ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.53
Committed: 2004-11-22T22:04:38Z (20 years ago) by gbeauche
Branch: MAIN
Changes since 1.52: +10 -6 lines
Log Message:
Use BUILD_SHEEPSHAVER_PROCEDURE to allocate static procedures into the
SheepShaver globals. Fix build of sheepshaver_glue.cpp without JIT.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45 #ifdef HAVE_MALLOC_H
46 #include <malloc.h>
47 #endif
48
49 #ifdef USE_SDL_VIDEO
50 #include <SDL_events.h>
51 #endif
52
53 #if ENABLE_MON
54 #include "mon.h"
55 #include "mon_disass.h"
56 #endif
57
58 #define DEBUG 0
59 #include "debug.h"
60
61 // Emulation time statistics
62 #ifndef EMUL_TIME_STATS
63 #define EMUL_TIME_STATS 0
64 #endif
65
66 #if EMUL_TIME_STATS
67 static clock_t emul_start_time;
68 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 static clock_t interrupt_time = 0;
70 static uint32 exec68k_count = 0;
71 static clock_t exec68k_time = 0;
72 static uint32 native_exec_count = 0;
73 static clock_t native_exec_time = 0;
74 static uint32 macos_exec_count = 0;
75 static clock_t macos_exec_time = 0;
76 #endif
77
78 static void enter_mon(void)
79 {
80 // Start up mon in real-mode
81 #if ENABLE_MON
82 char *arg[4] = {"mon", "-m", "-r", NULL};
83 mon(3, arg);
84 #endif
85 }
86
87 // From main_*.cpp
88 extern uintptr SignalStackBase();
89
90 // From rsrc_patches.cpp
91 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92
93 // PowerPC EmulOp to exit from emulation looop
94 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95
96 // Enable interrupt routine safety checks?
97 #define SAFE_INTERRUPT_PPC 1
98
99 // Enable Execute68k() safety checks?
100 #define SAFE_EXEC_68K 1
101
102 // Save FP state in Execute68k()?
103 #define SAVE_FP_EXEC_68K 1
104
105 // Interrupts in EMUL_OP mode?
106 #define INTERRUPTS_IN_EMUL_OP_MODE 1
107
108 // Interrupts in native mode?
109 #define INTERRUPTS_IN_NATIVE_MODE 1
110
111 // Pointer to Kernel Data
112 static KernelData * kernel_data;
113
114 // SIGSEGV handler
115 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
116
117 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
118 // Special trampolines for EmulOp and NativeOp
119 static uint8 *emul_op_trampoline;
120 static uint8 *native_op_trampoline;
121 #endif
122
123 // JIT Compiler enabled?
124 static inline bool enable_jit_p()
125 {
126 return PrefsFindBool("jit");
127 }
128
129
130 /**
131 * PowerPC emulator glue with special 'sheep' opcodes
132 **/
133
134 enum {
135 PPC_I(SHEEP) = PPC_I(MAX),
136 PPC_I(SHEEP_MAX)
137 };
138
139 class sheepshaver_cpu
140 : public powerpc_cpu
141 {
142 void init_decoder();
143 void execute_sheep(uint32 opcode);
144
145 // CPU context to preserve on interrupt
146 class interrupt_context {
147 uint32 gpr[32];
148 uint32 pc;
149 uint32 lr;
150 uint32 ctr;
151 uint32 cr;
152 uint32 xer;
153 sheepshaver_cpu *cpu;
154 const char *where;
155 public:
156 interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
157 ~interrupt_context();
158 };
159
160 public:
161
162 // Constructor
163 sheepshaver_cpu();
164
165 // CR & XER accessors
166 uint32 get_cr() const { return cr().get(); }
167 void set_cr(uint32 v) { cr().set(v); }
168 uint32 get_xer() const { return xer().get(); }
169 void set_xer(uint32 v) { xer().set(v); }
170
171 // Execute NATIVE_OP routine
172 void execute_native_op(uint32 native_op);
173
174 // Execute EMUL_OP routine
175 void execute_emul_op(uint32 emul_op);
176
177 // Execute 68k routine
178 void execute_68k(uint32 entry, M68kRegisters *r);
179
180 // Execute ppc routine
181 void execute_ppc(uint32 entry);
182
183 // Execute MacOS/PPC code
184 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
185
186 #if PPC_ENABLE_JIT
187 // Compile one instruction
188 virtual int compile1(codegen_context_t & cg_context);
189 #endif
190 // Resource manager thunk
191 void get_resource(uint32 old_get_resource);
192
193 // Handle MacOS interrupt
194 void interrupt(uint32 entry);
195 void handle_interrupt();
196
197 // Make sure the SIGSEGV handler can access CPU registers
198 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
199 };
200
201 // Memory allocator returning areas aligned on 16-byte boundaries
202 void *operator new(size_t size)
203 {
204 void *p;
205
206 #if defined(HAVE_POSIX_MEMALIGN)
207 if (posix_memalign(&p, 16, size) != 0)
208 throw std::bad_alloc();
209 #elif defined(HAVE_MEMALIGN)
210 p = memalign(16, size);
211 #elif defined(HAVE_VALLOC)
212 p = valloc(size); // page-aligned!
213 #else
214 /* XXX: handle padding ourselves */
215 p = malloc(size);
216 #endif
217
218 return p;
219 }
220
221 void operator delete(void *p)
222 {
223 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
224 #if defined(__GLIBC__)
225 // this is known to work only with GNU libc
226 free(p);
227 #endif
228 #else
229 free(p);
230 #endif
231 }
232
233 sheepshaver_cpu::sheepshaver_cpu()
234 : powerpc_cpu(enable_jit_p())
235 {
236 init_decoder();
237 }
238
239 void sheepshaver_cpu::init_decoder()
240 {
241 static const instr_info_t sheep_ii_table[] = {
242 { "sheep",
243 (execute_pmf)&sheepshaver_cpu::execute_sheep,
244 NULL,
245 PPC_I(SHEEP),
246 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
247 }
248 };
249
250 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
251 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
252
253 for (int i = 0; i < ii_count; i++) {
254 const instr_info_t * ii = &sheep_ii_table[i];
255 init_decoder_entry(ii);
256 }
257 }
258
259 /* NativeOp instruction format:
260 +------------+-------------------------+--+-----------+------------+
261 | 6 | |FN| OP | 2 |
262 +------------+-------------------------+--+-----------+------------+
263 0 5 |6 18 19 20 25 26 31
264 */
265
266 typedef bit_field< 19, 19 > FN_field;
267 typedef bit_field< 20, 25 > NATIVE_OP_field;
268 typedef bit_field< 26, 31 > EMUL_OP_field;
269
270 // Execute EMUL_OP routine
271 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
272 {
273 M68kRegisters r68;
274 WriteMacInt32(XLM_68K_R25, gpr(25));
275 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
276 for (int i = 0; i < 8; i++)
277 r68.d[i] = gpr(8 + i);
278 for (int i = 0; i < 7; i++)
279 r68.a[i] = gpr(16 + i);
280 r68.a[7] = gpr(1);
281 uint32 saved_cr = get_cr() & CR_field<2>::mask();
282 uint32 saved_xer = get_xer();
283 EmulOp(&r68, gpr(24), emul_op);
284 set_cr(saved_cr);
285 set_xer(saved_xer);
286 for (int i = 0; i < 8; i++)
287 gpr(8 + i) = r68.d[i];
288 for (int i = 0; i < 7; i++)
289 gpr(16 + i) = r68.a[i];
290 gpr(1) = r68.a[7];
291 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
292 }
293
294 // Execute SheepShaver instruction
295 void sheepshaver_cpu::execute_sheep(uint32 opcode)
296 {
297 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
298 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
299
300 switch (opcode & 0x3f) {
301 case 0: // EMUL_RETURN
302 QuitEmulator();
303 break;
304
305 case 1: // EXEC_RETURN
306 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
307 break;
308
309 case 2: // EXEC_NATIVE
310 execute_native_op(NATIVE_OP_field::extract(opcode));
311 if (FN_field::test(opcode))
312 pc() = lr();
313 else
314 pc() += 4;
315 break;
316
317 default: // EMUL_OP
318 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
319 pc() += 4;
320 break;
321 }
322 }
323
324 // Compile one instruction
325 #if PPC_ENABLE_JIT
326 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
327 {
328 const instr_info_t *ii = cg_context.instr_info;
329 if (ii->mnemo != PPC_I(SHEEP))
330 return COMPILE_FAILURE;
331
332 int status = COMPILE_FAILURE;
333 powerpc_dyngen & dg = cg_context.codegen;
334 uint32 opcode = cg_context.opcode;
335
336 switch (opcode & 0x3f) {
337 case 0: // EMUL_RETURN
338 dg.gen_invoke(QuitEmulator);
339 status = COMPILE_CODE_OK;
340 break;
341
342 case 1: // EXEC_RETURN
343 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
344 // Don't check for pending interrupts, we do know we have to
345 // get out of this block ASAP
346 dg.gen_exec_return();
347 status = COMPILE_EPILOGUE_OK;
348 break;
349
350 case 2: { // EXEC_NATIVE
351 uint32 selector = NATIVE_OP_field::extract(opcode);
352 switch (selector) {
353 #if !PPC_REENTRANT_JIT
354 // Filter out functions that may invoke Execute68k() or
355 // CallMacOS(), this would break reentrancy as they could
356 // invalidate the translation cache and even overwrite
357 // continuation code when we are done with them.
358 case NATIVE_PATCH_NAME_REGISTRY:
359 dg.gen_invoke(DoPatchNameRegistry);
360 status = COMPILE_CODE_OK;
361 break;
362 case NATIVE_VIDEO_INSTALL_ACCEL:
363 dg.gen_invoke(VideoInstallAccel);
364 status = COMPILE_CODE_OK;
365 break;
366 case NATIVE_VIDEO_VBL:
367 dg.gen_invoke(VideoVBL);
368 status = COMPILE_CODE_OK;
369 break;
370 case NATIVE_GET_RESOURCE:
371 case NATIVE_GET_1_RESOURCE:
372 case NATIVE_GET_IND_RESOURCE:
373 case NATIVE_GET_1_IND_RESOURCE:
374 case NATIVE_R_GET_RESOURCE: {
375 static const uint32 get_resource_ptr[] = {
376 XLM_GET_RESOURCE,
377 XLM_GET_1_RESOURCE,
378 XLM_GET_IND_RESOURCE,
379 XLM_GET_1_IND_RESOURCE,
380 XLM_R_GET_RESOURCE
381 };
382 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
383 typedef void (*func_t)(dyngen_cpu_base, uint32);
384 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
385 dg.gen_invoke_CPU_im(func, old_get_resource);
386 status = COMPILE_CODE_OK;
387 break;
388 }
389 case NATIVE_CHECK_LOAD_INVOC:
390 dg.gen_load_T0_GPR(3);
391 dg.gen_load_T1_GPR(4);
392 dg.gen_se_16_32_T1();
393 dg.gen_load_T2_GPR(5);
394 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
395 status = COMPILE_CODE_OK;
396 break;
397 #endif
398 case NATIVE_BITBLT:
399 dg.gen_load_T0_GPR(3);
400 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
401 status = COMPILE_CODE_OK;
402 break;
403 case NATIVE_INVRECT:
404 dg.gen_load_T0_GPR(3);
405 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
406 status = COMPILE_CODE_OK;
407 break;
408 case NATIVE_FILLRECT:
409 dg.gen_load_T0_GPR(3);
410 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
411 status = COMPILE_CODE_OK;
412 break;
413 }
414 // Could we fully translate this NativeOp?
415 if (status == COMPILE_CODE_OK) {
416 if (!FN_field::test(opcode))
417 cg_context.done_compile = false;
418 else {
419 dg.gen_load_A0_LR();
420 dg.gen_set_PC_A0();
421 cg_context.done_compile = true;
422 }
423 break;
424 }
425 #if PPC_REENTRANT_JIT
426 // Try to execute NativeOp trampoline
427 if (!FN_field::test(opcode))
428 dg.gen_set_PC_im(cg_context.pc + 4);
429 else {
430 dg.gen_load_A0_LR();
431 dg.gen_set_PC_A0();
432 }
433 dg.gen_mov_32_T0_im(selector);
434 dg.gen_jmp(native_op_trampoline);
435 cg_context.done_compile = true;
436 status = COMPILE_EPILOGUE_OK;
437 break;
438 #endif
439 // Invoke NativeOp handler
440 if (!FN_field::test(opcode)) {
441 typedef void (*func_t)(dyngen_cpu_base, uint32);
442 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
443 dg.gen_invoke_CPU_im(func, selector);
444 cg_context.done_compile = false;
445 status = COMPILE_CODE_OK;
446 }
447 // Otherwise, let it generate a call to execute_sheep() which
448 // will cause necessary updates to the program counter
449 break;
450 }
451
452 default: { // EMUL_OP
453 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
454 #if PPC_REENTRANT_JIT
455 // Try to execute EmulOp trampoline
456 dg.gen_set_PC_im(cg_context.pc + 4);
457 dg.gen_mov_32_T0_im(emul_op);
458 dg.gen_jmp(emul_op_trampoline);
459 cg_context.done_compile = true;
460 status = COMPILE_EPILOGUE_OK;
461 break;
462 #endif
463 // Invoke EmulOp handler
464 typedef void (*func_t)(dyngen_cpu_base, uint32);
465 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
466 dg.gen_invoke_CPU_im(func, emul_op);
467 cg_context.done_compile = false;
468 status = COMPILE_CODE_OK;
469 break;
470 }
471 }
472 return status;
473 }
474 #endif
475
476 // CPU context to preserve on interrupt
477 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
478 {
479 #if SAFE_INTERRUPT_PPC >= 2
480 cpu = _cpu;
481 where = _where;
482
483 // Save interrupt context
484 memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
485 pc = cpu->pc();
486 lr = cpu->lr();
487 ctr = cpu->ctr();
488 cr = cpu->get_cr();
489 xer = cpu->get_xer();
490 #endif
491 }
492
493 sheepshaver_cpu::interrupt_context::~interrupt_context()
494 {
495 #if SAFE_INTERRUPT_PPC >= 2
496 // Check whether CPU context was preserved by interrupt
497 if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
498 printf("FATAL: %s: interrupt clobbers registers\n", where);
499 for (int i = 0; i < 32; i++)
500 if (gpr[i] != cpu->gpr(i))
501 printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
502 }
503 if (pc != cpu->pc())
504 printf("FATAL: %s: interrupt clobbers PC\n", where);
505 if (lr != cpu->lr())
506 printf("FATAL: %s: interrupt clobbers LR\n", where);
507 if (ctr != cpu->ctr())
508 printf("FATAL: %s: interrupt clobbers CTR\n", where);
509 if (cr != cpu->get_cr())
510 printf("FATAL: %s: interrupt clobbers CR\n", where);
511 if (xer != cpu->get_xer())
512 printf("FATAL: %s: interrupt clobbers XER\n", where);
513 #endif
514 }
515
516 // Handle MacOS interrupt
517 void sheepshaver_cpu::interrupt(uint32 entry)
518 {
519 #if EMUL_TIME_STATS
520 ppc_interrupt_count++;
521 const clock_t interrupt_start = clock();
522 #endif
523
524 #if SAFE_INTERRUPT_PPC
525 static int depth = 0;
526 if (depth != 0)
527 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
528 depth++;
529 #endif
530
531 // Save program counters and branch registers
532 uint32 saved_pc = pc();
533 uint32 saved_lr = lr();
534 uint32 saved_ctr= ctr();
535 uint32 saved_sp = gpr(1);
536
537 // Initialize stack pointer to SheepShaver alternate stack base
538 gpr(1) = SignalStackBase() - 64;
539
540 // Build trampoline to return from interrupt
541 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
542
543 // Prepare registers for nanokernel interrupt routine
544 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
545 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
546
547 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
548 assert(gpr(6) != 0);
549 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
550 WriteMacInt32(gpr(6) + 0x144, gpr(8));
551 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
552 WriteMacInt32(gpr(6) + 0x154, gpr(10));
553 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
554 WriteMacInt32(gpr(6) + 0x164, gpr(12));
555 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
556
557 gpr(1) = KernelDataAddr;
558 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
559 gpr(8) = 0;
560 gpr(10) = trampoline.addr();
561 gpr(12) = trampoline.addr();
562 gpr(13) = get_cr();
563
564 // rlwimi. r7,r7,8,0,0
565 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
566 record_cr0(result);
567 gpr(7) = result;
568
569 gpr(11) = 0xf072; // MSR (SRR1)
570 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
571
572 // Enter nanokernel
573 execute(entry);
574
575 // Restore program counters and branch registers
576 pc() = saved_pc;
577 lr() = saved_lr;
578 ctr()= saved_ctr;
579 gpr(1) = saved_sp;
580
581 #if EMUL_TIME_STATS
582 interrupt_time += (clock() - interrupt_start);
583 #endif
584
585 #if SAFE_INTERRUPT_PPC
586 depth--;
587 #endif
588 }
589
590 // Execute 68k routine
591 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
592 {
593 #if EMUL_TIME_STATS
594 exec68k_count++;
595 const clock_t exec68k_start = clock();
596 #endif
597
598 #if SAFE_EXEC_68K
599 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
600 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
601 #endif
602
603 // Save program counters and branch registers
604 uint32 saved_pc = pc();
605 uint32 saved_lr = lr();
606 uint32 saved_ctr= ctr();
607 uint32 saved_cr = get_cr();
608
609 // Create MacOS stack frame
610 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
611 uint32 sp = gpr(1);
612 gpr(1) -= 56;
613 WriteMacInt32(gpr(1), sp);
614
615 // Save PowerPC registers
616 uint32 saved_GPRs[19];
617 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
618 #if SAVE_FP_EXEC_68K
619 double saved_FPRs[18];
620 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
621 #endif
622
623 // Setup registers for 68k emulator
624 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
625 for (int i = 0; i < 8; i++) // d[0]..d[7]
626 gpr(8 + i) = r->d[i];
627 for (int i = 0; i < 7; i++) // a[0]..a[6]
628 gpr(16 + i) = r->a[i];
629 gpr(23) = 0;
630 gpr(24) = entry;
631 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
632 gpr(26) = 0;
633 gpr(28) = 0; // VBR
634 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
635 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
636 gpr(31) = KernelDataAddr + 0x1000;
637
638 // Push return address (points to EXEC_RETURN opcode) on stack
639 gpr(1) -= 4;
640 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
641
642 // Rentering 68k emulator
643 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
644
645 // Set r0 to 0 for 68k emulator
646 gpr(0) = 0;
647
648 // Execute 68k opcode
649 uint32 opcode = ReadMacInt16(gpr(24));
650 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
651 gpr(29) += opcode * 8;
652 execute(gpr(29));
653
654 // Save r25 (contains current 68k interrupt level)
655 WriteMacInt32(XLM_68K_R25, gpr(25));
656
657 // Reentering EMUL_OP mode
658 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
659
660 // Save 68k registers
661 for (int i = 0; i < 8; i++) // d[0]..d[7]
662 r->d[i] = gpr(8 + i);
663 for (int i = 0; i < 7; i++) // a[0]..a[6]
664 r->a[i] = gpr(16 + i);
665
666 // Restore PowerPC registers
667 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
668 #if SAVE_FP_EXEC_68K
669 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
670 #endif
671
672 // Cleanup stack
673 gpr(1) += 56;
674
675 // Restore program counters and branch registers
676 pc() = saved_pc;
677 lr() = saved_lr;
678 ctr()= saved_ctr;
679 set_cr(saved_cr);
680
681 #if EMUL_TIME_STATS
682 exec68k_time += (clock() - exec68k_start);
683 #endif
684 }
685
686 // Call MacOS PPC code
687 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
688 {
689 #if EMUL_TIME_STATS
690 macos_exec_count++;
691 const clock_t macos_exec_start = clock();
692 #endif
693
694 // Save program counters and branch registers
695 uint32 saved_pc = pc();
696 uint32 saved_lr = lr();
697 uint32 saved_ctr= ctr();
698
699 // Build trampoline with EXEC_RETURN
700 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
701 lr() = trampoline.addr();
702
703 gpr(1) -= 64; // Create stack frame
704 uint32 proc = ReadMacInt32(tvect); // Get routine address
705 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
706
707 // Save PowerPC registers
708 uint32 regs[8];
709 regs[0] = gpr(2);
710 for (int i = 0; i < nargs; i++)
711 regs[i + 1] = gpr(i + 3);
712
713 // Prepare and call MacOS routine
714 gpr(2) = toc;
715 for (int i = 0; i < nargs; i++)
716 gpr(i + 3) = args[i];
717 execute(proc);
718 uint32 retval = gpr(3);
719
720 // Restore PowerPC registers
721 for (int i = 0; i <= nargs; i++)
722 gpr(i + 2) = regs[i];
723
724 // Cleanup stack
725 gpr(1) += 64;
726
727 // Restore program counters and branch registers
728 pc() = saved_pc;
729 lr() = saved_lr;
730 ctr()= saved_ctr;
731
732 #if EMUL_TIME_STATS
733 macos_exec_time += (clock() - macos_exec_start);
734 #endif
735
736 return retval;
737 }
738
739 // Execute ppc routine
740 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
741 {
742 // Save branch registers
743 uint32 saved_lr = lr();
744
745 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
746 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
747 lr() = trampoline.addr();
748
749 execute(entry);
750
751 // Restore branch registers
752 lr() = saved_lr;
753 }
754
755 // Resource Manager thunk
756 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
757 {
758 uint32 type = gpr(3);
759 int16 id = gpr(4);
760
761 // Create stack frame
762 gpr(1) -= 56;
763
764 // Call old routine
765 execute_ppc(old_get_resource);
766
767 // Call CheckLoad()
768 uint32 handle = gpr(3);
769 check_load_invoc(type, id, handle);
770 gpr(3) = handle;
771
772 // Cleanup stack
773 gpr(1) += 56;
774 }
775
776
777 /**
778 * SheepShaver CPU engine interface
779 **/
780
781 // PowerPC CPU emulator
782 static sheepshaver_cpu *ppc_cpu = NULL;
783
784 void FlushCodeCache(uintptr start, uintptr end)
785 {
786 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
787 ppc_cpu->invalidate_cache_range(start, end);
788 }
789
790 // Dump PPC registers
791 static void dump_registers(void)
792 {
793 ppc_cpu->dump_registers();
794 }
795
796 // Dump log
797 static void dump_log(void)
798 {
799 ppc_cpu->dump_log();
800 }
801
802 /*
803 * Initialize CPU emulation
804 */
805
806 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
807 {
808 #if ENABLE_VOSF
809 // Handle screen fault
810 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
811 if (Screen_fault_handler(fault_address, fault_instruction))
812 return SIGSEGV_RETURN_SUCCESS;
813 #endif
814
815 const uintptr addr = (uintptr)fault_address;
816 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
817 // Ignore writes to ROM
818 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
819 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
820
821 // Get program counter of target CPU
822 sheepshaver_cpu * const cpu = ppc_cpu;
823 const uint32 pc = cpu->pc();
824
825 // Fault in Mac ROM or RAM?
826 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
827 if (mac_fault) {
828
829 // "VM settings" during MacOS 8 installation
830 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
831 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
832
833 // MacOS 8.5 installation
834 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
835 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
836
837 // MacOS 8 serial drivers on startup
838 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
839 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
840
841 // MacOS 8.1 serial drivers on startup
842 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
843 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
844 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
845 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
846
847 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
848 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
849 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
850 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
851 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
852
853 // Ignore writes to the zero page
854 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
855 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
856
857 // Ignore all other faults, if requested
858 if (PrefsFindBool("ignoresegv"))
859 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
860 }
861 #else
862 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
863 #endif
864
865 printf("SIGSEGV\n");
866 printf(" pc %p\n", fault_instruction);
867 printf(" ea %p\n", fault_address);
868 dump_registers();
869 ppc_cpu->dump_log();
870 enter_mon();
871 QuitEmulator();
872
873 return SIGSEGV_RETURN_FAILURE;
874 }
875
876 void init_emul_ppc(void)
877 {
878 // Get pointer to KernelData in host address space
879 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
880
881 // Initialize main CPU emulator
882 ppc_cpu = new sheepshaver_cpu();
883 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
884 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
885 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
886
887 #if ENABLE_MON
888 // Install "regs" command in cxmon
889 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
890 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
891 #endif
892
893 #if EMUL_TIME_STATS
894 emul_start_time = clock();
895 #endif
896 }
897
898 /*
899 * Deinitialize emulation
900 */
901
902 void exit_emul_ppc(void)
903 {
904 #if EMUL_TIME_STATS
905 clock_t emul_end_time = clock();
906
907 printf("### Statistics for SheepShaver emulation parts\n");
908 const clock_t emul_time = emul_end_time - emul_start_time;
909 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
910 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
911 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
912 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
913 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
914
915 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
916 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
917 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
918 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
919 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
920 } while (0)
921
922 PRINT_STATS("Execute68k[Trap] execution", exec68k);
923 PRINT_STATS("NativeOp execution", native_exec);
924 PRINT_STATS("MacOS routine execution", macos_exec);
925
926 #undef PRINT_STATS
927 printf("\n");
928 #endif
929
930 delete ppc_cpu;
931 }
932
933 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
934 // Initialize EmulOp trampolines
935 void init_emul_op_trampolines(basic_dyngen & dg)
936 {
937 typedef void (*func_t)(dyngen_cpu_base, uint32);
938 func_t func;
939
940 // EmulOp
941 emul_op_trampoline = dg.gen_start();
942 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
943 dg.gen_invoke_CPU_T0(func);
944 dg.gen_exec_return();
945 dg.gen_end();
946
947 // NativeOp
948 native_op_trampoline = dg.gen_start();
949 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
950 dg.gen_invoke_CPU_T0(func);
951 dg.gen_exec_return();
952 dg.gen_end();
953
954 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
955 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
956 }
957 #endif
958
959 /*
960 * Emulation loop
961 */
962
963 void emul_ppc(uint32 entry)
964 {
965 #if 0
966 ppc_cpu->start_log();
967 #endif
968 // start emulation loop and enable code translation or caching
969 ppc_cpu->execute(entry);
970 }
971
972 /*
973 * Handle PowerPC interrupt
974 */
975
976 void TriggerInterrupt(void)
977 {
978 #if 0
979 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
980 #else
981 // Trigger interrupt to main cpu only
982 if (ppc_cpu)
983 ppc_cpu->trigger_interrupt();
984 #endif
985 }
986
987 void sheepshaver_cpu::handle_interrupt(void)
988 {
989 #ifdef USE_SDL_VIDEO
990 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
991 SDL_PumpEvents();
992 #endif
993
994 // Do nothing if interrupts are disabled
995 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
996 return;
997
998 // Current interrupt nest level
999 static int interrupt_depth = 0;
1000 ++interrupt_depth;
1001 #if EMUL_TIME_STATS
1002 interrupt_count++;
1003 #endif
1004
1005 // Disable MacOS stack sniffer
1006 WriteMacInt32(0x110, 0);
1007
1008 // Interrupt action depends on current run mode
1009 switch (ReadMacInt32(XLM_RUN_MODE)) {
1010 case MODE_68K:
1011 // 68k emulator active, trigger 68k interrupt level 1
1012 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1013 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1014 break;
1015
1016 #if INTERRUPTS_IN_NATIVE_MODE
1017 case MODE_NATIVE:
1018 // 68k emulator inactive, in nanokernel?
1019 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1020 interrupt_context ctx(this, "PowerPC mode");
1021
1022 // Prepare for 68k interrupt level 1
1023 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1024 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1025 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1026 | tswap32(kernel_data->v[0x674 >> 2]));
1027
1028 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1029 DisableInterrupt();
1030 if (ROMType == ROMTYPE_NEWWORLD)
1031 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1032 else
1033 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1034 }
1035 break;
1036 #endif
1037
1038 #if INTERRUPTS_IN_EMUL_OP_MODE
1039 case MODE_EMUL_OP:
1040 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1041 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1042 interrupt_context ctx(this, "68k mode");
1043 #if EMUL_TIME_STATS
1044 const clock_t interrupt_start = clock();
1045 #endif
1046 #if 1
1047 // Execute full 68k interrupt routine
1048 M68kRegisters r;
1049 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1050 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1051 static const uint8 proc_template[] = {
1052 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1053 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1054 0x40, 0xe7, // move sr,-(sp) (saved SR)
1055 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1056 0x4e, 0xd0, // jmp (a0)
1057 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1058 };
1059 BUILD_SHEEPSHAVER_PROCEDURE(proc);
1060 Execute68k(proc, &r);
1061 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1062 #else
1063 // Only update cursor
1064 if (HasMacStarted()) {
1065 if (InterruptFlags & INTFLAG_VIA) {
1066 ClearInterruptFlag(INTFLAG_VIA);
1067 ADBInterrupt();
1068 ExecuteNative(NATIVE_VIDEO_VBL);
1069 }
1070 }
1071 #endif
1072 #if EMUL_TIME_STATS
1073 interrupt_time += (clock() - interrupt_start);
1074 #endif
1075 }
1076 break;
1077 #endif
1078 }
1079
1080 // We are done with this interrupt
1081 --interrupt_depth;
1082 }
1083
1084 static void get_resource(void);
1085 static void get_1_resource(void);
1086 static void get_ind_resource(void);
1087 static void get_1_ind_resource(void);
1088 static void r_get_resource(void);
1089
1090 // Execute NATIVE_OP routine
1091 void sheepshaver_cpu::execute_native_op(uint32 selector)
1092 {
1093 #if EMUL_TIME_STATS
1094 native_exec_count++;
1095 const clock_t native_exec_start = clock();
1096 #endif
1097
1098 switch (selector) {
1099 case NATIVE_PATCH_NAME_REGISTRY:
1100 DoPatchNameRegistry();
1101 break;
1102 case NATIVE_VIDEO_INSTALL_ACCEL:
1103 VideoInstallAccel();
1104 break;
1105 case NATIVE_VIDEO_VBL:
1106 VideoVBL();
1107 break;
1108 case NATIVE_VIDEO_DO_DRIVER_IO:
1109 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1110 break;
1111 #ifdef WORDS_BIGENDIAN
1112 case NATIVE_ETHER_IRQ:
1113 EtherIRQ();
1114 break;
1115 case NATIVE_ETHER_INIT:
1116 gpr(3) = InitStreamModule((void *)gpr(3));
1117 break;
1118 case NATIVE_ETHER_TERM:
1119 TerminateStreamModule();
1120 break;
1121 case NATIVE_ETHER_OPEN:
1122 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1123 break;
1124 case NATIVE_ETHER_CLOSE:
1125 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1126 break;
1127 case NATIVE_ETHER_WPUT:
1128 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1129 break;
1130 case NATIVE_ETHER_RSRV:
1131 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1132 break;
1133 #else
1134 case NATIVE_ETHER_INIT:
1135 // FIXME: needs more complicated thunks
1136 gpr(3) = false;
1137 break;
1138 #endif
1139 case NATIVE_SYNC_HOOK:
1140 gpr(3) = NQD_sync_hook(gpr(3));
1141 break;
1142 case NATIVE_BITBLT_HOOK:
1143 gpr(3) = NQD_bitblt_hook(gpr(3));
1144 break;
1145 case NATIVE_BITBLT:
1146 NQD_bitblt(gpr(3));
1147 break;
1148 case NATIVE_FILLRECT_HOOK:
1149 gpr(3) = NQD_fillrect_hook(gpr(3));
1150 break;
1151 case NATIVE_INVRECT:
1152 NQD_invrect(gpr(3));
1153 break;
1154 case NATIVE_FILLRECT:
1155 NQD_fillrect(gpr(3));
1156 break;
1157 case NATIVE_SERIAL_NOTHING:
1158 case NATIVE_SERIAL_OPEN:
1159 case NATIVE_SERIAL_PRIME_IN:
1160 case NATIVE_SERIAL_PRIME_OUT:
1161 case NATIVE_SERIAL_CONTROL:
1162 case NATIVE_SERIAL_STATUS:
1163 case NATIVE_SERIAL_CLOSE: {
1164 typedef int16 (*SerialCallback)(uint32, uint32);
1165 static const SerialCallback serial_callbacks[] = {
1166 SerialNothing,
1167 SerialOpen,
1168 SerialPrimeIn,
1169 SerialPrimeOut,
1170 SerialControl,
1171 SerialStatus,
1172 SerialClose
1173 };
1174 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1175 break;
1176 }
1177 case NATIVE_GET_RESOURCE:
1178 case NATIVE_GET_1_RESOURCE:
1179 case NATIVE_GET_IND_RESOURCE:
1180 case NATIVE_GET_1_IND_RESOURCE:
1181 case NATIVE_R_GET_RESOURCE: {
1182 typedef void (*GetResourceCallback)(void);
1183 static const GetResourceCallback get_resource_callbacks[] = {
1184 ::get_resource,
1185 ::get_1_resource,
1186 ::get_ind_resource,
1187 ::get_1_ind_resource,
1188 ::r_get_resource
1189 };
1190 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1191 break;
1192 }
1193 case NATIVE_MAKE_EXECUTABLE:
1194 MakeExecutable(0, gpr(4), gpr(5));
1195 break;
1196 case NATIVE_CHECK_LOAD_INVOC:
1197 check_load_invoc(gpr(3), gpr(4), gpr(5));
1198 break;
1199 default:
1200 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1201 QuitEmulator();
1202 break;
1203 }
1204
1205 #if EMUL_TIME_STATS
1206 native_exec_time += (clock() - native_exec_start);
1207 #endif
1208 }
1209
1210 /*
1211 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1212 * This must only be called by the emul_thread when in EMUL_OP mode
1213 * r->a[7] is unused, the routine runs on the caller's stack
1214 */
1215
1216 void Execute68k(uint32 pc, M68kRegisters *r)
1217 {
1218 ppc_cpu->execute_68k(pc, r);
1219 }
1220
1221 /*
1222 * Execute 68k A-Trap from EMUL_OP routine
1223 * r->a[7] is unused, the routine runs on the caller's stack
1224 */
1225
1226 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1227 {
1228 SheepVar proc_var(4);
1229 uint32 proc = proc_var.addr();
1230 WriteMacInt16(proc, trap);
1231 WriteMacInt16(proc + 2, M68K_RTS);
1232 Execute68k(proc, r);
1233 }
1234
1235 /*
1236 * Call MacOS PPC code
1237 */
1238
1239 uint32 call_macos(uint32 tvect)
1240 {
1241 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1242 }
1243
1244 uint32 call_macos1(uint32 tvect, uint32 arg1)
1245 {
1246 const uint32 args[] = { arg1 };
1247 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1248 }
1249
1250 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1251 {
1252 const uint32 args[] = { arg1, arg2 };
1253 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1254 }
1255
1256 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1257 {
1258 const uint32 args[] = { arg1, arg2, arg3 };
1259 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1260 }
1261
1262 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1263 {
1264 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1265 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1266 }
1267
1268 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1269 {
1270 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1271 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1272 }
1273
1274 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1275 {
1276 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1277 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1278 }
1279
1280 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1281 {
1282 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1283 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1284 }
1285
1286 /*
1287 * Resource Manager thunks
1288 */
1289
1290 void get_resource(void)
1291 {
1292 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1293 }
1294
1295 void get_1_resource(void)
1296 {
1297 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1298 }
1299
1300 void get_ind_resource(void)
1301 {
1302 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1303 }
1304
1305 void get_1_ind_resource(void)
1306 {
1307 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1308 }
1309
1310 void r_get_resource(void)
1311 {
1312 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1313 }