ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.48
Committed: 2004-06-26T15:26:18Z (20 years, 5 months ago) by gbeauche
Branch: MAIN
Changes since 1.47: +2 -5 lines
Log Message:
Performance of VOSF is heuristically determined at run-time, so have to
initialize SIGSEGV handlers early, as in Basilisk II. Besides, also add
missing call to vm_init() in case host system doesn't have MAP_ANON.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45
46 #ifdef USE_SDL_VIDEO
47 #include <SDL_events.h>
48 #endif
49
50 #if ENABLE_MON
51 #include "mon.h"
52 #include "mon_disass.h"
53 #endif
54
55 #define DEBUG 0
56 #include "debug.h"
57
58 // Emulation time statistics
59 #ifndef EMUL_TIME_STATS
60 #define EMUL_TIME_STATS 0
61 #endif
62
63 #if EMUL_TIME_STATS
64 static clock_t emul_start_time;
65 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
66 static clock_t interrupt_time = 0;
67 static uint32 exec68k_count = 0;
68 static clock_t exec68k_time = 0;
69 static uint32 native_exec_count = 0;
70 static clock_t native_exec_time = 0;
71 static uint32 macos_exec_count = 0;
72 static clock_t macos_exec_time = 0;
73 #endif
74
75 static void enter_mon(void)
76 {
77 // Start up mon in real-mode
78 #if ENABLE_MON
79 char *arg[4] = {"mon", "-m", "-r", NULL};
80 mon(3, arg);
81 #endif
82 }
83
84 // From main_*.cpp
85 extern uintptr SignalStackBase();
86
87 // From rsrc_patches.cpp
88 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
89
90 // PowerPC EmulOp to exit from emulation looop
91 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
92
93 // Enable interrupt routine safety checks?
94 #define SAFE_INTERRUPT_PPC 1
95
96 // Enable Execute68k() safety checks?
97 #define SAFE_EXEC_68K 1
98
99 // Save FP state in Execute68k()?
100 #define SAVE_FP_EXEC_68K 1
101
102 // Interrupts in EMUL_OP mode?
103 #define INTERRUPTS_IN_EMUL_OP_MODE 1
104
105 // Interrupts in native mode?
106 #define INTERRUPTS_IN_NATIVE_MODE 1
107
108 // Enable native EMUL_OPs to be run without a mode switch
109 #define ENABLE_NATIVE_EMUL_OP 1
110
111 // Pointer to Kernel Data
112 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
113
114 // SIGSEGV handler
115 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
116
117 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
118 // Special trampolines for EmulOp and NativeOp
119 static uint8 *emul_op_trampoline;
120 static uint8 *native_op_trampoline;
121 #endif
122
123 // JIT Compiler enabled?
124 static inline bool enable_jit_p()
125 {
126 return PrefsFindBool("jit");
127 }
128
129
130 /**
131 * PowerPC emulator glue with special 'sheep' opcodes
132 **/
133
134 enum {
135 PPC_I(SHEEP) = PPC_I(MAX),
136 PPC_I(SHEEP_MAX)
137 };
138
139 class sheepshaver_cpu
140 : public powerpc_cpu
141 {
142 void init_decoder();
143 void execute_sheep(uint32 opcode);
144
145 // Filter out EMUL_OP routines that only call native code
146 bool filter_execute_emul_op(uint32 emul_op);
147
148 // "Native" EMUL_OP routines
149 void execute_emul_op_microseconds();
150 void execute_emul_op_idle_time_1();
151 void execute_emul_op_idle_time_2();
152
153 // CPU context to preserve on interrupt
154 class interrupt_context {
155 uint32 gpr[32];
156 uint32 pc;
157 uint32 lr;
158 uint32 ctr;
159 uint32 cr;
160 uint32 xer;
161 sheepshaver_cpu *cpu;
162 const char *where;
163 public:
164 interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
165 ~interrupt_context();
166 };
167
168 public:
169
170 // Constructor
171 sheepshaver_cpu();
172
173 // CR & XER accessors
174 uint32 get_cr() const { return cr().get(); }
175 void set_cr(uint32 v) { cr().set(v); }
176 uint32 get_xer() const { return xer().get(); }
177 void set_xer(uint32 v) { xer().set(v); }
178
179 // Execute NATIVE_OP routine
180 void execute_native_op(uint32 native_op);
181
182 // Execute EMUL_OP routine
183 void execute_emul_op(uint32 emul_op);
184
185 // Execute 68k routine
186 void execute_68k(uint32 entry, M68kRegisters *r);
187
188 // Execute ppc routine
189 void execute_ppc(uint32 entry);
190
191 // Execute MacOS/PPC code
192 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
193
194 // Compile one instruction
195 virtual int compile1(codegen_context_t & cg_context);
196
197 // Resource manager thunk
198 void get_resource(uint32 old_get_resource);
199
200 // Handle MacOS interrupt
201 void interrupt(uint32 entry);
202 void handle_interrupt();
203
204 // Make sure the SIGSEGV handler can access CPU registers
205 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
206 };
207
208 // Memory allocator returning areas aligned on 16-byte boundaries
209 void *operator new(size_t size)
210 {
211 void *p;
212
213 #if defined(HAVE_POSIX_MEMALIGN)
214 if (posix_memalign(&p, 16, size) != 0)
215 throw std::bad_alloc();
216 #elif defined(HAVE_MEMALIGN)
217 p = memalign(16, size);
218 #elif defined(HAVE_VALLOC)
219 p = valloc(size); // page-aligned!
220 #else
221 /* XXX: handle padding ourselves */
222 p = malloc(size);
223 #endif
224
225 return p;
226 }
227
228 void operator delete(void *p)
229 {
230 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
231 #if defined(__GLIBC__)
232 // this is known to work only with GNU libc
233 free(p);
234 #endif
235 #else
236 free(p);
237 #endif
238 }
239
240 sheepshaver_cpu::sheepshaver_cpu()
241 : powerpc_cpu(enable_jit_p())
242 {
243 init_decoder();
244 }
245
246 void sheepshaver_cpu::init_decoder()
247 {
248 static const instr_info_t sheep_ii_table[] = {
249 { "sheep",
250 (execute_pmf)&sheepshaver_cpu::execute_sheep,
251 NULL,
252 PPC_I(SHEEP),
253 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
254 }
255 };
256
257 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
258 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
259
260 for (int i = 0; i < ii_count; i++) {
261 const instr_info_t * ii = &sheep_ii_table[i];
262 init_decoder_entry(ii);
263 }
264 }
265
266 /* NativeOp instruction format:
267 +------------+-------------------------+--+-----------+------------+
268 | 6 | |FN| OP | 2 |
269 +------------+-------------------------+--+-----------+------------+
270 0 5 |6 18 19 20 25 26 31
271 */
272
273 typedef bit_field< 19, 19 > FN_field;
274 typedef bit_field< 20, 25 > NATIVE_OP_field;
275 typedef bit_field< 26, 31 > EMUL_OP_field;
276
277 // "Native" EMUL_OP routines
278 #define GPR_A(REG) gpr(16 + (REG))
279 #define GPR_D(REG) gpr( 8 + (REG))
280
281 void sheepshaver_cpu::execute_emul_op_microseconds()
282 {
283 Microseconds(GPR_A(0), GPR_D(0));
284 }
285
286 void sheepshaver_cpu::execute_emul_op_idle_time_1()
287 {
288 // Sleep if no events pending
289 if (ReadMacInt32(0x14c) == 0)
290 Delay_usec(16667);
291 GPR_A(0) = ReadMacInt32(0x2b6);
292 }
293
294 void sheepshaver_cpu::execute_emul_op_idle_time_2()
295 {
296 // Sleep if no events pending
297 if (ReadMacInt32(0x14c) == 0)
298 Delay_usec(16667);
299 GPR_D(0) = (uint32)-2;
300 }
301
302 // Filter out EMUL_OP routines that only call native code
303 bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
304 {
305 switch (emul_op) {
306 case OP_MICROSECONDS:
307 execute_emul_op_microseconds();
308 return true;
309 case OP_IDLE_TIME:
310 execute_emul_op_idle_time_1();
311 return true;
312 case OP_IDLE_TIME_2:
313 execute_emul_op_idle_time_2();
314 return true;
315 }
316 return false;
317 }
318
319 // Execute EMUL_OP routine
320 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
321 {
322 #if ENABLE_NATIVE_EMUL_OP
323 // First, filter out EMUL_OPs that can be executed without a mode switch
324 if (filter_execute_emul_op(emul_op))
325 return;
326 #endif
327
328 M68kRegisters r68;
329 WriteMacInt32(XLM_68K_R25, gpr(25));
330 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
331 for (int i = 0; i < 8; i++)
332 r68.d[i] = gpr(8 + i);
333 for (int i = 0; i < 7; i++)
334 r68.a[i] = gpr(16 + i);
335 r68.a[7] = gpr(1);
336 uint32 saved_cr = get_cr() & CR_field<2>::mask();
337 uint32 saved_xer = get_xer();
338 EmulOp(&r68, gpr(24), emul_op);
339 set_cr(saved_cr);
340 set_xer(saved_xer);
341 for (int i = 0; i < 8; i++)
342 gpr(8 + i) = r68.d[i];
343 for (int i = 0; i < 7; i++)
344 gpr(16 + i) = r68.a[i];
345 gpr(1) = r68.a[7];
346 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
347 }
348
349 // Execute SheepShaver instruction
350 void sheepshaver_cpu::execute_sheep(uint32 opcode)
351 {
352 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
353 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
354
355 switch (opcode & 0x3f) {
356 case 0: // EMUL_RETURN
357 QuitEmulator();
358 break;
359
360 case 1: // EXEC_RETURN
361 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
362 break;
363
364 case 2: // EXEC_NATIVE
365 execute_native_op(NATIVE_OP_field::extract(opcode));
366 if (FN_field::test(opcode))
367 pc() = lr();
368 else
369 pc() += 4;
370 break;
371
372 default: // EMUL_OP
373 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
374 pc() += 4;
375 break;
376 }
377 }
378
379 // Compile one instruction
380 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
381 {
382 #if PPC_ENABLE_JIT
383 const instr_info_t *ii = cg_context.instr_info;
384 if (ii->mnemo != PPC_I(SHEEP))
385 return COMPILE_FAILURE;
386
387 int status = COMPILE_FAILURE;
388 powerpc_dyngen & dg = cg_context.codegen;
389 uint32 opcode = cg_context.opcode;
390
391 switch (opcode & 0x3f) {
392 case 0: // EMUL_RETURN
393 dg.gen_invoke(QuitEmulator);
394 status = COMPILE_CODE_OK;
395 break;
396
397 case 1: // EXEC_RETURN
398 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
399 // Don't check for pending interrupts, we do know we have to
400 // get out of this block ASAP
401 dg.gen_exec_return();
402 status = COMPILE_EPILOGUE_OK;
403 break;
404
405 case 2: { // EXEC_NATIVE
406 uint32 selector = NATIVE_OP_field::extract(opcode);
407 switch (selector) {
408 #if !PPC_REENTRANT_JIT
409 // Filter out functions that may invoke Execute68k() or
410 // CallMacOS(), this would break reentrancy as they could
411 // invalidate the translation cache and even overwrite
412 // continuation code when we are done with them.
413 case NATIVE_PATCH_NAME_REGISTRY:
414 dg.gen_invoke(DoPatchNameRegistry);
415 status = COMPILE_CODE_OK;
416 break;
417 case NATIVE_VIDEO_INSTALL_ACCEL:
418 dg.gen_invoke(VideoInstallAccel);
419 status = COMPILE_CODE_OK;
420 break;
421 case NATIVE_VIDEO_VBL:
422 dg.gen_invoke(VideoVBL);
423 status = COMPILE_CODE_OK;
424 break;
425 case NATIVE_GET_RESOURCE:
426 case NATIVE_GET_1_RESOURCE:
427 case NATIVE_GET_IND_RESOURCE:
428 case NATIVE_GET_1_IND_RESOURCE:
429 case NATIVE_R_GET_RESOURCE: {
430 static const uint32 get_resource_ptr[] = {
431 XLM_GET_RESOURCE,
432 XLM_GET_1_RESOURCE,
433 XLM_GET_IND_RESOURCE,
434 XLM_GET_1_IND_RESOURCE,
435 XLM_R_GET_RESOURCE
436 };
437 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
438 typedef void (*func_t)(dyngen_cpu_base, uint32);
439 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
440 dg.gen_invoke_CPU_im(func, old_get_resource);
441 status = COMPILE_CODE_OK;
442 break;
443 }
444 case NATIVE_CHECK_LOAD_INVOC:
445 dg.gen_load_T0_GPR(3);
446 dg.gen_load_T1_GPR(4);
447 dg.gen_se_16_32_T1();
448 dg.gen_load_T2_GPR(5);
449 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
450 status = COMPILE_CODE_OK;
451 break;
452 #endif
453 case NATIVE_BITBLT:
454 dg.gen_load_T0_GPR(3);
455 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
456 status = COMPILE_CODE_OK;
457 break;
458 case NATIVE_INVRECT:
459 dg.gen_load_T0_GPR(3);
460 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
461 status = COMPILE_CODE_OK;
462 break;
463 case NATIVE_FILLRECT:
464 dg.gen_load_T0_GPR(3);
465 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
466 status = COMPILE_CODE_OK;
467 break;
468 }
469 // Could we fully translate this NativeOp?
470 if (status == COMPILE_CODE_OK) {
471 if (!FN_field::test(opcode))
472 cg_context.done_compile = false;
473 else {
474 dg.gen_load_A0_LR();
475 dg.gen_set_PC_A0();
476 cg_context.done_compile = true;
477 }
478 break;
479 }
480 #if PPC_REENTRANT_JIT
481 // Try to execute NativeOp trampoline
482 if (!FN_field::test(opcode))
483 dg.gen_set_PC_im(cg_context.pc + 4);
484 else {
485 dg.gen_load_A0_LR();
486 dg.gen_set_PC_A0();
487 }
488 dg.gen_mov_32_T0_im(selector);
489 dg.gen_jmp(native_op_trampoline);
490 cg_context.done_compile = true;
491 status = COMPILE_EPILOGUE_OK;
492 break;
493 #endif
494 // Invoke NativeOp handler
495 if (!FN_field::test(opcode)) {
496 typedef void (*func_t)(dyngen_cpu_base, uint32);
497 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
498 dg.gen_invoke_CPU_im(func, selector);
499 cg_context.done_compile = false;
500 status = COMPILE_CODE_OK;
501 }
502 // Otherwise, let it generate a call to execute_sheep() which
503 // will cause necessary updates to the program counter
504 break;
505 }
506
507 default: { // EMUL_OP
508 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
509 #if ENABLE_NATIVE_EMUL_OP
510 typedef void (*emul_op_func_t)(dyngen_cpu_base);
511 emul_op_func_t emul_op_func = 0;
512 switch (emul_op) {
513 case OP_MICROSECONDS:
514 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
515 break;
516 case OP_IDLE_TIME:
517 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
518 break;
519 case OP_IDLE_TIME_2:
520 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
521 break;
522 }
523 if (emul_op_func) {
524 dg.gen_invoke_CPU(emul_op_func);
525 cg_context.done_compile = false;
526 status = COMPILE_CODE_OK;
527 break;
528 }
529 #endif
530 #if PPC_REENTRANT_JIT
531 // Try to execute EmulOp trampoline
532 dg.gen_set_PC_im(cg_context.pc + 4);
533 dg.gen_mov_32_T0_im(emul_op);
534 dg.gen_jmp(emul_op_trampoline);
535 cg_context.done_compile = true;
536 status = COMPILE_EPILOGUE_OK;
537 break;
538 #endif
539 // Invoke EmulOp handler
540 typedef void (*func_t)(dyngen_cpu_base, uint32);
541 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
542 dg.gen_invoke_CPU_im(func, emul_op);
543 cg_context.done_compile = false;
544 status = COMPILE_CODE_OK;
545 break;
546 }
547 }
548 return status;
549 #endif
550 return COMPILE_FAILURE;
551 }
552
553 // CPU context to preserve on interrupt
554 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
555 {
556 #if SAFE_INTERRUPT_PPC >= 2
557 cpu = _cpu;
558 where = _where;
559
560 // Save interrupt context
561 memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
562 pc = cpu->pc();
563 lr = cpu->lr();
564 ctr = cpu->ctr();
565 cr = cpu->get_cr();
566 xer = cpu->get_xer();
567 #endif
568 }
569
570 sheepshaver_cpu::interrupt_context::~interrupt_context()
571 {
572 #if SAFE_INTERRUPT_PPC >= 2
573 // Check whether CPU context was preserved by interrupt
574 if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
575 printf("FATAL: %s: interrupt clobbers registers\n", where);
576 for (int i = 0; i < 32; i++)
577 if (gpr[i] != cpu->gpr(i))
578 printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
579 }
580 if (pc != cpu->pc())
581 printf("FATAL: %s: interrupt clobbers PC\n", where);
582 if (lr != cpu->lr())
583 printf("FATAL: %s: interrupt clobbers LR\n", where);
584 if (ctr != cpu->ctr())
585 printf("FATAL: %s: interrupt clobbers CTR\n", where);
586 if (cr != cpu->get_cr())
587 printf("FATAL: %s: interrupt clobbers CR\n", where);
588 if (xer != cpu->get_xer())
589 printf("FATAL: %s: interrupt clobbers XER\n", where);
590 #endif
591 }
592
593 // Handle MacOS interrupt
594 void sheepshaver_cpu::interrupt(uint32 entry)
595 {
596 #if EMUL_TIME_STATS
597 ppc_interrupt_count++;
598 const clock_t interrupt_start = clock();
599 #endif
600
601 #if SAFE_INTERRUPT_PPC
602 static int depth = 0;
603 if (depth != 0)
604 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
605 depth++;
606 #endif
607
608 // Save program counters and branch registers
609 uint32 saved_pc = pc();
610 uint32 saved_lr = lr();
611 uint32 saved_ctr= ctr();
612 uint32 saved_sp = gpr(1);
613
614 // Initialize stack pointer to SheepShaver alternate stack base
615 gpr(1) = SignalStackBase() - 64;
616
617 // Build trampoline to return from interrupt
618 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
619
620 // Prepare registers for nanokernel interrupt routine
621 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
622 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
623
624 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
625 assert(gpr(6) != 0);
626 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
627 WriteMacInt32(gpr(6) + 0x144, gpr(8));
628 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
629 WriteMacInt32(gpr(6) + 0x154, gpr(10));
630 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
631 WriteMacInt32(gpr(6) + 0x164, gpr(12));
632 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
633
634 gpr(1) = KernelDataAddr;
635 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
636 gpr(8) = 0;
637 gpr(10) = trampoline.addr();
638 gpr(12) = trampoline.addr();
639 gpr(13) = get_cr();
640
641 // rlwimi. r7,r7,8,0,0
642 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
643 record_cr0(result);
644 gpr(7) = result;
645
646 gpr(11) = 0xf072; // MSR (SRR1)
647 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
648
649 // Enter nanokernel
650 execute(entry);
651
652 // Restore program counters and branch registers
653 pc() = saved_pc;
654 lr() = saved_lr;
655 ctr()= saved_ctr;
656 gpr(1) = saved_sp;
657
658 #if EMUL_TIME_STATS
659 interrupt_time += (clock() - interrupt_start);
660 #endif
661
662 #if SAFE_INTERRUPT_PPC
663 depth--;
664 #endif
665 }
666
667 // Execute 68k routine
668 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
669 {
670 #if EMUL_TIME_STATS
671 exec68k_count++;
672 const clock_t exec68k_start = clock();
673 #endif
674
675 #if SAFE_EXEC_68K
676 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
677 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
678 #endif
679
680 // Save program counters and branch registers
681 uint32 saved_pc = pc();
682 uint32 saved_lr = lr();
683 uint32 saved_ctr= ctr();
684 uint32 saved_cr = get_cr();
685
686 // Create MacOS stack frame
687 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
688 uint32 sp = gpr(1);
689 gpr(1) -= 56;
690 WriteMacInt32(gpr(1), sp);
691
692 // Save PowerPC registers
693 uint32 saved_GPRs[19];
694 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
695 #if SAVE_FP_EXEC_68K
696 double saved_FPRs[18];
697 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
698 #endif
699
700 // Setup registers for 68k emulator
701 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
702 for (int i = 0; i < 8; i++) // d[0]..d[7]
703 gpr(8 + i) = r->d[i];
704 for (int i = 0; i < 7; i++) // a[0]..a[6]
705 gpr(16 + i) = r->a[i];
706 gpr(23) = 0;
707 gpr(24) = entry;
708 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
709 gpr(26) = 0;
710 gpr(28) = 0; // VBR
711 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
712 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
713 gpr(31) = KernelDataAddr + 0x1000;
714
715 // Push return address (points to EXEC_RETURN opcode) on stack
716 gpr(1) -= 4;
717 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
718
719 // Rentering 68k emulator
720 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
721
722 // Set r0 to 0 for 68k emulator
723 gpr(0) = 0;
724
725 // Execute 68k opcode
726 uint32 opcode = ReadMacInt16(gpr(24));
727 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
728 gpr(29) += opcode * 8;
729 execute(gpr(29));
730
731 // Save r25 (contains current 68k interrupt level)
732 WriteMacInt32(XLM_68K_R25, gpr(25));
733
734 // Reentering EMUL_OP mode
735 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
736
737 // Save 68k registers
738 for (int i = 0; i < 8; i++) // d[0]..d[7]
739 r->d[i] = gpr(8 + i);
740 for (int i = 0; i < 7; i++) // a[0]..a[6]
741 r->a[i] = gpr(16 + i);
742
743 // Restore PowerPC registers
744 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
745 #if SAVE_FP_EXEC_68K
746 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
747 #endif
748
749 // Cleanup stack
750 gpr(1) += 56;
751
752 // Restore program counters and branch registers
753 pc() = saved_pc;
754 lr() = saved_lr;
755 ctr()= saved_ctr;
756 set_cr(saved_cr);
757
758 #if EMUL_TIME_STATS
759 exec68k_time += (clock() - exec68k_start);
760 #endif
761 }
762
763 // Call MacOS PPC code
764 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
765 {
766 #if EMUL_TIME_STATS
767 macos_exec_count++;
768 const clock_t macos_exec_start = clock();
769 #endif
770
771 // Save program counters and branch registers
772 uint32 saved_pc = pc();
773 uint32 saved_lr = lr();
774 uint32 saved_ctr= ctr();
775
776 // Build trampoline with EXEC_RETURN
777 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
778 lr() = trampoline.addr();
779
780 gpr(1) -= 64; // Create stack frame
781 uint32 proc = ReadMacInt32(tvect); // Get routine address
782 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
783
784 // Save PowerPC registers
785 uint32 regs[8];
786 regs[0] = gpr(2);
787 for (int i = 0; i < nargs; i++)
788 regs[i + 1] = gpr(i + 3);
789
790 // Prepare and call MacOS routine
791 gpr(2) = toc;
792 for (int i = 0; i < nargs; i++)
793 gpr(i + 3) = args[i];
794 execute(proc);
795 uint32 retval = gpr(3);
796
797 // Restore PowerPC registers
798 for (int i = 0; i <= nargs; i++)
799 gpr(i + 2) = regs[i];
800
801 // Cleanup stack
802 gpr(1) += 64;
803
804 // Restore program counters and branch registers
805 pc() = saved_pc;
806 lr() = saved_lr;
807 ctr()= saved_ctr;
808
809 #if EMUL_TIME_STATS
810 macos_exec_time += (clock() - macos_exec_start);
811 #endif
812
813 return retval;
814 }
815
816 // Execute ppc routine
817 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
818 {
819 // Save branch registers
820 uint32 saved_lr = lr();
821
822 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
823 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
824 lr() = trampoline.addr();
825
826 execute(entry);
827
828 // Restore branch registers
829 lr() = saved_lr;
830 }
831
832 // Resource Manager thunk
833 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
834 {
835 uint32 type = gpr(3);
836 int16 id = gpr(4);
837
838 // Create stack frame
839 gpr(1) -= 56;
840
841 // Call old routine
842 execute_ppc(old_get_resource);
843
844 // Call CheckLoad()
845 uint32 handle = gpr(3);
846 check_load_invoc(type, id, handle);
847 gpr(3) = handle;
848
849 // Cleanup stack
850 gpr(1) += 56;
851 }
852
853
854 /**
855 * SheepShaver CPU engine interface
856 **/
857
858 // PowerPC CPU emulator
859 static sheepshaver_cpu *ppc_cpu = NULL;
860
861 void FlushCodeCache(uintptr start, uintptr end)
862 {
863 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
864 ppc_cpu->invalidate_cache_range(start, end);
865 }
866
867 // Dump PPC registers
868 static void dump_registers(void)
869 {
870 ppc_cpu->dump_registers();
871 }
872
873 // Dump log
874 static void dump_log(void)
875 {
876 ppc_cpu->dump_log();
877 }
878
879 /*
880 * Initialize CPU emulation
881 */
882
883 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
884 {
885 #if ENABLE_VOSF
886 // Handle screen fault
887 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
888 if (Screen_fault_handler(fault_address, fault_instruction))
889 return SIGSEGV_RETURN_SUCCESS;
890 #endif
891
892 const uintptr addr = (uintptr)fault_address;
893 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
894 // Ignore writes to ROM
895 if ((addr - ROM_BASE) < ROM_SIZE)
896 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
897
898 // Get program counter of target CPU
899 sheepshaver_cpu * const cpu = ppc_cpu;
900 const uint32 pc = cpu->pc();
901
902 // Fault in Mac ROM or RAM?
903 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
904 if (mac_fault) {
905
906 // "VM settings" during MacOS 8 installation
907 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
908 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
909
910 // MacOS 8.5 installation
911 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
912 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
913
914 // MacOS 8 serial drivers on startup
915 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
916 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
917
918 // MacOS 8.1 serial drivers on startup
919 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
920 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
921 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
922 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
923
924 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
925 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
926 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
927 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
928 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
929
930 // Ignore writes to the zero page
931 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
932 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
933
934 // Ignore all other faults, if requested
935 if (PrefsFindBool("ignoresegv"))
936 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
937 }
938 #else
939 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
940 #endif
941
942 printf("SIGSEGV\n");
943 printf(" pc %p\n", fault_instruction);
944 printf(" ea %p\n", fault_address);
945 dump_registers();
946 ppc_cpu->dump_log();
947 enter_mon();
948 QuitEmulator();
949
950 return SIGSEGV_RETURN_FAILURE;
951 }
952
953 void init_emul_ppc(void)
954 {
955 // Initialize main CPU emulator
956 ppc_cpu = new sheepshaver_cpu();
957 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
958 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
959 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
960
961 #if ENABLE_MON
962 // Install "regs" command in cxmon
963 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
964 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
965 #endif
966
967 #if EMUL_TIME_STATS
968 emul_start_time = clock();
969 #endif
970 }
971
972 /*
973 * Deinitialize emulation
974 */
975
976 void exit_emul_ppc(void)
977 {
978 #if EMUL_TIME_STATS
979 clock_t emul_end_time = clock();
980
981 printf("### Statistics for SheepShaver emulation parts\n");
982 const clock_t emul_time = emul_end_time - emul_start_time;
983 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
984 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
985 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
986 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
987 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
988
989 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
990 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
991 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
992 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
993 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
994 } while (0)
995
996 PRINT_STATS("Execute68k[Trap] execution", exec68k);
997 PRINT_STATS("NativeOp execution", native_exec);
998 PRINT_STATS("MacOS routine execution", macos_exec);
999
1000 #undef PRINT_STATS
1001 printf("\n");
1002 #endif
1003
1004 delete ppc_cpu;
1005 }
1006
1007 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
1008 // Initialize EmulOp trampolines
1009 void init_emul_op_trampolines(basic_dyngen & dg)
1010 {
1011 typedef void (*func_t)(dyngen_cpu_base, uint32);
1012 func_t func;
1013
1014 // EmulOp
1015 emul_op_trampoline = dg.gen_start();
1016 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
1017 dg.gen_invoke_CPU_T0(func);
1018 dg.gen_exec_return();
1019 dg.gen_end();
1020
1021 // NativeOp
1022 native_op_trampoline = dg.gen_start();
1023 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
1024 dg.gen_invoke_CPU_T0(func);
1025 dg.gen_exec_return();
1026 dg.gen_end();
1027
1028 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
1029 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
1030 }
1031 #endif
1032
1033 /*
1034 * Emulation loop
1035 */
1036
1037 void emul_ppc(uint32 entry)
1038 {
1039 #if 0
1040 ppc_cpu->start_log();
1041 #endif
1042 // start emulation loop and enable code translation or caching
1043 ppc_cpu->execute(entry);
1044 }
1045
1046 /*
1047 * Handle PowerPC interrupt
1048 */
1049
1050 void TriggerInterrupt(void)
1051 {
1052 #if 0
1053 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
1054 #else
1055 // Trigger interrupt to main cpu only
1056 if (ppc_cpu)
1057 ppc_cpu->trigger_interrupt();
1058 #endif
1059 }
1060
1061 void sheepshaver_cpu::handle_interrupt(void)
1062 {
1063 #ifdef USE_SDL_VIDEO
1064 // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
1065 SDL_PumpEvents();
1066 #endif
1067
1068 // Do nothing if interrupts are disabled
1069 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
1070 return;
1071
1072 // Current interrupt nest level
1073 static int interrupt_depth = 0;
1074 ++interrupt_depth;
1075 #if EMUL_TIME_STATS
1076 interrupt_count++;
1077 #endif
1078
1079 // Disable MacOS stack sniffer
1080 WriteMacInt32(0x110, 0);
1081
1082 // Interrupt action depends on current run mode
1083 switch (ReadMacInt32(XLM_RUN_MODE)) {
1084 case MODE_68K:
1085 // 68k emulator active, trigger 68k interrupt level 1
1086 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1087 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1088 break;
1089
1090 #if INTERRUPTS_IN_NATIVE_MODE
1091 case MODE_NATIVE:
1092 // 68k emulator inactive, in nanokernel?
1093 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1094 interrupt_context ctx(this, "PowerPC mode");
1095
1096 // Prepare for 68k interrupt level 1
1097 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1098 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1099 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1100 | tswap32(kernel_data->v[0x674 >> 2]));
1101
1102 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1103 DisableInterrupt();
1104 if (ROMType == ROMTYPE_NEWWORLD)
1105 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1106 else
1107 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1108 }
1109 break;
1110 #endif
1111
1112 #if INTERRUPTS_IN_EMUL_OP_MODE
1113 case MODE_EMUL_OP:
1114 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1115 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1116 interrupt_context ctx(this, "68k mode");
1117 #if EMUL_TIME_STATS
1118 const clock_t interrupt_start = clock();
1119 #endif
1120 #if 1
1121 // Execute full 68k interrupt routine
1122 M68kRegisters r;
1123 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1124 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1125 static const uint8 proc[] = {
1126 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1127 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1128 0x40, 0xe7, // move sr,-(sp) (saved SR)
1129 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1130 0x4e, 0xd0, // jmp (a0)
1131 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1132 };
1133 Execute68k((uint32)proc, &r);
1134 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1135 #else
1136 // Only update cursor
1137 if (HasMacStarted()) {
1138 if (InterruptFlags & INTFLAG_VIA) {
1139 ClearInterruptFlag(INTFLAG_VIA);
1140 ADBInterrupt();
1141 ExecuteNative(NATIVE_VIDEO_VBL);
1142 }
1143 }
1144 #endif
1145 #if EMUL_TIME_STATS
1146 interrupt_time += (clock() - interrupt_start);
1147 #endif
1148 }
1149 break;
1150 #endif
1151 }
1152
1153 // We are done with this interrupt
1154 --interrupt_depth;
1155 }
1156
1157 static void get_resource(void);
1158 static void get_1_resource(void);
1159 static void get_ind_resource(void);
1160 static void get_1_ind_resource(void);
1161 static void r_get_resource(void);
1162
1163 // Execute NATIVE_OP routine
1164 void sheepshaver_cpu::execute_native_op(uint32 selector)
1165 {
1166 #if EMUL_TIME_STATS
1167 native_exec_count++;
1168 const clock_t native_exec_start = clock();
1169 #endif
1170
1171 switch (selector) {
1172 case NATIVE_PATCH_NAME_REGISTRY:
1173 DoPatchNameRegistry();
1174 break;
1175 case NATIVE_VIDEO_INSTALL_ACCEL:
1176 VideoInstallAccel();
1177 break;
1178 case NATIVE_VIDEO_VBL:
1179 VideoVBL();
1180 break;
1181 case NATIVE_VIDEO_DO_DRIVER_IO:
1182 gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1183 (void *)gpr(5), gpr(6), gpr(7));
1184 break;
1185 #ifdef WORDS_BIGENDIAN
1186 case NATIVE_ETHER_IRQ:
1187 EtherIRQ();
1188 break;
1189 case NATIVE_ETHER_INIT:
1190 gpr(3) = InitStreamModule((void *)gpr(3));
1191 break;
1192 case NATIVE_ETHER_TERM:
1193 TerminateStreamModule();
1194 break;
1195 case NATIVE_ETHER_OPEN:
1196 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1197 break;
1198 case NATIVE_ETHER_CLOSE:
1199 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1200 break;
1201 case NATIVE_ETHER_WPUT:
1202 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1203 break;
1204 case NATIVE_ETHER_RSRV:
1205 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1206 break;
1207 #else
1208 case NATIVE_ETHER_INIT:
1209 // FIXME: needs more complicated thunks
1210 gpr(3) = false;
1211 break;
1212 #endif
1213 case NATIVE_SYNC_HOOK:
1214 gpr(3) = NQD_sync_hook(gpr(3));
1215 break;
1216 case NATIVE_BITBLT_HOOK:
1217 gpr(3) = NQD_bitblt_hook(gpr(3));
1218 break;
1219 case NATIVE_BITBLT:
1220 NQD_bitblt(gpr(3));
1221 break;
1222 case NATIVE_FILLRECT_HOOK:
1223 gpr(3) = NQD_fillrect_hook(gpr(3));
1224 break;
1225 case NATIVE_INVRECT:
1226 NQD_invrect(gpr(3));
1227 break;
1228 case NATIVE_FILLRECT:
1229 NQD_fillrect(gpr(3));
1230 break;
1231 case NATIVE_SERIAL_NOTHING:
1232 case NATIVE_SERIAL_OPEN:
1233 case NATIVE_SERIAL_PRIME_IN:
1234 case NATIVE_SERIAL_PRIME_OUT:
1235 case NATIVE_SERIAL_CONTROL:
1236 case NATIVE_SERIAL_STATUS:
1237 case NATIVE_SERIAL_CLOSE: {
1238 typedef int16 (*SerialCallback)(uint32, uint32);
1239 static const SerialCallback serial_callbacks[] = {
1240 SerialNothing,
1241 SerialOpen,
1242 SerialPrimeIn,
1243 SerialPrimeOut,
1244 SerialControl,
1245 SerialStatus,
1246 SerialClose
1247 };
1248 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1249 break;
1250 }
1251 case NATIVE_GET_RESOURCE:
1252 case NATIVE_GET_1_RESOURCE:
1253 case NATIVE_GET_IND_RESOURCE:
1254 case NATIVE_GET_1_IND_RESOURCE:
1255 case NATIVE_R_GET_RESOURCE: {
1256 typedef void (*GetResourceCallback)(void);
1257 static const GetResourceCallback get_resource_callbacks[] = {
1258 ::get_resource,
1259 ::get_1_resource,
1260 ::get_ind_resource,
1261 ::get_1_ind_resource,
1262 ::r_get_resource
1263 };
1264 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1265 break;
1266 }
1267 case NATIVE_MAKE_EXECUTABLE:
1268 MakeExecutable(0, (void *)gpr(4), gpr(5));
1269 break;
1270 case NATIVE_CHECK_LOAD_INVOC:
1271 check_load_invoc(gpr(3), gpr(4), gpr(5));
1272 break;
1273 default:
1274 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1275 QuitEmulator();
1276 break;
1277 }
1278
1279 #if EMUL_TIME_STATS
1280 native_exec_time += (clock() - native_exec_start);
1281 #endif
1282 }
1283
1284 /*
1285 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1286 * This must only be called by the emul_thread when in EMUL_OP mode
1287 * r->a[7] is unused, the routine runs on the caller's stack
1288 */
1289
1290 void Execute68k(uint32 pc, M68kRegisters *r)
1291 {
1292 ppc_cpu->execute_68k(pc, r);
1293 }
1294
1295 /*
1296 * Execute 68k A-Trap from EMUL_OP routine
1297 * r->a[7] is unused, the routine runs on the caller's stack
1298 */
1299
1300 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1301 {
1302 SheepVar proc_var(4);
1303 uint32 proc = proc_var.addr();
1304 WriteMacInt16(proc, trap);
1305 WriteMacInt16(proc + 2, M68K_RTS);
1306 Execute68k(proc, r);
1307 }
1308
1309 /*
1310 * Call MacOS PPC code
1311 */
1312
1313 uint32 call_macos(uint32 tvect)
1314 {
1315 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1316 }
1317
1318 uint32 call_macos1(uint32 tvect, uint32 arg1)
1319 {
1320 const uint32 args[] = { arg1 };
1321 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1322 }
1323
1324 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1325 {
1326 const uint32 args[] = { arg1, arg2 };
1327 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1328 }
1329
1330 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1331 {
1332 const uint32 args[] = { arg1, arg2, arg3 };
1333 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1334 }
1335
1336 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1337 {
1338 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1339 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1340 }
1341
1342 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1343 {
1344 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1345 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1346 }
1347
1348 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1349 {
1350 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1351 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1352 }
1353
1354 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1355 {
1356 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1357 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1358 }
1359
1360 /*
1361 * Resource Manager thunks
1362 */
1363
1364 void get_resource(void)
1365 {
1366 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1367 }
1368
1369 void get_1_resource(void)
1370 {
1371 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1372 }
1373
1374 void get_ind_resource(void)
1375 {
1376 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1377 }
1378
1379 void get_1_ind_resource(void)
1380 {
1381 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1382 }
1383
1384 void r_get_resource(void)
1385 {
1386 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1387 }