL_TIME_STATS
839 clock_t emul_end_time = clock();
840
841 printf("### Statistics for SheepShaver emulation parts\n");
842 const clock_t emul_time = emul_end_time - emul_start_time;
843 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
844 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
845 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
846 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
847 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
848
849 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
850 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
851 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
852 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
853 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
854 } while (0)
855
856 PRINT_STATS("Execute68k[Trap] execution", exec68k);
857 PRINT_STATS("NativeOp execution", native_exec);
858 PRINT_STATS("MacOS routine execution", macos_exec);
859
860 #undef PRINT_STATS
861 printf("\n");
862 #endif
863
864 delete ppc_cpu;
865 }
866
867 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
868 // Initialize EmulOp trampolines
869 void init_emul_op_trampolines(basic_dyngen & dg)
870 {
871 typedef void (*func_t)(dyngen_cpu_base, uint32);
872 func_t func;
873
874 // EmulOp
875 emul_op_trampoline = dg.gen_start();
876 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
877 dg.gen_invoke_CPU_T0(func);
878 dg.gen_exec_return();
879 dg.gen_end();
880
881 // NativeOp
882 native_op_trampoline = dg.gen_start();
883 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
884 dg.gen_invoke_CPU_T0(func);
885 dg.gen_exec_return();
886 dg.gen_end();
887
888 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
889 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
890 }
891 #endif
892
893 /*
894 * Emulation loop
895 */
896
897 void emul_ppc(uint32 entry)
898 {
899 #if 0
900 ppc_cpu->start_log();
901 #endif
902 // start emulation loop and enable code translation or caching
903 ppc_cpu->execute(entry);
904 }
905
906 /*
907 * Handle PowerPC interrupt
908 */
909
910 void TriggerInterrupt(void)
911 {
912 #if 0
913 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
914 #else
915 // Trigger interrupt to main cpu only
916 if (ppc_cpu)
917 ppc_cpu->trigger_interrupt();
918 #endif
919 }
920
921 void HandleInterrupt(powerpc_registers *r)
922 {
923 #ifdef USE_SDL_VIDEO
924 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
925 SDL_PumpEvents();
926 #endif
927
928 // Do nothing if interrupts are disabled
929 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
930 return;
931
932 // Do nothing if there is no pending interrupt
933 if (InterruptFlags == 0)
934 return;
935
936 // Current interrupt nest level
937 static int interrupt_depth = 0;
938 ++interrupt_depth;
939 #if EMUL_TIME_STATS
940 interrupt_count++;
941 #endif
942
943 // Interrupt action depends on current run mode
944 switch (ReadMacInt32(XLM_RUN_MODE)) {
945 case MODE_68K:
946 // 68k emulator active, trigger 68k interrupt level 1
947 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
948 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
949 break;
950
951 #if INTERRUPTS_IN_NATIVE_MODE
952 case MODE_NATIVE:
953 // 68k emulator inactive, in nanokernel?
954 if (r->gpr[1] != KernelDataAddr && interrupt_depth == 1) {
955
956 // Prepare for 68k interrupt level 1
957 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
958 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
959 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
960 | tswap32(kernel_data->v[0x674 >> 2]));
961
962 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
963 DisableInterrupt();
964 if (ROMType == ROMTYPE_NEWWORLD)
965 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
966 else
967 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
968 }
969 break;
970 #endif
971
972 #if INTERRUPTS_IN_EMUL_OP_MODE
973 case MODE_EMUL_OP:
974 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
975 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
976 #if EMUL_TIME_STATS
977 const clock_t interrupt_start = clock();
978 #endif
979 #if 1
980 // Execute full 68k interrupt routine
981 M68kRegisters r;
982 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
983 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
984 static const uint8 proc_template[] = {
985 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
986 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
987 0x40, 0xe7, // move sr,-(sp) (saved SR)
988 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
989 0x4e, 0xd0, // jmp (a0)
990 M68K_RTS >> 8, M68K_RTS & 0xff // @1
991 };
992 BUILD_SHEEPSHAVER_PROCEDURE(proc);
993 Execute68k(proc, &r);
994 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
995 #else
996 // Only update cursor
997 if (HasMacStarted()) {
998 if (InterruptFlags & INTFLAG_VIA) {
999 ClearInterruptFlag(INTFLAG_VIA);
1000 ADBInterrupt();
1001 ExecuteNative(NATIVE_VIDEO_VBL);
1002 }
1003 }
1004 #endif
1005 #if EMUL_TIME_STATS
1006 interrupt_time += (clock() - interrupt_start);
1007 #endif
1008 }
1009 break;
1010 #endif
1011 }
1012
1013 // We are done with this interrupt
1014 --interrupt_depth;
1015 }
1016
1017 static void get_resource(void);
1018 static void get_1_resource(void);
1019 static void get_ind_resource(void);
1020 static void get_1_ind_resource(void);
1021 static void r_get_resource(void);
1022
1023 // Execute NATIVE_OP routine
1024 void sheepshaver_cpu::execute_native_op(uint32 selector)
1025 {
1026 #if EMUL_TIME_STATS
1027 native_exec_count++;
1028 const clock_t native_exec_start = clock();
1029 #endif
1030
1031 switch (selector) {
1032 case NATIVE_PATCH_NAME_REGISTRY:
1033 DoPatchNameRegistry();
1034 break;
1035 case NATIVE_VIDEO_INSTALL_ACCEL:
1036 VideoInstallAccel();
1037 break;
1038 case NATIVE_VIDEO_VBL:
1039 VideoVBL();
1040 break;
1041 case NATIVE_VIDEO_DO_DRIVER_IO:
1042 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1043 break;
1044 case NATIVE_ETHER_IRQ:
1045 EtherIRQ();
1046 break;
1047 case NATIVE_ETHER_INIT:
1048 gpr(3) = InitStreamModule((void *)gpr(3));
1049 break;
1050 case NATIVE_ETHER_TERM:
1051 TerminateStreamModule();
1052 break;
1053 case NATIVE_ETHER_OPEN:
1054 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1055 break;
1056 case NATIVE_ETHER_CLOSE:
1057 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1058 break;
1059 case NATIVE_ETHER_WPUT:
1060 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1061 break;
1062 case NATIVE_ETHER_RSRV:
1063 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1064 break;
1065 case NATIVE_SYNC_HOOK:
1066 gpr(3) = NQD_sync_hook(gpr(3));
1067 break;
1068 case NATIVE_BITBLT_HOOK:
1069 gpr(3) = NQD_bitblt_hook(gpr(3));
1070 break;
1071 case NATIVE_BITBLT:
1072 NQD_bitblt(gpr(3));
1073 break;
1074 case NATIVE_FILLRECT_HOOK:
1075 gpr(3) = NQD_fillrect_hook(gpr(3));
1076 break;
1077 case NATIVE_INVRECT:
1078 NQD_invrect(gpr(3));
1079 break;
1080 case NATIVE_FILLRECT:
1081 NQD_fillrect(gpr(3));
1082 break;
1083 case NATIVE_SERIAL_NOTHING:
1084 case NATIVE_SERIAL_OPEN:
1085 case NATIVE_SERIAL_PRIME_IN:
1086 case NATIVE_SERIAL_PRIME_OUT:
1087 case NATIVE_SERIAL_CONTROL:
1088 case NATIVE_SERIAL_STATUS:
1089 case NATIVE_SERIAL_CLOSE: {
1090 typedef int16 (*SerialCallback)(uint32, uint32);
1091 static const SerialCallback serial_callbacks[] = {
1092 SerialNothing,
1093 SerialOpen,
1094 SerialPrimeIn,
1095 SerialPrimeOut,
1096 SerialControl,
1097 SerialStatus,
1098 SerialClose
1099 };
1100 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1101 break;
1102 }
1103 case NATIVE_GET_RESOURCE:
1104 case NATIVE_GET_1_RESOURCE:
1105 case NATIVE_GET_IND_RESOURCE:
1106 case NATIVE_GET_1_IND_RESOURCE:
1107 case NATIVE_R_GET_RESOURCE: {
1108 typedef void (*GetResourceCallback)(void);
1109 static const GetResourceCallback get_resource_callbacks[] = {
1110 ::get_resource,
1111 ::get_1_resource,
1112 ::get_ind_resource,
1113 ::get_1_ind_resource,
1114 ::r_get_resource
1115 };
1116 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1117 break;
1118 }
1119 case NATIVE_MAKE_EXECUTABLE:
1120 MakeExecutable(0, gpr(4), gpr(5));
1121 break;
1122 case NATIVE_CHECK_LOAD_INVOC:
1123 check_load_invoc(gpr(3), gpr(4), gpr(5));
1124 break;
1125 default:
1126 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1127 QuitEmulator();
1128 break;
1129 }
1130
1131 #if EMUL_TIME_STATS
1132 native_exec_time += (clock() - native_exec_start);
1133 #endif
1134 }
1135
1136 /*
1137 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1138 * This must only be called by the emul_thread when in EMUL_OP mode
1139 * r->a[7] is unused, the routine runs on the caller's stack
1140 */
1141
1142 void Execute68k(uint32 pc, M68kRegisters *r)
1143 {
1144 ppc_cpu->execute_68k(pc, r);
1145 }
1146
1147 /*
1148 * Execute 68k A-Trap from EMUL_OP routine
1149 * r->a[7] is unused, the routine runs on the caller's stack
1150 */
1151
1152 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1153 {
1154 SheepVar proc_var(4);
1155 uint32 proc = proc_var.addr();
1156 WriteMacInt16(proc, trap);
1157 WriteMacInt16(proc + 2, M68K_RTS);
1158 Execute68k(proc, r);
1159 }
1160
1161 /*
1162 * Call MacOS PPC code
1163 */
1164
1165 uint32 call_macos(uint32 tvect)
1166 {
1167 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1168 }
1169
1170 uint32 call_macos1(uint32 tvect, uint32 arg1)
1171 {
1172 const uint32 args[] = { arg1 };
1173 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1174 }
1175
1176 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1177 {
1178 const uint32 args[] = { arg1, arg2 };
1179 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1180 }
1181
1182 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1183 {
1184 const uint32 args[] = { arg1, arg2, arg3 };
1185 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1186 }
1187
1188 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1189 {
1190 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1191 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1192 }
1193
1194 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1195 {
1196 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1197 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1198 }
1199
1200 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1201 {
1202 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1203 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1204 }
1205
1206 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1207 {
1208 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1209 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1210 }
1211
1212 /*
1213 * Resource Manager thunks
1214 */
1215
1216 void get_resource(void)
1217 {
1218 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1219 }
1220
1221 void get_1_resource(void)
1222 {
1223 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1224 }
1225
1226 void get_ind_resource(void)
1227 {
1228 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1229 }
1230
1231 void get_1_ind_resource(void)
1232 {
1233 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1234 }
1235
1236 void r_get_resource(void)
1237 {
1238 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1239 }