ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.45
Committed: 2004-06-22T14:18:35Z (20 years, 5 months ago) by gbeauche
Branch: MAIN
Changes since 1.44: +0 -4 lines
Log Message:
Always handle interrupt even if InterruptFlags == 0, though it should not
really happen in practise.

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41 #include "timer.h"
42
43 #include <stdio.h>
44 #include <stdlib.h>
45
46 #if ENABLE_MON
47 #include "mon.h"
48 #include "mon_disass.h"
49 #endif
50
51 #define DEBUG 0
52 #include "debug.h"
53
54 // Emulation time statistics
55 #ifndef EMUL_TIME_STATS
56 #define EMUL_TIME_STATS 0
57 #endif
58
59 #if EMUL_TIME_STATS
60 static clock_t emul_start_time;
61 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
62 static clock_t interrupt_time = 0;
63 static uint32 exec68k_count = 0;
64 static clock_t exec68k_time = 0;
65 static uint32 native_exec_count = 0;
66 static clock_t native_exec_time = 0;
67 static uint32 macos_exec_count = 0;
68 static clock_t macos_exec_time = 0;
69 #endif
70
71 static void enter_mon(void)
72 {
73 // Start up mon in real-mode
74 #if ENABLE_MON
75 char *arg[4] = {"mon", "-m", "-r", NULL};
76 mon(3, arg);
77 #endif
78 }
79
80 // From main_*.cpp
81 extern uintptr SignalStackBase();
82
83 // From rsrc_patches.cpp
84 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
85
86 // PowerPC EmulOp to exit from emulation looop
87 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
88
89 // Enable interrupt routine safety checks?
90 #define SAFE_INTERRUPT_PPC 1
91
92 // Enable Execute68k() safety checks?
93 #define SAFE_EXEC_68K 1
94
95 // Save FP state in Execute68k()?
96 #define SAVE_FP_EXEC_68K 1
97
98 // Interrupts in EMUL_OP mode?
99 #define INTERRUPTS_IN_EMUL_OP_MODE 1
100
101 // Interrupts in native mode?
102 #define INTERRUPTS_IN_NATIVE_MODE 1
103
104 // Enable native EMUL_OPs to be run without a mode switch
105 #define ENABLE_NATIVE_EMUL_OP 1
106
107 // Pointer to Kernel Data
108 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
109
110 // SIGSEGV handler
111 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112
113 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
114 // Special trampolines for EmulOp and NativeOp
115 static uint8 *emul_op_trampoline;
116 static uint8 *native_op_trampoline;
117 #endif
118
119 // JIT Compiler enabled?
120 static inline bool enable_jit_p()
121 {
122 return PrefsFindBool("jit");
123 }
124
125
126 /**
127 * PowerPC emulator glue with special 'sheep' opcodes
128 **/
129
130 enum {
131 PPC_I(SHEEP) = PPC_I(MAX),
132 PPC_I(SHEEP_MAX)
133 };
134
135 class sheepshaver_cpu
136 : public powerpc_cpu
137 {
138 void init_decoder();
139 void execute_sheep(uint32 opcode);
140
141 // Filter out EMUL_OP routines that only call native code
142 bool filter_execute_emul_op(uint32 emul_op);
143
144 // "Native" EMUL_OP routines
145 void execute_emul_op_microseconds();
146 void execute_emul_op_idle_time_1();
147 void execute_emul_op_idle_time_2();
148
149 // CPU context to preserve on interrupt
150 class interrupt_context {
151 uint32 gpr[32];
152 uint32 pc;
153 uint32 lr;
154 uint32 ctr;
155 uint32 cr;
156 uint32 xer;
157 sheepshaver_cpu *cpu;
158 const char *where;
159 public:
160 interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
161 ~interrupt_context();
162 };
163
164 public:
165
166 // Constructor
167 sheepshaver_cpu();
168
169 // CR & XER accessors
170 uint32 get_cr() const { return cr().get(); }
171 void set_cr(uint32 v) { cr().set(v); }
172 uint32 get_xer() const { return xer().get(); }
173 void set_xer(uint32 v) { xer().set(v); }
174
175 // Execute NATIVE_OP routine
176 void execute_native_op(uint32 native_op);
177
178 // Execute EMUL_OP routine
179 void execute_emul_op(uint32 emul_op);
180
181 // Execute 68k routine
182 void execute_68k(uint32 entry, M68kRegisters *r);
183
184 // Execute ppc routine
185 void execute_ppc(uint32 entry);
186
187 // Execute MacOS/PPC code
188 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
189
190 // Compile one instruction
191 virtual int compile1(codegen_context_t & cg_context);
192
193 // Resource manager thunk
194 void get_resource(uint32 old_get_resource);
195
196 // Handle MacOS interrupt
197 void interrupt(uint32 entry);
198 void handle_interrupt();
199
200 // Make sure the SIGSEGV handler can access CPU registers
201 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
202 };
203
204 // Memory allocator returning areas aligned on 16-byte boundaries
205 void *operator new(size_t size)
206 {
207 void *p;
208
209 #if defined(HAVE_POSIX_MEMALIGN)
210 if (posix_memalign(&p, 16, size) != 0)
211 throw std::bad_alloc();
212 #elif defined(HAVE_MEMALIGN)
213 p = memalign(16, size);
214 #elif defined(HAVE_VALLOC)
215 p = valloc(size); // page-aligned!
216 #else
217 /* XXX: handle padding ourselves */
218 p = malloc(size);
219 #endif
220
221 return p;
222 }
223
224 void operator delete(void *p)
225 {
226 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
227 #if defined(__GLIBC__)
228 // this is known to work only with GNU libc
229 free(p);
230 #endif
231 #else
232 free(p);
233 #endif
234 }
235
236 sheepshaver_cpu::sheepshaver_cpu()
237 : powerpc_cpu(enable_jit_p())
238 {
239 init_decoder();
240 }
241
242 void sheepshaver_cpu::init_decoder()
243 {
244 static const instr_info_t sheep_ii_table[] = {
245 { "sheep",
246 (execute_pmf)&sheepshaver_cpu::execute_sheep,
247 NULL,
248 PPC_I(SHEEP),
249 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
250 }
251 };
252
253 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
254 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
255
256 for (int i = 0; i < ii_count; i++) {
257 const instr_info_t * ii = &sheep_ii_table[i];
258 init_decoder_entry(ii);
259 }
260 }
261
262 /* NativeOp instruction format:
263 +------------+-------------------------+--+-----------+------------+
264 | 6 | |FN| OP | 2 |
265 +------------+-------------------------+--+-----------+------------+
266 0 5 |6 18 19 20 25 26 31
267 */
268
269 typedef bit_field< 19, 19 > FN_field;
270 typedef bit_field< 20, 25 > NATIVE_OP_field;
271 typedef bit_field< 26, 31 > EMUL_OP_field;
272
273 // "Native" EMUL_OP routines
274 #define GPR_A(REG) gpr(16 + (REG))
275 #define GPR_D(REG) gpr( 8 + (REG))
276
277 void sheepshaver_cpu::execute_emul_op_microseconds()
278 {
279 Microseconds(GPR_A(0), GPR_D(0));
280 }
281
282 void sheepshaver_cpu::execute_emul_op_idle_time_1()
283 {
284 // Sleep if no events pending
285 if (ReadMacInt32(0x14c) == 0)
286 Delay_usec(16667);
287 GPR_A(0) = ReadMacInt32(0x2b6);
288 }
289
290 void sheepshaver_cpu::execute_emul_op_idle_time_2()
291 {
292 // Sleep if no events pending
293 if (ReadMacInt32(0x14c) == 0)
294 Delay_usec(16667);
295 GPR_D(0) = (uint32)-2;
296 }
297
298 // Filter out EMUL_OP routines that only call native code
299 bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
300 {
301 switch (emul_op) {
302 case OP_MICROSECONDS:
303 execute_emul_op_microseconds();
304 return true;
305 case OP_IDLE_TIME:
306 execute_emul_op_idle_time_1();
307 return true;
308 case OP_IDLE_TIME_2:
309 execute_emul_op_idle_time_2();
310 return true;
311 }
312 return false;
313 }
314
315 // Execute EMUL_OP routine
316 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
317 {
318 #if ENABLE_NATIVE_EMUL_OP
319 // First, filter out EMUL_OPs that can be executed without a mode switch
320 if (filter_execute_emul_op(emul_op))
321 return;
322 #endif
323
324 M68kRegisters r68;
325 WriteMacInt32(XLM_68K_R25, gpr(25));
326 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
327 for (int i = 0; i < 8; i++)
328 r68.d[i] = gpr(8 + i);
329 for (int i = 0; i < 7; i++)
330 r68.a[i] = gpr(16 + i);
331 r68.a[7] = gpr(1);
332 uint32 saved_cr = get_cr() & CR_field<2>::mask();
333 uint32 saved_xer = get_xer();
334 EmulOp(&r68, gpr(24), emul_op);
335 set_cr(saved_cr);
336 set_xer(saved_xer);
337 for (int i = 0; i < 8; i++)
338 gpr(8 + i) = r68.d[i];
339 for (int i = 0; i < 7; i++)
340 gpr(16 + i) = r68.a[i];
341 gpr(1) = r68.a[7];
342 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
343 }
344
345 // Execute SheepShaver instruction
346 void sheepshaver_cpu::execute_sheep(uint32 opcode)
347 {
348 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
349 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
350
351 switch (opcode & 0x3f) {
352 case 0: // EMUL_RETURN
353 QuitEmulator();
354 break;
355
356 case 1: // EXEC_RETURN
357 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
358 break;
359
360 case 2: // EXEC_NATIVE
361 execute_native_op(NATIVE_OP_field::extract(opcode));
362 if (FN_field::test(opcode))
363 pc() = lr();
364 else
365 pc() += 4;
366 break;
367
368 default: // EMUL_OP
369 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
370 pc() += 4;
371 break;
372 }
373 }
374
375 // Compile one instruction
376 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
377 {
378 #if PPC_ENABLE_JIT
379 const instr_info_t *ii = cg_context.instr_info;
380 if (ii->mnemo != PPC_I(SHEEP))
381 return COMPILE_FAILURE;
382
383 int status = COMPILE_FAILURE;
384 powerpc_dyngen & dg = cg_context.codegen;
385 uint32 opcode = cg_context.opcode;
386
387 switch (opcode & 0x3f) {
388 case 0: // EMUL_RETURN
389 dg.gen_invoke(QuitEmulator);
390 status = COMPILE_CODE_OK;
391 break;
392
393 case 1: // EXEC_RETURN
394 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
395 // Don't check for pending interrupts, we do know we have to
396 // get out of this block ASAP
397 dg.gen_exec_return();
398 status = COMPILE_EPILOGUE_OK;
399 break;
400
401 case 2: { // EXEC_NATIVE
402 uint32 selector = NATIVE_OP_field::extract(opcode);
403 switch (selector) {
404 #if !PPC_REENTRANT_JIT
405 // Filter out functions that may invoke Execute68k() or
406 // CallMacOS(), this would break reentrancy as they could
407 // invalidate the translation cache and even overwrite
408 // continuation code when we are done with them.
409 case NATIVE_PATCH_NAME_REGISTRY:
410 dg.gen_invoke(DoPatchNameRegistry);
411 status = COMPILE_CODE_OK;
412 break;
413 case NATIVE_VIDEO_INSTALL_ACCEL:
414 dg.gen_invoke(VideoInstallAccel);
415 status = COMPILE_CODE_OK;
416 break;
417 case NATIVE_VIDEO_VBL:
418 dg.gen_invoke(VideoVBL);
419 status = COMPILE_CODE_OK;
420 break;
421 case NATIVE_GET_RESOURCE:
422 case NATIVE_GET_1_RESOURCE:
423 case NATIVE_GET_IND_RESOURCE:
424 case NATIVE_GET_1_IND_RESOURCE:
425 case NATIVE_R_GET_RESOURCE: {
426 static const uint32 get_resource_ptr[] = {
427 XLM_GET_RESOURCE,
428 XLM_GET_1_RESOURCE,
429 XLM_GET_IND_RESOURCE,
430 XLM_GET_1_IND_RESOURCE,
431 XLM_R_GET_RESOURCE
432 };
433 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
434 typedef void (*func_t)(dyngen_cpu_base, uint32);
435 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
436 dg.gen_invoke_CPU_im(func, old_get_resource);
437 status = COMPILE_CODE_OK;
438 break;
439 }
440 case NATIVE_CHECK_LOAD_INVOC:
441 dg.gen_load_T0_GPR(3);
442 dg.gen_load_T1_GPR(4);
443 dg.gen_se_16_32_T1();
444 dg.gen_load_T2_GPR(5);
445 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
446 status = COMPILE_CODE_OK;
447 break;
448 #endif
449 case NATIVE_DISABLE_INTERRUPT:
450 dg.gen_invoke(DisableInterrupt);
451 status = COMPILE_CODE_OK;
452 break;
453 case NATIVE_ENABLE_INTERRUPT:
454 dg.gen_invoke(EnableInterrupt);
455 status = COMPILE_CODE_OK;
456 break;
457 case NATIVE_BITBLT:
458 dg.gen_load_T0_GPR(3);
459 dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
460 status = COMPILE_CODE_OK;
461 break;
462 case NATIVE_INVRECT:
463 dg.gen_load_T0_GPR(3);
464 dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
465 status = COMPILE_CODE_OK;
466 break;
467 case NATIVE_FILLRECT:
468 dg.gen_load_T0_GPR(3);
469 dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
470 status = COMPILE_CODE_OK;
471 break;
472 }
473 // Could we fully translate this NativeOp?
474 if (status == COMPILE_CODE_OK) {
475 if (!FN_field::test(opcode))
476 cg_context.done_compile = false;
477 else {
478 dg.gen_load_A0_LR();
479 dg.gen_set_PC_A0();
480 cg_context.done_compile = true;
481 }
482 break;
483 }
484 #if PPC_REENTRANT_JIT
485 // Try to execute NativeOp trampoline
486 if (!FN_field::test(opcode))
487 dg.gen_set_PC_im(cg_context.pc + 4);
488 else {
489 dg.gen_load_A0_LR();
490 dg.gen_set_PC_A0();
491 }
492 dg.gen_mov_32_T0_im(selector);
493 dg.gen_jmp(native_op_trampoline);
494 cg_context.done_compile = true;
495 status = COMPILE_EPILOGUE_OK;
496 break;
497 #endif
498 // Invoke NativeOp handler
499 if (!FN_field::test(opcode)) {
500 typedef void (*func_t)(dyngen_cpu_base, uint32);
501 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
502 dg.gen_invoke_CPU_im(func, selector);
503 cg_context.done_compile = false;
504 status = COMPILE_CODE_OK;
505 }
506 // Otherwise, let it generate a call to execute_sheep() which
507 // will cause necessary updates to the program counter
508 break;
509 }
510
511 default: { // EMUL_OP
512 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
513 #if ENABLE_NATIVE_EMUL_OP
514 typedef void (*emul_op_func_t)(dyngen_cpu_base);
515 emul_op_func_t emul_op_func = 0;
516 switch (emul_op) {
517 case OP_MICROSECONDS:
518 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
519 break;
520 case OP_IDLE_TIME:
521 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
522 break;
523 case OP_IDLE_TIME_2:
524 emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
525 break;
526 }
527 if (emul_op_func) {
528 dg.gen_invoke_CPU(emul_op_func);
529 cg_context.done_compile = false;
530 status = COMPILE_CODE_OK;
531 break;
532 }
533 #endif
534 #if PPC_REENTRANT_JIT
535 // Try to execute EmulOp trampoline
536 dg.gen_set_PC_im(cg_context.pc + 4);
537 dg.gen_mov_32_T0_im(emul_op);
538 dg.gen_jmp(emul_op_trampoline);
539 cg_context.done_compile = true;
540 status = COMPILE_EPILOGUE_OK;
541 break;
542 #endif
543 // Invoke EmulOp handler
544 typedef void (*func_t)(dyngen_cpu_base, uint32);
545 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
546 dg.gen_invoke_CPU_im(func, emul_op);
547 cg_context.done_compile = false;
548 status = COMPILE_CODE_OK;
549 break;
550 }
551 }
552 return status;
553 #endif
554 return COMPILE_FAILURE;
555 }
556
557 // CPU context to preserve on interrupt
558 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
559 {
560 #if SAFE_INTERRUPT_PPC >= 2
561 cpu = _cpu;
562 where = _where;
563
564 // Save interrupt context
565 memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
566 pc = cpu->pc();
567 lr = cpu->lr();
568 ctr = cpu->ctr();
569 cr = cpu->get_cr();
570 xer = cpu->get_xer();
571 #endif
572 }
573
574 sheepshaver_cpu::interrupt_context::~interrupt_context()
575 {
576 #if SAFE_INTERRUPT_PPC >= 2
577 // Check whether CPU context was preserved by interrupt
578 if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
579 printf("FATAL: %s: interrupt clobbers registers\n", where);
580 for (int i = 0; i < 32; i++)
581 if (gpr[i] != cpu->gpr(i))
582 printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
583 }
584 if (pc != cpu->pc())
585 printf("FATAL: %s: interrupt clobbers PC\n", where);
586 if (lr != cpu->lr())
587 printf("FATAL: %s: interrupt clobbers LR\n", where);
588 if (ctr != cpu->ctr())
589 printf("FATAL: %s: interrupt clobbers CTR\n", where);
590 if (cr != cpu->get_cr())
591 printf("FATAL: %s: interrupt clobbers CR\n", where);
592 if (xer != cpu->get_xer())
593 printf("FATAL: %s: interrupt clobbers XER\n", where);
594 #endif
595 }
596
597 // Handle MacOS interrupt
598 void sheepshaver_cpu::interrupt(uint32 entry)
599 {
600 #if EMUL_TIME_STATS
601 ppc_interrupt_count++;
602 const clock_t interrupt_start = clock();
603 #endif
604
605 #if SAFE_INTERRUPT_PPC
606 static int depth = 0;
607 if (depth != 0)
608 printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
609 depth++;
610 #endif
611
612 // Save program counters and branch registers
613 uint32 saved_pc = pc();
614 uint32 saved_lr = lr();
615 uint32 saved_ctr= ctr();
616 uint32 saved_sp = gpr(1);
617
618 // Initialize stack pointer to SheepShaver alternate stack base
619 gpr(1) = SignalStackBase() - 64;
620
621 // Build trampoline to return from interrupt
622 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
623
624 // Prepare registers for nanokernel interrupt routine
625 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
626 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
627
628 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
629 assert(gpr(6) != 0);
630 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
631 WriteMacInt32(gpr(6) + 0x144, gpr(8));
632 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
633 WriteMacInt32(gpr(6) + 0x154, gpr(10));
634 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
635 WriteMacInt32(gpr(6) + 0x164, gpr(12));
636 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
637
638 gpr(1) = KernelDataAddr;
639 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
640 gpr(8) = 0;
641 gpr(10) = trampoline.addr();
642 gpr(12) = trampoline.addr();
643 gpr(13) = get_cr();
644
645 // rlwimi. r7,r7,8,0,0
646 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
647 record_cr0(result);
648 gpr(7) = result;
649
650 gpr(11) = 0xf072; // MSR (SRR1)
651 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
652
653 // Enter nanokernel
654 execute(entry);
655
656 // Restore program counters and branch registers
657 pc() = saved_pc;
658 lr() = saved_lr;
659 ctr()= saved_ctr;
660 gpr(1) = saved_sp;
661
662 #if EMUL_TIME_STATS
663 interrupt_time += (clock() - interrupt_start);
664 #endif
665
666 #if SAFE_INTERRUPT_PPC
667 depth--;
668 #endif
669 }
670
671 // Execute 68k routine
672 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
673 {
674 #if EMUL_TIME_STATS
675 exec68k_count++;
676 const clock_t exec68k_start = clock();
677 #endif
678
679 #if SAFE_EXEC_68K
680 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
681 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
682 #endif
683
684 // Save program counters and branch registers
685 uint32 saved_pc = pc();
686 uint32 saved_lr = lr();
687 uint32 saved_ctr= ctr();
688 uint32 saved_cr = get_cr();
689
690 // Create MacOS stack frame
691 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
692 uint32 sp = gpr(1);
693 gpr(1) -= 56;
694 WriteMacInt32(gpr(1), sp);
695
696 // Save PowerPC registers
697 uint32 saved_GPRs[19];
698 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
699 #if SAVE_FP_EXEC_68K
700 double saved_FPRs[18];
701 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
702 #endif
703
704 // Setup registers for 68k emulator
705 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
706 for (int i = 0; i < 8; i++) // d[0]..d[7]
707 gpr(8 + i) = r->d[i];
708 for (int i = 0; i < 7; i++) // a[0]..a[6]
709 gpr(16 + i) = r->a[i];
710 gpr(23) = 0;
711 gpr(24) = entry;
712 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
713 gpr(26) = 0;
714 gpr(28) = 0; // VBR
715 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
716 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
717 gpr(31) = KernelDataAddr + 0x1000;
718
719 // Push return address (points to EXEC_RETURN opcode) on stack
720 gpr(1) -= 4;
721 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
722
723 // Rentering 68k emulator
724 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
725
726 // Set r0 to 0 for 68k emulator
727 gpr(0) = 0;
728
729 // Execute 68k opcode
730 uint32 opcode = ReadMacInt16(gpr(24));
731 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
732 gpr(29) += opcode * 8;
733 execute(gpr(29));
734
735 // Save r25 (contains current 68k interrupt level)
736 WriteMacInt32(XLM_68K_R25, gpr(25));
737
738 // Reentering EMUL_OP mode
739 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
740
741 // Save 68k registers
742 for (int i = 0; i < 8; i++) // d[0]..d[7]
743 r->d[i] = gpr(8 + i);
744 for (int i = 0; i < 7; i++) // a[0]..a[6]
745 r->a[i] = gpr(16 + i);
746
747 // Restore PowerPC registers
748 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
749 #if SAVE_FP_EXEC_68K
750 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
751 #endif
752
753 // Cleanup stack
754 gpr(1) += 56;
755
756 // Restore program counters and branch registers
757 pc() = saved_pc;
758 lr() = saved_lr;
759 ctr()= saved_ctr;
760 set_cr(saved_cr);
761
762 #if EMUL_TIME_STATS
763 exec68k_time += (clock() - exec68k_start);
764 #endif
765 }
766
767 // Call MacOS PPC code
768 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
769 {
770 #if EMUL_TIME_STATS
771 macos_exec_count++;
772 const clock_t macos_exec_start = clock();
773 #endif
774
775 // Save program counters and branch registers
776 uint32 saved_pc = pc();
777 uint32 saved_lr = lr();
778 uint32 saved_ctr= ctr();
779
780 // Build trampoline with EXEC_RETURN
781 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
782 lr() = trampoline.addr();
783
784 gpr(1) -= 64; // Create stack frame
785 uint32 proc = ReadMacInt32(tvect); // Get routine address
786 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
787
788 // Save PowerPC registers
789 uint32 regs[8];
790 regs[0] = gpr(2);
791 for (int i = 0; i < nargs; i++)
792 regs[i + 1] = gpr(i + 3);
793
794 // Prepare and call MacOS routine
795 gpr(2) = toc;
796 for (int i = 0; i < nargs; i++)
797 gpr(i + 3) = args[i];
798 execute(proc);
799 uint32 retval = gpr(3);
800
801 // Restore PowerPC registers
802 for (int i = 0; i <= nargs; i++)
803 gpr(i + 2) = regs[i];
804
805 // Cleanup stack
806 gpr(1) += 64;
807
808 // Restore program counters and branch registers
809 pc() = saved_pc;
810 lr() = saved_lr;
811 ctr()= saved_ctr;
812
813 #if EMUL_TIME_STATS
814 macos_exec_time += (clock() - macos_exec_start);
815 #endif
816
817 return retval;
818 }
819
820 // Execute ppc routine
821 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
822 {
823 // Save branch registers
824 uint32 saved_lr = lr();
825
826 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
827 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
828 lr() = trampoline.addr();
829
830 execute(entry);
831
832 // Restore branch registers
833 lr() = saved_lr;
834 }
835
836 // Resource Manager thunk
837 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
838 {
839 uint32 type = gpr(3);
840 int16 id = gpr(4);
841
842 // Create stack frame
843 gpr(1) -= 56;
844
845 // Call old routine
846 execute_ppc(old_get_resource);
847
848 // Call CheckLoad()
849 uint32 handle = gpr(3);
850 check_load_invoc(type, id, handle);
851 gpr(3) = handle;
852
853 // Cleanup stack
854 gpr(1) += 56;
855 }
856
857
858 /**
859 * SheepShaver CPU engine interface
860 **/
861
862 // PowerPC CPU emulator
863 static sheepshaver_cpu *ppc_cpu = NULL;
864
865 void FlushCodeCache(uintptr start, uintptr end)
866 {
867 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
868 ppc_cpu->invalidate_cache_range(start, end);
869 }
870
871 // Dump PPC registers
872 static void dump_registers(void)
873 {
874 ppc_cpu->dump_registers();
875 }
876
877 // Dump log
878 static void dump_log(void)
879 {
880 ppc_cpu->dump_log();
881 }
882
883 /*
884 * Initialize CPU emulation
885 */
886
887 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
888 {
889 #if ENABLE_VOSF
890 // Handle screen fault
891 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
892 if (Screen_fault_handler(fault_address, fault_instruction))
893 return SIGSEGV_RETURN_SUCCESS;
894 #endif
895
896 const uintptr addr = (uintptr)fault_address;
897 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
898 // Ignore writes to ROM
899 if ((addr - ROM_BASE) < ROM_SIZE)
900 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
901
902 // Get program counter of target CPU
903 sheepshaver_cpu * const cpu = ppc_cpu;
904 const uint32 pc = cpu->pc();
905
906 // Fault in Mac ROM or RAM?
907 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
908 if (mac_fault) {
909
910 // "VM settings" during MacOS 8 installation
911 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
912 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
913
914 // MacOS 8.5 installation
915 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
916 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
917
918 // MacOS 8 serial drivers on startup
919 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
920 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
921
922 // MacOS 8.1 serial drivers on startup
923 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
924 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
925 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
926 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
927
928 // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
929 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
930 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
931 else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
932 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
933
934 // Ignore writes to the zero page
935 else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
936 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
937
938 // Ignore all other faults, if requested
939 if (PrefsFindBool("ignoresegv"))
940 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
941 }
942 #else
943 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
944 #endif
945
946 printf("SIGSEGV\n");
947 printf(" pc %p\n", fault_instruction);
948 printf(" ea %p\n", fault_address);
949 dump_registers();
950 ppc_cpu->dump_log();
951 enter_mon();
952 QuitEmulator();
953
954 return SIGSEGV_RETURN_FAILURE;
955 }
956
957 void init_emul_ppc(void)
958 {
959 // Initialize main CPU emulator
960 ppc_cpu = new sheepshaver_cpu();
961 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
962 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
963 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
964
965 // Install the handler for SIGSEGV
966 sigsegv_install_handler(sigsegv_handler);
967
968 #if ENABLE_MON
969 // Install "regs" command in cxmon
970 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
971 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
972 #endif
973
974 #if EMUL_TIME_STATS
975 emul_start_time = clock();
976 #endif
977 }
978
979 /*
980 * Deinitialize emulation
981 */
982
983 void exit_emul_ppc(void)
984 {
985 #if EMUL_TIME_STATS
986 clock_t emul_end_time = clock();
987
988 printf("### Statistics for SheepShaver emulation parts\n");
989 const clock_t emul_time = emul_end_time - emul_start_time;
990 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
991 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
992 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
993 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
994 (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
995
996 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
997 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
998 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
999 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
1000 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
1001 } while (0)
1002
1003 PRINT_STATS("Execute68k[Trap] execution", exec68k);
1004 PRINT_STATS("NativeOp execution", native_exec);
1005 PRINT_STATS("MacOS routine execution", macos_exec);
1006
1007 #undef PRINT_STATS
1008 printf("\n");
1009 #endif
1010
1011 delete ppc_cpu;
1012 }
1013
1014 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
1015 // Initialize EmulOp trampolines
1016 void init_emul_op_trampolines(basic_dyngen & dg)
1017 {
1018 typedef void (*func_t)(dyngen_cpu_base, uint32);
1019 func_t func;
1020
1021 // EmulOp
1022 emul_op_trampoline = dg.gen_start();
1023 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
1024 dg.gen_invoke_CPU_T0(func);
1025 dg.gen_exec_return();
1026 dg.gen_end();
1027
1028 // NativeOp
1029 native_op_trampoline = dg.gen_start();
1030 func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
1031 dg.gen_invoke_CPU_T0(func);
1032 dg.gen_exec_return();
1033 dg.gen_end();
1034
1035 D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
1036 D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
1037 }
1038 #endif
1039
1040 /*
1041 * Emulation loop
1042 */
1043
1044 void emul_ppc(uint32 entry)
1045 {
1046 #if 0
1047 ppc_cpu->start_log();
1048 #endif
1049 // start emulation loop and enable code translation or caching
1050 ppc_cpu->execute(entry);
1051 }
1052
1053 /*
1054 * Handle PowerPC interrupt
1055 */
1056
1057 void TriggerInterrupt(void)
1058 {
1059 #if 0
1060 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
1061 #else
1062 // Trigger interrupt to main cpu only
1063 if (ppc_cpu)
1064 ppc_cpu->trigger_interrupt();
1065 #endif
1066 }
1067
1068 void sheepshaver_cpu::handle_interrupt(void)
1069 {
1070 // Do nothing if interrupts are disabled
1071 if (*(int32 *)XLM_IRQ_NEST > 0)
1072 return;
1073
1074 // Current interrupt nest level
1075 static int interrupt_depth = 0;
1076 ++interrupt_depth;
1077 #if EMUL_TIME_STATS
1078 interrupt_count++;
1079 #endif
1080
1081 // Disable MacOS stack sniffer
1082 WriteMacInt32(0x110, 0);
1083
1084 // Interrupt action depends on current run mode
1085 switch (ReadMacInt32(XLM_RUN_MODE)) {
1086 case MODE_68K:
1087 // 68k emulator active, trigger 68k interrupt level 1
1088 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1089 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1090 break;
1091
1092 #if INTERRUPTS_IN_NATIVE_MODE
1093 case MODE_NATIVE:
1094 // 68k emulator inactive, in nanokernel?
1095 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1096 interrupt_context ctx(this, "PowerPC mode");
1097
1098 // Prepare for 68k interrupt level 1
1099 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1100 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1101 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1102 | tswap32(kernel_data->v[0x674 >> 2]));
1103
1104 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1105 DisableInterrupt();
1106 if (ROMType == ROMTYPE_NEWWORLD)
1107 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1108 else
1109 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1110 }
1111 break;
1112 #endif
1113
1114 #if INTERRUPTS_IN_EMUL_OP_MODE
1115 case MODE_EMUL_OP:
1116 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1117 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1118 interrupt_context ctx(this, "68k mode");
1119 #if EMUL_TIME_STATS
1120 const clock_t interrupt_start = clock();
1121 #endif
1122 #if 1
1123 // Execute full 68k interrupt routine
1124 M68kRegisters r;
1125 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1126 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1127 static const uint8 proc[] = {
1128 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1129 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1130 0x40, 0xe7, // move sr,-(sp) (saved SR)
1131 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1132 0x4e, 0xd0, // jmp (a0)
1133 M68K_RTS >> 8, M68K_RTS & 0xff // @1
1134 };
1135 Execute68k((uint32)proc, &r);
1136 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1137 #else
1138 // Only update cursor
1139 if (HasMacStarted()) {
1140 if (InterruptFlags & INTFLAG_VIA) {
1141 ClearInterruptFlag(INTFLAG_VIA);
1142 ADBInterrupt();
1143 ExecuteNative(NATIVE_VIDEO_VBL);
1144 }
1145 }
1146 #endif
1147 #if EMUL_TIME_STATS
1148 interrupt_time += (clock() - interrupt_start);
1149 #endif
1150 }
1151 break;
1152 #endif
1153 }
1154
1155 // We are done with this interrupt
1156 --interrupt_depth;
1157 }
1158
1159 static void get_resource(void);
1160 static void get_1_resource(void);
1161 static void get_ind_resource(void);
1162 static void get_1_ind_resource(void);
1163 static void r_get_resource(void);
1164
1165 // Execute NATIVE_OP routine
1166 void sheepshaver_cpu::execute_native_op(uint32 selector)
1167 {
1168 #if EMUL_TIME_STATS
1169 native_exec_count++;
1170 const clock_t native_exec_start = clock();
1171 #endif
1172
1173 switch (selector) {
1174 case NATIVE_PATCH_NAME_REGISTRY:
1175 DoPatchNameRegistry();
1176 break;
1177 case NATIVE_VIDEO_INSTALL_ACCEL:
1178 VideoInstallAccel();
1179 break;
1180 case NATIVE_VIDEO_VBL:
1181 VideoVBL();
1182 break;
1183 case NATIVE_VIDEO_DO_DRIVER_IO:
1184 gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1185 (void *)gpr(5), gpr(6), gpr(7));
1186 break;
1187 #ifdef WORDS_BIGENDIAN
1188 case NATIVE_ETHER_IRQ:
1189 EtherIRQ();
1190 break;
1191 case NATIVE_ETHER_INIT:
1192 gpr(3) = InitStreamModule((void *)gpr(3));
1193 break;
1194 case NATIVE_ETHER_TERM:
1195 TerminateStreamModule();
1196 break;
1197 case NATIVE_ETHER_OPEN:
1198 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1199 break;
1200 case NATIVE_ETHER_CLOSE:
1201 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1202 break;
1203 case NATIVE_ETHER_WPUT:
1204 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1205 break;
1206 case NATIVE_ETHER_RSRV:
1207 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1208 break;
1209 #else
1210 case NATIVE_ETHER_INIT:
1211 // FIXME: needs more complicated thunks
1212 gpr(3) = false;
1213 break;
1214 #endif
1215 case NATIVE_SYNC_HOOK:
1216 gpr(3) = NQD_sync_hook(gpr(3));
1217 break;
1218 case NATIVE_BITBLT_HOOK:
1219 gpr(3) = NQD_bitblt_hook(gpr(3));
1220 break;
1221 case NATIVE_BITBLT:
1222 NQD_bitblt(gpr(3));
1223 break;
1224 case NATIVE_FILLRECT_HOOK:
1225 gpr(3) = NQD_fillrect_hook(gpr(3));
1226 break;
1227 case NATIVE_INVRECT:
1228 NQD_invrect(gpr(3));
1229 break;
1230 case NATIVE_FILLRECT:
1231 NQD_fillrect(gpr(3));
1232 break;
1233 case NATIVE_SERIAL_NOTHING:
1234 case NATIVE_SERIAL_OPEN:
1235 case NATIVE_SERIAL_PRIME_IN:
1236 case NATIVE_SERIAL_PRIME_OUT:
1237 case NATIVE_SERIAL_CONTROL:
1238 case NATIVE_SERIAL_STATUS:
1239 case NATIVE_SERIAL_CLOSE: {
1240 typedef int16 (*SerialCallback)(uint32, uint32);
1241 static const SerialCallback serial_callbacks[] = {
1242 SerialNothing,
1243 SerialOpen,
1244 SerialPrimeIn,
1245 SerialPrimeOut,
1246 SerialControl,
1247 SerialStatus,
1248 SerialClose
1249 };
1250 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1251 break;
1252 }
1253 case NATIVE_GET_RESOURCE:
1254 case NATIVE_GET_1_RESOURCE:
1255 case NATIVE_GET_IND_RESOURCE:
1256 case NATIVE_GET_1_IND_RESOURCE:
1257 case NATIVE_R_GET_RESOURCE: {
1258 typedef void (*GetResourceCallback)(void);
1259 static const GetResourceCallback get_resource_callbacks[] = {
1260 ::get_resource,
1261 ::get_1_resource,
1262 ::get_ind_resource,
1263 ::get_1_ind_resource,
1264 ::r_get_resource
1265 };
1266 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1267 break;
1268 }
1269 case NATIVE_DISABLE_INTERRUPT:
1270 DisableInterrupt();
1271 break;
1272 case NATIVE_ENABLE_INTERRUPT:
1273 EnableInterrupt();
1274 break;
1275 case NATIVE_MAKE_EXECUTABLE:
1276 MakeExecutable(0, (void *)gpr(4), gpr(5));
1277 break;
1278 case NATIVE_CHECK_LOAD_INVOC:
1279 check_load_invoc(gpr(3), gpr(4), gpr(5));
1280 break;
1281 default:
1282 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1283 QuitEmulator();
1284 break;
1285 }
1286
1287 #if EMUL_TIME_STATS
1288 native_exec_time += (clock() - native_exec_start);
1289 #endif
1290 }
1291
1292 /*
1293 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1294 * This must only be called by the emul_thread when in EMUL_OP mode
1295 * r->a[7] is unused, the routine runs on the caller's stack
1296 */
1297
1298 void Execute68k(uint32 pc, M68kRegisters *r)
1299 {
1300 ppc_cpu->execute_68k(pc, r);
1301 }
1302
1303 /*
1304 * Execute 68k A-Trap from EMUL_OP routine
1305 * r->a[7] is unused, the routine runs on the caller's stack
1306 */
1307
1308 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1309 {
1310 SheepVar proc_var(4);
1311 uint32 proc = proc_var.addr();
1312 WriteMacInt16(proc, trap);
1313 WriteMacInt16(proc + 2, M68K_RTS);
1314 Execute68k(proc, r);
1315 }
1316
1317 /*
1318 * Call MacOS PPC code
1319 */
1320
1321 uint32 call_macos(uint32 tvect)
1322 {
1323 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1324 }
1325
1326 uint32 call_macos1(uint32 tvect, uint32 arg1)
1327 {
1328 const uint32 args[] = { arg1 };
1329 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1330 }
1331
1332 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1333 {
1334 const uint32 args[] = { arg1, arg2 };
1335 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1336 }
1337
1338 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1339 {
1340 const uint32 args[] = { arg1, arg2, arg3 };
1341 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1342 }
1343
1344 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1345 {
1346 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1347 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1348 }
1349
1350 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1351 {
1352 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1353 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1354 }
1355
1356 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1357 {
1358 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1359 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1360 }
1361
1362 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1363 {
1364 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1365 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1366 }
1367
1368 /*
1369 * Resource Manager thunks
1370 */
1371
1372 void get_resource(void)
1373 {
1374 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1375 }
1376
1377 void get_1_resource(void)
1378 {
1379 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1380 }
1381
1382 void get_ind_resource(void)
1383 {
1384 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1385 }
1386
1387 void get_1_ind_resource(void)
1388 {
1389 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1390 }
1391
1392 void r_get_resource(void)
1393 {
1394 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1395 }