ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.27
Committed: 2004-02-15T17:17:36Z (20 years, 9 months ago) by gbeauche
Branch: MAIN
Changes since 1.26: +0 -7 lines
Log Message:
AltiVec emulation! ;-)

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43
44 #if ENABLE_MON
45 #include "mon.h"
46 #include "mon_disass.h"
47 #endif
48
49 #define DEBUG 0
50 #include "debug.h"
51
52 // Emulation time statistics
53 #define EMUL_TIME_STATS 1
54
55 #if EMUL_TIME_STATS
56 static clock_t emul_start_time;
57 static uint32 interrupt_count = 0;
58 static clock_t interrupt_time = 0;
59 static uint32 exec68k_count = 0;
60 static clock_t exec68k_time = 0;
61 static uint32 native_exec_count = 0;
62 static clock_t native_exec_time = 0;
63 static uint32 macos_exec_count = 0;
64 static clock_t macos_exec_time = 0;
65 #endif
66
67 static void enter_mon(void)
68 {
69 // Start up mon in real-mode
70 #if ENABLE_MON
71 char *arg[4] = {"mon", "-m", "-r", NULL};
72 mon(3, arg);
73 #endif
74 }
75
76 // From main_*.cpp
77 extern uintptr SignalStackBase();
78
79 // From rsrc_patches.cpp
80 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
81
82 // PowerPC EmulOp to exit from emulation looop
83 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
84
85 // Enable multicore (main/interrupts) cpu emulation?
86 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87
88 // Enable Execute68k() safety checks?
89 #define SAFE_EXEC_68K 1
90
91 // Save FP state in Execute68k()?
92 #define SAVE_FP_EXEC_68K 1
93
94 // Interrupts in EMUL_OP mode?
95 #define INTERRUPTS_IN_EMUL_OP_MODE 1
96
97 // Interrupts in native mode?
98 #define INTERRUPTS_IN_NATIVE_MODE 1
99
100 // Pointer to Kernel Data
101 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
102
103 // SIGSEGV handler
104 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
105
106 // JIT Compiler enabled?
107 static inline bool enable_jit_p()
108 {
109 return PrefsFindBool("jit");
110 }
111
112
113 /**
114 * PowerPC emulator glue with special 'sheep' opcodes
115 **/
116
117 enum {
118 PPC_I(SHEEP) = PPC_I(MAX),
119 PPC_I(SHEEP_MAX)
120 };
121
122 class sheepshaver_cpu
123 : public powerpc_cpu
124 {
125 void init_decoder();
126 void execute_sheep(uint32 opcode);
127
128 public:
129
130 // Constructor
131 sheepshaver_cpu();
132
133 // CR & XER accessors
134 uint32 get_cr() const { return cr().get(); }
135 void set_cr(uint32 v) { cr().set(v); }
136 uint32 get_xer() const { return xer().get(); }
137 void set_xer(uint32 v) { xer().set(v); }
138
139 // Execute EMUL_OP routine
140 void execute_emul_op(uint32 emul_op);
141
142 // Execute 68k routine
143 void execute_68k(uint32 entry, M68kRegisters *r);
144
145 // Execute ppc routine
146 void execute_ppc(uint32 entry);
147
148 // Execute MacOS/PPC code
149 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
150
151 // Compile one instruction
152 virtual bool compile1(codegen_context_t & cg_context);
153
154 // Resource manager thunk
155 void get_resource(uint32 old_get_resource);
156
157 // Handle MacOS interrupt
158 void interrupt(uint32 entry);
159 void handle_interrupt();
160
161 // Lazy memory allocator (one item at a time)
162 void *operator new(size_t size)
163 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
164 void operator delete(void *p)
165 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
166 // FIXME: really make surre array allocation fail at link time?
167 void *operator new[](size_t);
168 void operator delete[](void *p);
169
170 // Make sure the SIGSEGV handler can access CPU registers
171 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
172 };
173
174 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
175
176 sheepshaver_cpu::sheepshaver_cpu()
177 : powerpc_cpu(enable_jit_p())
178 {
179 init_decoder();
180 }
181
182 void sheepshaver_cpu::init_decoder()
183 {
184 static const instr_info_t sheep_ii_table[] = {
185 { "sheep",
186 (execute_pmf)&sheepshaver_cpu::execute_sheep,
187 NULL,
188 PPC_I(SHEEP),
189 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
190 }
191 };
192
193 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
194 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
195
196 for (int i = 0; i < ii_count; i++) {
197 const instr_info_t * ii = &sheep_ii_table[i];
198 init_decoder_entry(ii);
199 }
200 }
201
202 // Forward declaration for native opcode handler
203 static void NativeOp(int selector);
204
205 /* NativeOp instruction format:
206 +------------+--------------------------+--+----------+------------+
207 | 6 | |FN| OP | 2 |
208 +------------+--------------------------+--+----------+------------+
209 0 5 |6 19 20 21 25 26 31
210 */
211
212 typedef bit_field< 20, 20 > FN_field;
213 typedef bit_field< 21, 25 > NATIVE_OP_field;
214 typedef bit_field< 26, 31 > EMUL_OP_field;
215
216 // Execute EMUL_OP routine
217 void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
218 {
219 M68kRegisters r68;
220 WriteMacInt32(XLM_68K_R25, gpr(25));
221 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
222 for (int i = 0; i < 8; i++)
223 r68.d[i] = gpr(8 + i);
224 for (int i = 0; i < 7; i++)
225 r68.a[i] = gpr(16 + i);
226 r68.a[7] = gpr(1);
227 uint32 saved_cr = get_cr() & CR_field<2>::mask();
228 uint32 saved_xer = get_xer();
229 EmulOp(&r68, gpr(24), emul_op);
230 set_cr(saved_cr);
231 set_xer(saved_xer);
232 for (int i = 0; i < 8; i++)
233 gpr(8 + i) = r68.d[i];
234 for (int i = 0; i < 7; i++)
235 gpr(16 + i) = r68.a[i];
236 gpr(1) = r68.a[7];
237 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
238 }
239
240 // Execute SheepShaver instruction
241 void sheepshaver_cpu::execute_sheep(uint32 opcode)
242 {
243 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
244 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
245
246 switch (opcode & 0x3f) {
247 case 0: // EMUL_RETURN
248 QuitEmulator();
249 break;
250
251 case 1: // EXEC_RETURN
252 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
253 break;
254
255 case 2: // EXEC_NATIVE
256 NativeOp(NATIVE_OP_field::extract(opcode));
257 if (FN_field::test(opcode))
258 pc() = lr();
259 else
260 pc() += 4;
261 break;
262
263 default: // EMUL_OP
264 execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
265 pc() += 4;
266 break;
267 }
268 }
269
270 // Compile one instruction
271 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
272 {
273 #if PPC_ENABLE_JIT
274 const instr_info_t *ii = cg_context.instr_info;
275 if (ii->mnemo != PPC_I(SHEEP))
276 return false;
277
278 bool compiled = false;
279 powerpc_dyngen & dg = cg_context.codegen;
280 uint32 opcode = cg_context.opcode;
281
282 switch (opcode & 0x3f) {
283 case 0: // EMUL_RETURN
284 dg.gen_invoke(QuitEmulator);
285 compiled = true;
286 break;
287
288 case 1: // EXEC_RETURN
289 dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
290 compiled = true;
291 break;
292
293 case 2: { // EXEC_NATIVE
294 uint32 selector = NATIVE_OP_field::extract(opcode);
295 switch (selector) {
296 case NATIVE_PATCH_NAME_REGISTRY:
297 dg.gen_invoke(DoPatchNameRegistry);
298 compiled = true;
299 break;
300 case NATIVE_VIDEO_INSTALL_ACCEL:
301 dg.gen_invoke(VideoInstallAccel);
302 compiled = true;
303 break;
304 case NATIVE_VIDEO_VBL:
305 dg.gen_invoke(VideoVBL);
306 compiled = true;
307 break;
308 case NATIVE_GET_RESOURCE:
309 case NATIVE_GET_1_RESOURCE:
310 case NATIVE_GET_IND_RESOURCE:
311 case NATIVE_GET_1_IND_RESOURCE:
312 case NATIVE_R_GET_RESOURCE: {
313 static const uint32 get_resource_ptr[] = {
314 XLM_GET_RESOURCE,
315 XLM_GET_1_RESOURCE,
316 XLM_GET_IND_RESOURCE,
317 XLM_GET_1_IND_RESOURCE,
318 XLM_R_GET_RESOURCE
319 };
320 uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
321 typedef void (*func_t)(dyngen_cpu_base, uint32);
322 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
323 dg.gen_invoke_CPU_im(func, old_get_resource);
324 compiled = true;
325 break;
326 }
327 case NATIVE_DISABLE_INTERRUPT:
328 dg.gen_invoke(DisableInterrupt);
329 compiled = true;
330 break;
331 case NATIVE_ENABLE_INTERRUPT:
332 dg.gen_invoke(EnableInterrupt);
333 compiled = true;
334 break;
335 case NATIVE_CHECK_LOAD_INVOC:
336 dg.gen_load_T0_GPR(3);
337 dg.gen_load_T1_GPR(4);
338 dg.gen_se_16_32_T1();
339 dg.gen_load_T2_GPR(5);
340 dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
341 compiled = true;
342 break;
343 }
344 if (FN_field::test(opcode)) {
345 if (compiled) {
346 dg.gen_load_A0_LR();
347 dg.gen_set_PC_A0();
348 }
349 cg_context.done_compile = true;
350 }
351 else
352 cg_context.done_compile = false;
353 break;
354 }
355
356 default: { // EMUL_OP
357 typedef void (*func_t)(dyngen_cpu_base, uint32);
358 func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
359 dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
360 cg_context.done_compile = false;
361 compiled = true;
362 break;
363 }
364 }
365 return compiled;
366 #endif
367 return false;
368 }
369
370 // Handle MacOS interrupt
371 void sheepshaver_cpu::interrupt(uint32 entry)
372 {
373 #if EMUL_TIME_STATS
374 interrupt_count++;
375 const clock_t interrupt_start = clock();
376 #endif
377
378 #if !MULTICORE_CPU
379 // Save program counters and branch registers
380 uint32 saved_pc = pc();
381 uint32 saved_lr = lr();
382 uint32 saved_ctr= ctr();
383 uint32 saved_sp = gpr(1);
384 #endif
385
386 // Initialize stack pointer to SheepShaver alternate stack base
387 gpr(1) = SignalStackBase() - 64;
388
389 // Build trampoline to return from interrupt
390 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
391
392 // Prepare registers for nanokernel interrupt routine
393 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
394 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
395
396 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
397 assert(gpr(6) != 0);
398 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
399 WriteMacInt32(gpr(6) + 0x144, gpr(8));
400 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
401 WriteMacInt32(gpr(6) + 0x154, gpr(10));
402 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
403 WriteMacInt32(gpr(6) + 0x164, gpr(12));
404 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
405
406 gpr(1) = KernelDataAddr;
407 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
408 gpr(8) = 0;
409 gpr(10) = trampoline.addr();
410 gpr(12) = trampoline.addr();
411 gpr(13) = get_cr();
412
413 // rlwimi. r7,r7,8,0,0
414 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
415 record_cr0(result);
416 gpr(7) = result;
417
418 gpr(11) = 0xf072; // MSR (SRR1)
419 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
420
421 // Enter nanokernel
422 execute(entry);
423
424 #if !MULTICORE_CPU
425 // Restore program counters and branch registers
426 pc() = saved_pc;
427 lr() = saved_lr;
428 ctr()= saved_ctr;
429 gpr(1) = saved_sp;
430 #endif
431
432 #if EMUL_TIME_STATS
433 interrupt_time += (clock() - interrupt_start);
434 #endif
435 }
436
437 // Execute 68k routine
438 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
439 {
440 #if EMUL_TIME_STATS
441 exec68k_count++;
442 const clock_t exec68k_start = clock();
443 #endif
444
445 #if SAFE_EXEC_68K
446 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
447 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
448 #endif
449
450 // Save program counters and branch registers
451 uint32 saved_pc = pc();
452 uint32 saved_lr = lr();
453 uint32 saved_ctr= ctr();
454 uint32 saved_cr = get_cr();
455
456 // Create MacOS stack frame
457 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
458 uint32 sp = gpr(1);
459 gpr(1) -= 56;
460 WriteMacInt32(gpr(1), sp);
461
462 // Save PowerPC registers
463 uint32 saved_GPRs[19];
464 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
465 #if SAVE_FP_EXEC_68K
466 double saved_FPRs[18];
467 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
468 #endif
469
470 // Setup registers for 68k emulator
471 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
472 for (int i = 0; i < 8; i++) // d[0]..d[7]
473 gpr(8 + i) = r->d[i];
474 for (int i = 0; i < 7; i++) // a[0]..a[6]
475 gpr(16 + i) = r->a[i];
476 gpr(23) = 0;
477 gpr(24) = entry;
478 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
479 gpr(26) = 0;
480 gpr(28) = 0; // VBR
481 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
482 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
483 gpr(31) = KernelDataAddr + 0x1000;
484
485 // Push return address (points to EXEC_RETURN opcode) on stack
486 gpr(1) -= 4;
487 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
488
489 // Rentering 68k emulator
490 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
491
492 // Set r0 to 0 for 68k emulator
493 gpr(0) = 0;
494
495 // Execute 68k opcode
496 uint32 opcode = ReadMacInt16(gpr(24));
497 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
498 gpr(29) += opcode * 8;
499 execute(gpr(29));
500
501 // Save r25 (contains current 68k interrupt level)
502 WriteMacInt32(XLM_68K_R25, gpr(25));
503
504 // Reentering EMUL_OP mode
505 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
506
507 // Save 68k registers
508 for (int i = 0; i < 8; i++) // d[0]..d[7]
509 r->d[i] = gpr(8 + i);
510 for (int i = 0; i < 7; i++) // a[0]..a[6]
511 r->a[i] = gpr(16 + i);
512
513 // Restore PowerPC registers
514 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
515 #if SAVE_FP_EXEC_68K
516 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
517 #endif
518
519 // Cleanup stack
520 gpr(1) += 56;
521
522 // Restore program counters and branch registers
523 pc() = saved_pc;
524 lr() = saved_lr;
525 ctr()= saved_ctr;
526 set_cr(saved_cr);
527
528 #if EMUL_TIME_STATS
529 exec68k_time += (clock() - exec68k_start);
530 #endif
531 }
532
533 // Call MacOS PPC code
534 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
535 {
536 #if EMUL_TIME_STATS
537 macos_exec_count++;
538 const clock_t macos_exec_start = clock();
539 #endif
540
541 // Save program counters and branch registers
542 uint32 saved_pc = pc();
543 uint32 saved_lr = lr();
544 uint32 saved_ctr= ctr();
545
546 // Build trampoline with EXEC_RETURN
547 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
548 lr() = trampoline.addr();
549
550 gpr(1) -= 64; // Create stack frame
551 uint32 proc = ReadMacInt32(tvect); // Get routine address
552 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
553
554 // Save PowerPC registers
555 uint32 regs[8];
556 regs[0] = gpr(2);
557 for (int i = 0; i < nargs; i++)
558 regs[i + 1] = gpr(i + 3);
559
560 // Prepare and call MacOS routine
561 gpr(2) = toc;
562 for (int i = 0; i < nargs; i++)
563 gpr(i + 3) = args[i];
564 execute(proc);
565 uint32 retval = gpr(3);
566
567 // Restore PowerPC registers
568 for (int i = 0; i <= nargs; i++)
569 gpr(i + 2) = regs[i];
570
571 // Cleanup stack
572 gpr(1) += 64;
573
574 // Restore program counters and branch registers
575 pc() = saved_pc;
576 lr() = saved_lr;
577 ctr()= saved_ctr;
578
579 #if EMUL_TIME_STATS
580 macos_exec_time += (clock() - macos_exec_start);
581 #endif
582
583 return retval;
584 }
585
586 // Execute ppc routine
587 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
588 {
589 // Save branch registers
590 uint32 saved_lr = lr();
591
592 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
593 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
594 lr() = trampoline.addr();
595
596 execute(entry);
597
598 // Restore branch registers
599 lr() = saved_lr;
600 }
601
602 // Resource Manager thunk
603 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
604 {
605 uint32 type = gpr(3);
606 int16 id = gpr(4);
607
608 // Create stack frame
609 gpr(1) -= 56;
610
611 // Call old routine
612 execute_ppc(old_get_resource);
613
614 // Call CheckLoad()
615 uint32 handle = gpr(3);
616 check_load_invoc(type, id, handle);
617 gpr(3) = handle;
618
619 // Cleanup stack
620 gpr(1) += 56;
621 }
622
623
624 /**
625 * SheepShaver CPU engine interface
626 **/
627
628 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
629 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
630 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
631
632 void FlushCodeCache(uintptr start, uintptr end)
633 {
634 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
635 main_cpu->invalidate_cache_range(start, end);
636 #if MULTICORE_CPU
637 interrupt_cpu->invalidate_cache_range(start, end);
638 #endif
639 }
640
641 static inline void cpu_push(sheepshaver_cpu *new_cpu)
642 {
643 #if MULTICORE_CPU
644 current_cpu = new_cpu;
645 #endif
646 }
647
648 static inline void cpu_pop()
649 {
650 #if MULTICORE_CPU
651 current_cpu = main_cpu;
652 #endif
653 }
654
655 // Dump PPC registers
656 static void dump_registers(void)
657 {
658 current_cpu->dump_registers();
659 }
660
661 // Dump log
662 static void dump_log(void)
663 {
664 current_cpu->dump_log();
665 }
666
667 /*
668 * Initialize CPU emulation
669 */
670
671 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
672 {
673 #if ENABLE_VOSF
674 // Handle screen fault
675 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
676 if (Screen_fault_handler(fault_address, fault_instruction))
677 return SIGSEGV_RETURN_SUCCESS;
678 #endif
679
680 const uintptr addr = (uintptr)fault_address;
681 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
682 // Ignore writes to ROM
683 if ((addr - ROM_BASE) < ROM_SIZE)
684 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
685
686 // Get program counter of target CPU
687 sheepshaver_cpu * const cpu = current_cpu;
688 const uint32 pc = cpu->pc();
689
690 // Fault in Mac ROM or RAM?
691 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
692 if (mac_fault) {
693
694 // "VM settings" during MacOS 8 installation
695 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
696 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
697
698 // MacOS 8.5 installation
699 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
700 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
701
702 // MacOS 8 serial drivers on startup
703 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
704 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
705
706 // MacOS 8.1 serial drivers on startup
707 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
708 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
709 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
710 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
711
712 // Ignore all other faults, if requested
713 if (PrefsFindBool("ignoresegv"))
714 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
715 }
716 #else
717 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
718 #endif
719
720 printf("SIGSEGV\n");
721 printf(" pc %p\n", fault_instruction);
722 printf(" ea %p\n", fault_address);
723 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
724 dump_registers();
725 current_cpu->dump_log();
726 enter_mon();
727 QuitEmulator();
728
729 return SIGSEGV_RETURN_FAILURE;
730 }
731
732 void init_emul_ppc(void)
733 {
734 // Initialize main CPU emulator
735 main_cpu = new sheepshaver_cpu();
736 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
737 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
738 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
739
740 #if MULTICORE_CPU
741 // Initialize alternate CPU emulator to handle interrupts
742 interrupt_cpu = new sheepshaver_cpu();
743 #endif
744
745 // Install the handler for SIGSEGV
746 sigsegv_install_handler(sigsegv_handler);
747
748 #if ENABLE_MON
749 // Install "regs" command in cxmon
750 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
751 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
752 #endif
753
754 #if EMUL_TIME_STATS
755 emul_start_time = clock();
756 #endif
757 }
758
759 /*
760 * Deinitialize emulation
761 */
762
763 void exit_emul_ppc(void)
764 {
765 #if EMUL_TIME_STATS
766 clock_t emul_end_time = clock();
767
768 printf("### Statistics for SheepShaver emulation parts\n");
769 const clock_t emul_time = emul_end_time - emul_start_time;
770 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
771 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
772 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
773
774 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
775 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
776 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
777 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
778 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
779 } while (0)
780
781 PRINT_STATS("Execute68k[Trap] execution", exec68k);
782 PRINT_STATS("NativeOp execution", native_exec);
783 PRINT_STATS("MacOS routine execution", macos_exec);
784
785 #undef PRINT_STATS
786 printf("\n");
787 #endif
788
789 delete main_cpu;
790 #if MULTICORE_CPU
791 delete interrupt_cpu;
792 #endif
793 }
794
795 /*
796 * Emulation loop
797 */
798
799 void emul_ppc(uint32 entry)
800 {
801 current_cpu = main_cpu;
802 #if 0
803 current_cpu->start_log();
804 #endif
805 // start emulation loop and enable code translation or caching
806 current_cpu->execute(entry);
807 }
808
809 /*
810 * Handle PowerPC interrupt
811 */
812
813 #if ASYNC_IRQ
814 void HandleInterrupt(void)
815 {
816 main_cpu->handle_interrupt();
817 }
818 #else
819 void TriggerInterrupt(void)
820 {
821 #if 0
822 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
823 #else
824 // Trigger interrupt to main cpu only
825 if (main_cpu)
826 main_cpu->trigger_interrupt();
827 #endif
828 }
829 #endif
830
831 void sheepshaver_cpu::handle_interrupt(void)
832 {
833 // Do nothing if interrupts are disabled
834 if (*(int32 *)XLM_IRQ_NEST > 0)
835 return;
836
837 // Do nothing if there is no interrupt pending
838 if (InterruptFlags == 0)
839 return;
840
841 // Disable MacOS stack sniffer
842 WriteMacInt32(0x110, 0);
843
844 // Interrupt action depends on current run mode
845 switch (ReadMacInt32(XLM_RUN_MODE)) {
846 case MODE_68K:
847 // 68k emulator active, trigger 68k interrupt level 1
848 assert(current_cpu == main_cpu);
849 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
850 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
851 break;
852
853 #if INTERRUPTS_IN_NATIVE_MODE
854 case MODE_NATIVE:
855 // 68k emulator inactive, in nanokernel?
856 assert(current_cpu == main_cpu);
857 if (gpr(1) != KernelDataAddr) {
858 // Prepare for 68k interrupt level 1
859 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
860 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
861 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
862 | tswap32(kernel_data->v[0x674 >> 2]));
863
864 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
865 DisableInterrupt();
866 cpu_push(interrupt_cpu);
867 if (ROMType == ROMTYPE_NEWWORLD)
868 current_cpu->interrupt(ROM_BASE + 0x312b1c);
869 else
870 current_cpu->interrupt(ROM_BASE + 0x312a3c);
871 cpu_pop();
872 }
873 break;
874 #endif
875
876 #if INTERRUPTS_IN_EMUL_OP_MODE
877 case MODE_EMUL_OP:
878 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
879 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
880 #if 1
881 // Execute full 68k interrupt routine
882 M68kRegisters r;
883 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
884 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
885 static const uint8 proc[] = {
886 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
887 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
888 0x40, 0xe7, // move sr,-(sp) (saved SR)
889 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
890 0x4e, 0xd0, // jmp (a0)
891 M68K_RTS >> 8, M68K_RTS & 0xff // @1
892 };
893 Execute68k((uint32)proc, &r);
894 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
895 #else
896 // Only update cursor
897 if (HasMacStarted()) {
898 if (InterruptFlags & INTFLAG_VIA) {
899 ClearInterruptFlag(INTFLAG_VIA);
900 ADBInterrupt();
901 ExecuteNative(NATIVE_VIDEO_VBL);
902 }
903 }
904 #endif
905 }
906 break;
907 #endif
908 }
909 }
910
911 static void get_resource(void);
912 static void get_1_resource(void);
913 static void get_ind_resource(void);
914 static void get_1_ind_resource(void);
915 static void r_get_resource(void);
916
917 #define GPR(REG) current_cpu->gpr(REG)
918
919 static void NativeOp(int selector)
920 {
921 #if EMUL_TIME_STATS
922 native_exec_count++;
923 const clock_t native_exec_start = clock();
924 #endif
925
926 switch (selector) {
927 case NATIVE_PATCH_NAME_REGISTRY:
928 DoPatchNameRegistry();
929 break;
930 case NATIVE_VIDEO_INSTALL_ACCEL:
931 VideoInstallAccel();
932 break;
933 case NATIVE_VIDEO_VBL:
934 VideoVBL();
935 break;
936 case NATIVE_VIDEO_DO_DRIVER_IO:
937 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
938 (void *)GPR(5), GPR(6), GPR(7));
939 break;
940 #ifdef WORDS_BIGENDIAN
941 case NATIVE_ETHER_IRQ:
942 EtherIRQ();
943 break;
944 case NATIVE_ETHER_INIT:
945 GPR(3) = InitStreamModule((void *)GPR(3));
946 break;
947 case NATIVE_ETHER_TERM:
948 TerminateStreamModule();
949 break;
950 case NATIVE_ETHER_OPEN:
951 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
952 break;
953 case NATIVE_ETHER_CLOSE:
954 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
955 break;
956 case NATIVE_ETHER_WPUT:
957 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
958 break;
959 case NATIVE_ETHER_RSRV:
960 GPR(3) = ether_rsrv((queue_t *)GPR(3));
961 break;
962 #else
963 case NATIVE_ETHER_INIT:
964 // FIXME: needs more complicated thunks
965 GPR(3) = false;
966 break;
967 #endif
968 case NATIVE_SERIAL_NOTHING:
969 case NATIVE_SERIAL_OPEN:
970 case NATIVE_SERIAL_PRIME_IN:
971 case NATIVE_SERIAL_PRIME_OUT:
972 case NATIVE_SERIAL_CONTROL:
973 case NATIVE_SERIAL_STATUS:
974 case NATIVE_SERIAL_CLOSE: {
975 typedef int16 (*SerialCallback)(uint32, uint32);
976 static const SerialCallback serial_callbacks[] = {
977 SerialNothing,
978 SerialOpen,
979 SerialPrimeIn,
980 SerialPrimeOut,
981 SerialControl,
982 SerialStatus,
983 SerialClose
984 };
985 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
986 break;
987 }
988 case NATIVE_GET_RESOURCE:
989 case NATIVE_GET_1_RESOURCE:
990 case NATIVE_GET_IND_RESOURCE:
991 case NATIVE_GET_1_IND_RESOURCE:
992 case NATIVE_R_GET_RESOURCE: {
993 typedef void (*GetResourceCallback)(void);
994 static const GetResourceCallback get_resource_callbacks[] = {
995 get_resource,
996 get_1_resource,
997 get_ind_resource,
998 get_1_ind_resource,
999 r_get_resource
1000 };
1001 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1002 break;
1003 }
1004 case NATIVE_DISABLE_INTERRUPT:
1005 DisableInterrupt();
1006 break;
1007 case NATIVE_ENABLE_INTERRUPT:
1008 EnableInterrupt();
1009 break;
1010 case NATIVE_MAKE_EXECUTABLE:
1011 MakeExecutable(0, (void *)GPR(4), GPR(5));
1012 break;
1013 case NATIVE_CHECK_LOAD_INVOC:
1014 check_load_invoc(GPR(3), GPR(4), GPR(5));
1015 break;
1016 default:
1017 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1018 QuitEmulator();
1019 break;
1020 }
1021
1022 #if EMUL_TIME_STATS
1023 native_exec_time += (clock() - native_exec_start);
1024 #endif
1025 }
1026
1027 /*
1028 * Execute 68k subroutine (must be ended with EXEC_RETURN)
1029 * This must only be called by the emul_thread when in EMUL_OP mode
1030 * r->a[7] is unused, the routine runs on the caller's stack
1031 */
1032
1033 void Execute68k(uint32 pc, M68kRegisters *r)
1034 {
1035 current_cpu->execute_68k(pc, r);
1036 }
1037
1038 /*
1039 * Execute 68k A-Trap from EMUL_OP routine
1040 * r->a[7] is unused, the routine runs on the caller's stack
1041 */
1042
1043 void Execute68kTrap(uint16 trap, M68kRegisters *r)
1044 {
1045 SheepVar proc_var(4);
1046 uint32 proc = proc_var.addr();
1047 WriteMacInt16(proc, trap);
1048 WriteMacInt16(proc + 2, M68K_RTS);
1049 Execute68k(proc, r);
1050 }
1051
1052 /*
1053 * Call MacOS PPC code
1054 */
1055
1056 uint32 call_macos(uint32 tvect)
1057 {
1058 return current_cpu->execute_macos_code(tvect, 0, NULL);
1059 }
1060
1061 uint32 call_macos1(uint32 tvect, uint32 arg1)
1062 {
1063 const uint32 args[] = { arg1 };
1064 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1065 }
1066
1067 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1068 {
1069 const uint32 args[] = { arg1, arg2 };
1070 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1071 }
1072
1073 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1074 {
1075 const uint32 args[] = { arg1, arg2, arg3 };
1076 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1077 }
1078
1079 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1080 {
1081 const uint32 args[] = { arg1, arg2, arg3, arg4 };
1082 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1083 }
1084
1085 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1086 {
1087 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1088 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1089 }
1090
1091 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1092 {
1093 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1094 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1095 }
1096
1097 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1098 {
1099 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1100 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1101 }
1102
1103 /*
1104 * Resource Manager thunks
1105 */
1106
1107 void get_resource(void)
1108 {
1109 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1110 }
1111
1112 void get_1_resource(void)
1113 {
1114 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1115 }
1116
1117 void get_ind_resource(void)
1118 {
1119 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1120 }
1121
1122 void get_1_ind_resource(void)
1123 {
1124 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1125 }
1126
1127 void r_get_resource(void)
1128 {
1129 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1130 }