1 |
/* |
2 |
* sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface |
3 |
* |
4 |
* SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#include "sysdeps.h" |
22 |
#include "cpu_emulation.h" |
23 |
#include "main.h" |
24 |
#include "prefs.h" |
25 |
#include "xlowmem.h" |
26 |
#include "emul_op.h" |
27 |
#include "rom_patches.h" |
28 |
#include "macos_util.h" |
29 |
#include "block-alloc.hpp" |
30 |
#include "sigsegv.h" |
31 |
#include "spcflags.h" |
32 |
#include "cpu/ppc/ppc-cpu.hpp" |
33 |
#include "cpu/ppc/ppc-operations.hpp" |
34 |
|
35 |
// Used for NativeOp trampolines |
36 |
#include "video.h" |
37 |
#include "name_registry.h" |
38 |
#include "serial.h" |
39 |
|
40 |
#include <stdio.h> |
41 |
|
42 |
#if ENABLE_MON |
43 |
#include "mon.h" |
44 |
#include "mon_disass.h" |
45 |
#endif |
46 |
|
47 |
#define DEBUG 1 |
48 |
#include "debug.h" |
49 |
|
50 |
static void enter_mon(void) |
51 |
{ |
52 |
// Start up mon in real-mode |
53 |
#if ENABLE_MON |
54 |
char *arg[4] = {"mon", "-m", "-r", NULL}; |
55 |
mon(3, arg); |
56 |
#endif |
57 |
} |
58 |
|
59 |
// Enable multicore (main/interrupts) cpu emulation? |
60 |
#define MULTICORE_CPU 0 |
61 |
|
62 |
// Enable Execute68k() safety checks? |
63 |
#define SAFE_EXEC_68K 1 |
64 |
|
65 |
// Save FP state in Execute68k()? |
66 |
#define SAVE_FP_EXEC_68K 1 |
67 |
|
68 |
// Interrupts in EMUL_OP mode? |
69 |
#define INTERRUPTS_IN_EMUL_OP_MODE 1 |
70 |
|
71 |
// Interrupts in native mode? |
72 |
#define INTERRUPTS_IN_NATIVE_MODE 1 |
73 |
|
74 |
// 68k Emulator Data |
75 |
struct EmulatorData { |
76 |
uint32 v[0x400]; |
77 |
}; |
78 |
|
79 |
// Kernel Data |
80 |
struct KernelData { |
81 |
uint32 v[0x400]; |
82 |
EmulatorData ed; |
83 |
}; |
84 |
|
85 |
// Pointer to Kernel Data |
86 |
static KernelData * const kernel_data = (KernelData *)0x68ffe000; |
87 |
|
88 |
|
89 |
/** |
90 |
* PowerPC emulator glue with special 'sheep' opcodes |
91 |
**/ |
92 |
|
93 |
struct sheepshaver_exec_return { }; |
94 |
|
95 |
class sheepshaver_cpu |
96 |
: public powerpc_cpu |
97 |
{ |
98 |
void init_decoder(); |
99 |
void execute_sheep(uint32 opcode); |
100 |
|
101 |
public: |
102 |
|
103 |
sheepshaver_cpu() |
104 |
: powerpc_cpu() |
105 |
{ init_decoder(); } |
106 |
|
107 |
// Condition Register accessors |
108 |
uint32 get_cr() const { return cr().get(); } |
109 |
void set_cr(uint32 v) { cr().set(v); } |
110 |
|
111 |
// Execution loop |
112 |
void execute(uint32 pc); |
113 |
|
114 |
// Execute 68k routine |
115 |
void execute_68k(uint32 entry, M68kRegisters *r); |
116 |
|
117 |
// Execute ppc routine |
118 |
void execute_ppc(uint32 entry); |
119 |
|
120 |
// Execute MacOS/PPC code |
121 |
uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args); |
122 |
|
123 |
// Resource manager thunk |
124 |
void get_resource(uint32 old_get_resource); |
125 |
|
126 |
// Handle MacOS interrupt |
127 |
void interrupt(uint32 entry, sheepshaver_cpu *cpu); |
128 |
|
129 |
// spcflags for interrupts handling |
130 |
static uint32 spcflags; |
131 |
|
132 |
// Lazy memory allocator (one item at a time) |
133 |
void *operator new(size_t size) |
134 |
{ return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); } |
135 |
void operator delete(void *p) |
136 |
{ allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); } |
137 |
// FIXME: really make surre array allocation fail at link time? |
138 |
void *operator new[](size_t); |
139 |
void operator delete[](void *p); |
140 |
}; |
141 |
|
142 |
uint32 sheepshaver_cpu::spcflags = 0; |
143 |
lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator; |
144 |
|
145 |
void sheepshaver_cpu::init_decoder() |
146 |
{ |
147 |
#ifndef PPC_NO_STATIC_II_INDEX_TABLE |
148 |
static bool initialized = false; |
149 |
if (initialized) |
150 |
return; |
151 |
initialized = true; |
152 |
#endif |
153 |
|
154 |
static const instr_info_t sheep_ii_table[] = { |
155 |
{ "sheep", |
156 |
(execute_fn)&sheepshaver_cpu::execute_sheep, |
157 |
NULL, |
158 |
D_form, 6, 0, CFLOW_TRAP |
159 |
} |
160 |
}; |
161 |
|
162 |
const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]); |
163 |
D(bug("SheepShaver extra decode table has %d entries\n", ii_count)); |
164 |
|
165 |
for (int i = 0; i < ii_count; i++) { |
166 |
const instr_info_t * ii = &sheep_ii_table[i]; |
167 |
init_decoder_entry(ii); |
168 |
} |
169 |
} |
170 |
|
171 |
// Forward declaration for native opcode handler |
172 |
static void NativeOp(int selector); |
173 |
|
174 |
/* NativeOp instruction format: |
175 |
+------------+--------------------------+--+----------+------------+ |
176 |
| 6 | |FN| OP | 2 | |
177 |
+------------+--------------------------+--+----------+------------+ |
178 |
0 5 |6 19 20 21 25 26 31 |
179 |
*/ |
180 |
|
181 |
typedef bit_field< 20, 20 > FN_field; |
182 |
typedef bit_field< 21, 25 > NATIVE_OP_field; |
183 |
typedef bit_field< 26, 31 > EMUL_OP_field; |
184 |
|
185 |
// Execute SheepShaver instruction |
186 |
void sheepshaver_cpu::execute_sheep(uint32 opcode) |
187 |
{ |
188 |
// D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24))); |
189 |
assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3); |
190 |
|
191 |
switch (opcode & 0x3f) { |
192 |
case 0: // EMUL_RETURN |
193 |
QuitEmulator(); |
194 |
break; |
195 |
|
196 |
case 1: // EXEC_RETURN |
197 |
throw sheepshaver_exec_return(); |
198 |
break; |
199 |
|
200 |
case 2: // EXEC_NATIVE |
201 |
NativeOp(NATIVE_OP_field::extract(opcode)); |
202 |
if (FN_field::test(opcode)) |
203 |
pc() = lr(); |
204 |
else |
205 |
pc() += 4; |
206 |
break; |
207 |
|
208 |
default: { // EMUL_OP |
209 |
M68kRegisters r68; |
210 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
211 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
212 |
for (int i = 0; i < 8; i++) |
213 |
r68.d[i] = gpr(8 + i); |
214 |
for (int i = 0; i < 7; i++) |
215 |
r68.a[i] = gpr(16 + i); |
216 |
r68.a[7] = gpr(1); |
217 |
EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3); |
218 |
for (int i = 0; i < 8; i++) |
219 |
gpr(8 + i) = r68.d[i]; |
220 |
for (int i = 0; i < 7; i++) |
221 |
gpr(16 + i) = r68.a[i]; |
222 |
gpr(1) = r68.a[7]; |
223 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
224 |
pc() += 4; |
225 |
break; |
226 |
} |
227 |
} |
228 |
} |
229 |
|
230 |
// Checks for pending interrupts |
231 |
struct execute_nothing { |
232 |
static inline void execute(powerpc_cpu *) { } |
233 |
}; |
234 |
|
235 |
static void HandleInterrupt(void); |
236 |
|
237 |
struct execute_spcflags_check { |
238 |
static inline void execute(powerpc_cpu *cpu) { |
239 |
if (SPCFLAGS_TEST(SPCFLAG_ALL_BUT_EXEC_RETURN)) { |
240 |
if (SPCFLAGS_TEST( SPCFLAG_ENTER_MON )) { |
241 |
SPCFLAGS_CLEAR( SPCFLAG_ENTER_MON ); |
242 |
enter_mon(); |
243 |
} |
244 |
if (SPCFLAGS_TEST( SPCFLAG_DOINT )) { |
245 |
SPCFLAGS_CLEAR( SPCFLAG_DOINT ); |
246 |
HandleInterrupt(); |
247 |
} |
248 |
if (SPCFLAGS_TEST( SPCFLAG_INT )) { |
249 |
SPCFLAGS_CLEAR( SPCFLAG_INT ); |
250 |
SPCFLAGS_SET( SPCFLAG_DOINT ); |
251 |
} |
252 |
} |
253 |
} |
254 |
}; |
255 |
|
256 |
// Execution loop |
257 |
void sheepshaver_cpu::execute(uint32 entry) |
258 |
{ |
259 |
try { |
260 |
pc() = entry; |
261 |
powerpc_cpu::do_execute<execute_nothing, execute_spcflags_check>(); |
262 |
} |
263 |
catch (sheepshaver_exec_return const &) { |
264 |
// Nothing, simply return |
265 |
} |
266 |
catch (...) { |
267 |
printf("ERROR: execute() received an unknown exception!\n"); |
268 |
QuitEmulator(); |
269 |
} |
270 |
} |
271 |
|
272 |
// Handle MacOS interrupt |
273 |
void sheepshaver_cpu::interrupt(uint32 entry, sheepshaver_cpu *cpu) |
274 |
{ |
275 |
#if MULTICORE_CPU |
276 |
// Initialize stack pointer from previous CPU running |
277 |
gpr(1) = cpu->gpr(1); |
278 |
#else |
279 |
// Save program counters and branch registers |
280 |
uint32 saved_pc = pc(); |
281 |
uint32 saved_lr = lr(); |
282 |
uint32 saved_ctr= ctr(); |
283 |
#endif |
284 |
|
285 |
// Create stack frame |
286 |
gpr(1) -= 64; |
287 |
|
288 |
// Build trampoline to return from interrupt |
289 |
uint32 trampoline[] = { POWERPC_EMUL_OP | 1 }; |
290 |
|
291 |
// Prepare registers for nanokernel interrupt routine |
292 |
kernel_data->v[0x004 >> 2] = gpr(1); |
293 |
kernel_data->v[0x018 >> 2] = gpr(6); |
294 |
|
295 |
gpr(6) = kernel_data->v[0x65c >> 2]; |
296 |
assert(gpr(6) != 0); |
297 |
WriteMacInt32(gpr(6) + 0x13c, gpr(7)); |
298 |
WriteMacInt32(gpr(6) + 0x144, gpr(8)); |
299 |
WriteMacInt32(gpr(6) + 0x14c, gpr(9)); |
300 |
WriteMacInt32(gpr(6) + 0x154, gpr(10)); |
301 |
WriteMacInt32(gpr(6) + 0x15c, gpr(11)); |
302 |
WriteMacInt32(gpr(6) + 0x164, gpr(12)); |
303 |
WriteMacInt32(gpr(6) + 0x16c, gpr(13)); |
304 |
|
305 |
gpr(1) = KernelDataAddr; |
306 |
gpr(7) = kernel_data->v[0x660 >> 2]; |
307 |
gpr(8) = 0; |
308 |
gpr(10) = (uint32)trampoline; |
309 |
gpr(12) = (uint32)trampoline; |
310 |
gpr(13) = cr().get(); |
311 |
|
312 |
// rlwimi. r7,r7,8,0,0 |
313 |
uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7)); |
314 |
record_cr0(result); |
315 |
gpr(7) = result; |
316 |
|
317 |
gpr(11) = 0xf072; // MSR (SRR1) |
318 |
cr().set((gpr(11) & 0x0fff0000) | (cr().get() & ~0x0fff0000)); |
319 |
|
320 |
// Enter nanokernel |
321 |
execute(entry); |
322 |
|
323 |
// Cleanup stack |
324 |
gpr(1) += 64; |
325 |
|
326 |
#if !MULTICORE_CPU |
327 |
// Restore program counters and branch registers |
328 |
pc() = saved_pc; |
329 |
lr() = saved_lr; |
330 |
ctr()= saved_ctr; |
331 |
#endif |
332 |
} |
333 |
|
334 |
// Execute 68k routine |
335 |
void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r) |
336 |
{ |
337 |
#if SAFE_EXEC_68K |
338 |
if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP) |
339 |
printf("FATAL: Execute68k() not called from EMUL_OP mode\n"); |
340 |
#endif |
341 |
|
342 |
// Save program counters and branch registers |
343 |
uint32 saved_pc = pc(); |
344 |
uint32 saved_lr = lr(); |
345 |
uint32 saved_ctr= ctr(); |
346 |
|
347 |
// Create MacOS stack frame |
348 |
uint32 sp = gpr(1); |
349 |
gpr(1) -= 56 + 19*4 + 18*8; |
350 |
WriteMacInt32(gpr(1), sp); |
351 |
|
352 |
// Save PowerPC registers |
353 |
memcpy(Mac2HostAddr(gpr(1)+56), &gpr(13), sizeof(uint32)*(32-13)); |
354 |
#if SAVE_FP_EXEC_68K |
355 |
memcpy(Mac2HostAddr(gpr(1)+56+19*4), &fpr(14), sizeof(double)*(32-14)); |
356 |
#endif |
357 |
|
358 |
// Setup registers for 68k emulator |
359 |
cr().set(CR_SO_field<2>::mask()); // Supervisor mode |
360 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
361 |
gpr(8 + i) = r->d[i]; |
362 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
363 |
gpr(16 + i) = r->a[i]; |
364 |
gpr(23) = 0; |
365 |
gpr(24) = entry; |
366 |
gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR |
367 |
gpr(26) = 0; |
368 |
gpr(28) = 0; // VBR |
369 |
gpr(29) = kernel_data->ed.v[0x74 >> 2]; // Pointer to opcode table |
370 |
gpr(30) = kernel_data->ed.v[0x78 >> 2]; // Address of emulator |
371 |
gpr(31) = KernelDataAddr + 0x1000; |
372 |
|
373 |
// Push return address (points to EXEC_RETURN opcode) on stack |
374 |
gpr(1) -= 4; |
375 |
WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE); |
376 |
|
377 |
// Rentering 68k emulator |
378 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
379 |
|
380 |
// Set r0 to 0 for 68k emulator |
381 |
gpr(0) = 0; |
382 |
|
383 |
// Execute 68k opcode |
384 |
uint32 opcode = ReadMacInt16(gpr(24)); |
385 |
gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2); |
386 |
gpr(29) += opcode * 8; |
387 |
execute(gpr(29)); |
388 |
|
389 |
// Save r25 (contains current 68k interrupt level) |
390 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
391 |
|
392 |
// Reentering EMUL_OP mode |
393 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
394 |
|
395 |
// Save 68k registers |
396 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
397 |
r->d[i] = gpr(8 + i); |
398 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
399 |
r->a[i] = gpr(16 + i); |
400 |
|
401 |
// Restore PowerPC registers |
402 |
memcpy(&gpr(13), Mac2HostAddr(gpr(1)+56), sizeof(uint32)*(32-13)); |
403 |
#if SAVE_FP_EXEC_68K |
404 |
memcpy(&fpr(14), Mac2HostAddr(gpr(1)+56+19*4), sizeof(double)*(32-14)); |
405 |
#endif |
406 |
|
407 |
// Cleanup stack |
408 |
gpr(1) += 56 + 19*4 + 18*8; |
409 |
|
410 |
// Restore program counters and branch registers |
411 |
pc() = saved_pc; |
412 |
lr() = saved_lr; |
413 |
ctr()= saved_ctr; |
414 |
} |
415 |
|
416 |
// Call MacOS PPC code |
417 |
uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args) |
418 |
{ |
419 |
// Save program counters and branch registers |
420 |
uint32 saved_pc = pc(); |
421 |
uint32 saved_lr = lr(); |
422 |
uint32 saved_ctr= ctr(); |
423 |
|
424 |
// Build trampoline with EXEC_RETURN |
425 |
uint32 trampoline[] = { POWERPC_EMUL_OP | 1 }; |
426 |
lr() = (uint32)trampoline; |
427 |
|
428 |
gpr(1) -= 64; // Create stack frame |
429 |
uint32 proc = ReadMacInt32(tvect); // Get routine address |
430 |
uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer |
431 |
|
432 |
// Save PowerPC registers |
433 |
uint32 regs[8]; |
434 |
regs[0] = gpr(2); |
435 |
for (int i = 0; i < nargs; i++) |
436 |
regs[i + 1] = gpr(i + 3); |
437 |
|
438 |
// Prepare and call MacOS routine |
439 |
gpr(2) = toc; |
440 |
for (int i = 0; i < nargs; i++) |
441 |
gpr(i + 3) = args[i]; |
442 |
execute(proc); |
443 |
uint32 retval = gpr(3); |
444 |
|
445 |
// Restore PowerPC registers |
446 |
for (int i = 0; i <= nargs; i++) |
447 |
gpr(i + 2) = regs[i]; |
448 |
|
449 |
// Cleanup stack |
450 |
gpr(1) += 64; |
451 |
|
452 |
// Restore program counters and branch registers |
453 |
pc() = saved_pc; |
454 |
lr() = saved_lr; |
455 |
ctr()= saved_ctr; |
456 |
|
457 |
return retval; |
458 |
} |
459 |
|
460 |
// Execute ppc routine |
461 |
inline void sheepshaver_cpu::execute_ppc(uint32 entry) |
462 |
{ |
463 |
// Save branch registers |
464 |
uint32 saved_lr = lr(); |
465 |
uint32 saved_ctr= ctr(); |
466 |
|
467 |
const uint32 trampoline[] = { POWERPC_EMUL_OP | 1 }; |
468 |
|
469 |
lr() = (uint32)trampoline; |
470 |
ctr()= entry; |
471 |
execute(entry); |
472 |
|
473 |
// Restore branch registers |
474 |
lr() = saved_lr; |
475 |
ctr()= saved_ctr; |
476 |
} |
477 |
|
478 |
// Resource Manager thunk |
479 |
extern "C" void check_load_invoc(uint32 type, int16 id, uint16 **h); |
480 |
|
481 |
inline void sheepshaver_cpu::get_resource(uint32 old_get_resource) |
482 |
{ |
483 |
uint32 type = gpr(3); |
484 |
int16 id = gpr(4); |
485 |
|
486 |
// Create stack frame |
487 |
gpr(1) -= 56; |
488 |
|
489 |
// Call old routine |
490 |
execute_ppc(old_get_resource); |
491 |
uint16 **handle = (uint16 **)gpr(3); |
492 |
|
493 |
// Call CheckLoad() |
494 |
check_load_invoc(type, id, handle); |
495 |
gpr(3) = (uint32)handle; |
496 |
|
497 |
// Cleanup stack |
498 |
gpr(1) += 56; |
499 |
} |
500 |
|
501 |
|
502 |
/** |
503 |
* SheepShaver CPU engine interface |
504 |
**/ |
505 |
|
506 |
static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow |
507 |
static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts |
508 |
static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context |
509 |
|
510 |
static inline void cpu_push(sheepshaver_cpu *new_cpu) |
511 |
{ |
512 |
#if MULTICORE_CPU |
513 |
current_cpu = new_cpu; |
514 |
#endif |
515 |
} |
516 |
|
517 |
static inline void cpu_pop() |
518 |
{ |
519 |
#if MULTICORE_CPU |
520 |
current_cpu = main_cpu; |
521 |
#endif |
522 |
} |
523 |
|
524 |
// Dump PPC registers |
525 |
static void dump_registers(void) |
526 |
{ |
527 |
current_cpu->dump_registers(); |
528 |
} |
529 |
|
530 |
// Dump log |
531 |
static void dump_log(void) |
532 |
{ |
533 |
current_cpu->dump_log(); |
534 |
} |
535 |
|
536 |
/* |
537 |
* Initialize CPU emulation |
538 |
*/ |
539 |
|
540 |
static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
541 |
{ |
542 |
#if ENABLE_VOSF |
543 |
// Handle screen fault |
544 |
extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t); |
545 |
if (Screen_fault_handler(fault_address, fault_instruction)) |
546 |
return SIGSEGV_RETURN_SUCCESS; |
547 |
#endif |
548 |
|
549 |
const uintptr addr = (uintptr)fault_address; |
550 |
#if HAVE_SIGSEGV_SKIP_INSTRUCTION |
551 |
// Ignore writes to ROM |
552 |
if ((addr - ROM_BASE) < ROM_SIZE) |
553 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
554 |
|
555 |
// Ignore all other faults, if requested |
556 |
if (PrefsFindBool("ignoresegv")) |
557 |
return SIGSEGV_RETURN_FAILURE; |
558 |
#else |
559 |
#error "FIXME: You don't have the capability to skip instruction within signal handlers" |
560 |
#endif |
561 |
|
562 |
printf("SIGSEGV\n"); |
563 |
printf(" pc %p\n", fault_instruction); |
564 |
printf(" ea %p\n", fault_address); |
565 |
printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts"); |
566 |
dump_registers(); |
567 |
current_cpu->dump_log(); |
568 |
enter_mon(); |
569 |
QuitEmulator(); |
570 |
|
571 |
return SIGSEGV_RETURN_FAILURE; |
572 |
} |
573 |
|
574 |
void init_emul_ppc(void) |
575 |
{ |
576 |
// Initialize main CPU emulator |
577 |
main_cpu = new sheepshaver_cpu(); |
578 |
main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000)); |
579 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
580 |
|
581 |
#if MULTICORE_CPU |
582 |
// Initialize alternate CPU emulator to handle interrupts |
583 |
interrupt_cpu = new sheepshaver_cpu(); |
584 |
#endif |
585 |
|
586 |
// Install the handler for SIGSEGV |
587 |
sigsegv_install_handler(sigsegv_handler); |
588 |
|
589 |
#if ENABLE_MON |
590 |
// Install "regs" command in cxmon |
591 |
mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n"); |
592 |
mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n"); |
593 |
#endif |
594 |
} |
595 |
|
596 |
/* |
597 |
* Emulation loop |
598 |
*/ |
599 |
|
600 |
void emul_ppc(uint32 entry) |
601 |
{ |
602 |
current_cpu = main_cpu; |
603 |
current_cpu->start_log(); |
604 |
current_cpu->execute(entry); |
605 |
} |
606 |
|
607 |
/* |
608 |
* Handle PowerPC interrupt |
609 |
*/ |
610 |
|
611 |
// Atomic operations |
612 |
extern int atomic_add(int *var, int v); |
613 |
extern int atomic_and(int *var, int v); |
614 |
extern int atomic_or(int *var, int v); |
615 |
|
616 |
void TriggerInterrupt(void) |
617 |
{ |
618 |
#if 0 |
619 |
WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1); |
620 |
#else |
621 |
SPCFLAGS_SET( SPCFLAG_INT ); |
622 |
#endif |
623 |
} |
624 |
|
625 |
static void HandleInterrupt(void) |
626 |
{ |
627 |
// Do nothing if interrupts are disabled |
628 |
if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0) |
629 |
return; |
630 |
|
631 |
// Do nothing if there is no interrupt pending |
632 |
if (InterruptFlags == 0) |
633 |
return; |
634 |
|
635 |
// Disable MacOS stack sniffer |
636 |
WriteMacInt32(0x110, 0); |
637 |
|
638 |
// Interrupt action depends on current run mode |
639 |
switch (ReadMacInt32(XLM_RUN_MODE)) { |
640 |
case MODE_68K: |
641 |
// 68k emulator active, trigger 68k interrupt level 1 |
642 |
assert(current_cpu == main_cpu); |
643 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
644 |
main_cpu->set_cr(main_cpu->get_cr() | tswap32(kernel_data->v[0x674 >> 2])); |
645 |
break; |
646 |
|
647 |
#if INTERRUPTS_IN_NATIVE_MODE |
648 |
case MODE_NATIVE: |
649 |
// 68k emulator inactive, in nanokernel? |
650 |
assert(current_cpu == main_cpu); |
651 |
if (main_cpu->gpr(1) != KernelDataAddr) { |
652 |
// Prepare for 68k interrupt level 1 |
653 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
654 |
WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc, |
655 |
ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc) |
656 |
| tswap32(kernel_data->v[0x674 >> 2])); |
657 |
|
658 |
// Execute nanokernel interrupt routine (this will activate the 68k emulator) |
659 |
DisableInterrupt(); |
660 |
cpu_push(interrupt_cpu); |
661 |
if (ROMType == ROMTYPE_NEWWORLD) |
662 |
current_cpu->interrupt(ROM_BASE + 0x312b1c, main_cpu); |
663 |
else |
664 |
current_cpu->interrupt(ROM_BASE + 0x312a3c, main_cpu); |
665 |
cpu_pop(); |
666 |
} |
667 |
break; |
668 |
#endif |
669 |
|
670 |
#if INTERRUPTS_IN_EMUL_OP_MODE |
671 |
case MODE_EMUL_OP: |
672 |
// 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0 |
673 |
if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) { |
674 |
#if 1 |
675 |
// Execute full 68k interrupt routine |
676 |
M68kRegisters r; |
677 |
uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level |
678 |
WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1 |
679 |
static const uint8 proc[] = { |
680 |
0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word) |
681 |
0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address) |
682 |
0x40, 0xe7, // move sr,-(sp) (saved SR) |
683 |
0x20, 0x78, 0x00, 0x064, // move.l $64,a0 |
684 |
0x4e, 0xd0, // jmp (a0) |
685 |
M68K_RTS >> 8, M68K_RTS & 0xff // @1 |
686 |
}; |
687 |
Execute68k((uint32)proc, &r); |
688 |
WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level |
689 |
#else |
690 |
// Only update cursor |
691 |
if (HasMacStarted()) { |
692 |
if (InterruptFlags & INTFLAG_VIA) { |
693 |
ClearInterruptFlag(INTFLAG_VIA); |
694 |
ADBInterrupt(); |
695 |
ExecutePPC(VideoVBL); |
696 |
} |
697 |
} |
698 |
#endif |
699 |
} |
700 |
break; |
701 |
#endif |
702 |
} |
703 |
} |
704 |
|
705 |
/* |
706 |
* Execute NATIVE_OP opcode (called by PowerPC emulator) |
707 |
*/ |
708 |
|
709 |
#define POWERPC_NATIVE_OP_INIT(LR, OP) \ |
710 |
tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2) |
711 |
|
712 |
// FIXME: Make sure 32-bit relocations are used |
713 |
const uint32 NativeOpTable[NATIVE_OP_MAX] = { |
714 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY), |
715 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL), |
716 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL), |
717 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO), |
718 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ), |
719 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT), |
720 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM), |
721 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN), |
722 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE), |
723 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT), |
724 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV), |
725 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING), |
726 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN), |
727 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN), |
728 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT), |
729 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL), |
730 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS), |
731 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE), |
732 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE), |
733 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE), |
734 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE), |
735 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE), |
736 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE), |
737 |
POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT), |
738 |
POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT), |
739 |
}; |
740 |
|
741 |
static void get_resource(void); |
742 |
static void get_1_resource(void); |
743 |
static void get_ind_resource(void); |
744 |
static void get_1_ind_resource(void); |
745 |
static void r_get_resource(void); |
746 |
|
747 |
#define GPR(REG) current_cpu->gpr(REG) |
748 |
|
749 |
static void NativeOp(int selector) |
750 |
{ |
751 |
switch (selector) { |
752 |
case NATIVE_PATCH_NAME_REGISTRY: |
753 |
DoPatchNameRegistry(); |
754 |
break; |
755 |
case NATIVE_VIDEO_INSTALL_ACCEL: |
756 |
VideoInstallAccel(); |
757 |
break; |
758 |
case NATIVE_VIDEO_VBL: |
759 |
VideoVBL(); |
760 |
break; |
761 |
case NATIVE_VIDEO_DO_DRIVER_IO: |
762 |
GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4), |
763 |
(void *)GPR(5), GPR(6), GPR(7)); |
764 |
break; |
765 |
case NATIVE_GET_RESOURCE: |
766 |
get_resource(); |
767 |
break; |
768 |
case NATIVE_GET_1_RESOURCE: |
769 |
get_1_resource(); |
770 |
break; |
771 |
case NATIVE_GET_IND_RESOURCE: |
772 |
get_ind_resource(); |
773 |
break; |
774 |
case NATIVE_GET_1_IND_RESOURCE: |
775 |
get_1_ind_resource(); |
776 |
break; |
777 |
case NATIVE_R_GET_RESOURCE: |
778 |
r_get_resource(); |
779 |
break; |
780 |
case NATIVE_SERIAL_NOTHING: |
781 |
case NATIVE_SERIAL_OPEN: |
782 |
case NATIVE_SERIAL_PRIME_IN: |
783 |
case NATIVE_SERIAL_PRIME_OUT: |
784 |
case NATIVE_SERIAL_CONTROL: |
785 |
case NATIVE_SERIAL_STATUS: |
786 |
case NATIVE_SERIAL_CLOSE: { |
787 |
typedef int16 (*SerialCallback)(uint32, uint32); |
788 |
static const SerialCallback serial_callbacks[] = { |
789 |
SerialNothing, |
790 |
SerialOpen, |
791 |
SerialPrimeIn, |
792 |
SerialPrimeOut, |
793 |
SerialControl, |
794 |
SerialStatus, |
795 |
SerialClose |
796 |
}; |
797 |
GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4)); |
798 |
break; |
799 |
} |
800 |
case NATIVE_DISABLE_INTERRUPT: |
801 |
DisableInterrupt(); |
802 |
break; |
803 |
case NATIVE_ENABLE_INTERRUPT: |
804 |
EnableInterrupt(); |
805 |
break; |
806 |
default: |
807 |
printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector); |
808 |
QuitEmulator(); |
809 |
break; |
810 |
} |
811 |
} |
812 |
|
813 |
/* |
814 |
* Execute native subroutine (LR must contain return address) |
815 |
*/ |
816 |
|
817 |
void ExecuteNative(int selector) |
818 |
{ |
819 |
uint32 tvect[2]; |
820 |
tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector)); |
821 |
tvect[1] = 0; // Fake TVECT |
822 |
RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect); |
823 |
M68kRegisters r; |
824 |
Execute68k((uint32)&desc, &r); |
825 |
} |
826 |
|
827 |
/* |
828 |
* Execute 68k subroutine (must be ended with EXEC_RETURN) |
829 |
* This must only be called by the emul_thread when in EMUL_OP mode |
830 |
* r->a[7] is unused, the routine runs on the caller's stack |
831 |
*/ |
832 |
|
833 |
void Execute68k(uint32 pc, M68kRegisters *r) |
834 |
{ |
835 |
current_cpu->execute_68k(pc, r); |
836 |
} |
837 |
|
838 |
/* |
839 |
* Execute 68k A-Trap from EMUL_OP routine |
840 |
* r->a[7] is unused, the routine runs on the caller's stack |
841 |
*/ |
842 |
|
843 |
void Execute68kTrap(uint16 trap, M68kRegisters *r) |
844 |
{ |
845 |
uint16 proc[2] = {trap, M68K_RTS}; |
846 |
Execute68k((uint32)proc, r); |
847 |
} |
848 |
|
849 |
/* |
850 |
* Call MacOS PPC code |
851 |
*/ |
852 |
|
853 |
uint32 call_macos(uint32 tvect) |
854 |
{ |
855 |
return current_cpu->execute_macos_code(tvect, 0, NULL); |
856 |
} |
857 |
|
858 |
uint32 call_macos1(uint32 tvect, uint32 arg1) |
859 |
{ |
860 |
const uint32 args[] = { arg1 }; |
861 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
862 |
} |
863 |
|
864 |
uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2) |
865 |
{ |
866 |
const uint32 args[] = { arg1, arg2 }; |
867 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
868 |
} |
869 |
|
870 |
uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3) |
871 |
{ |
872 |
const uint32 args[] = { arg1, arg2, arg3 }; |
873 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
874 |
} |
875 |
|
876 |
uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4) |
877 |
{ |
878 |
const uint32 args[] = { arg1, arg2, arg3, arg4 }; |
879 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
880 |
} |
881 |
|
882 |
uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5) |
883 |
{ |
884 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 }; |
885 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
886 |
} |
887 |
|
888 |
uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6) |
889 |
{ |
890 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 }; |
891 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
892 |
} |
893 |
|
894 |
uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7) |
895 |
{ |
896 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 }; |
897 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
898 |
} |
899 |
|
900 |
/* |
901 |
* Atomic operations |
902 |
*/ |
903 |
|
904 |
int atomic_add(int *var, int v) |
905 |
{ |
906 |
int ret = *var; |
907 |
*var += v; |
908 |
return ret; |
909 |
} |
910 |
|
911 |
int atomic_and(int *var, int v) |
912 |
{ |
913 |
int ret = *var; |
914 |
*var &= v; |
915 |
return ret; |
916 |
} |
917 |
|
918 |
int atomic_or(int *var, int v) |
919 |
{ |
920 |
int ret = *var; |
921 |
*var |= v; |
922 |
return ret; |
923 |
} |
924 |
|
925 |
/* |
926 |
* Resource Manager thunks |
927 |
*/ |
928 |
|
929 |
void get_resource(void) |
930 |
{ |
931 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE)); |
932 |
} |
933 |
|
934 |
void get_1_resource(void) |
935 |
{ |
936 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE)); |
937 |
} |
938 |
|
939 |
void get_ind_resource(void) |
940 |
{ |
941 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE)); |
942 |
} |
943 |
|
944 |
void get_1_ind_resource(void) |
945 |
{ |
946 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE)); |
947 |
} |
948 |
|
949 |
void r_get_resource(void) |
950 |
{ |
951 |
current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE)); |
952 |
} |