ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.25
Committed: 2004-01-12T15:37:24Z (20 years, 10 months ago) by cebix
Branch: MAIN
Changes since 1.24: +1 -1 lines
Log Message:
Happy New Year! :)

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33 #include "cpu/ppc/ppc-instructions.hpp"
34 #include "thunks.h"
35
36 // Used for NativeOp trampolines
37 #include "video.h"
38 #include "name_registry.h"
39 #include "serial.h"
40 #include "ether.h"
41
42 #include <stdio.h>
43
44 #if ENABLE_MON
45 #include "mon.h"
46 #include "mon_disass.h"
47 #endif
48
49 #define DEBUG 0
50 #include "debug.h"
51
52 // Emulation time statistics
53 #define EMUL_TIME_STATS 1
54
55 #if EMUL_TIME_STATS
56 static clock_t emul_start_time;
57 static uint32 interrupt_count = 0;
58 static clock_t interrupt_time = 0;
59 static uint32 exec68k_count = 0;
60 static clock_t exec68k_time = 0;
61 static uint32 native_exec_count = 0;
62 static clock_t native_exec_time = 0;
63 static uint32 macos_exec_count = 0;
64 static clock_t macos_exec_time = 0;
65 #endif
66
67 static void enter_mon(void)
68 {
69 // Start up mon in real-mode
70 #if ENABLE_MON
71 char *arg[4] = {"mon", "-m", "-r", NULL};
72 mon(3, arg);
73 #endif
74 }
75
76 // From main_*.cpp
77 extern uintptr SignalStackBase();
78
79 // PowerPC EmulOp to exit from emulation looop
80 const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
81
82 // Enable multicore (main/interrupts) cpu emulation?
83 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
84
85 // Enable Execute68k() safety checks?
86 #define SAFE_EXEC_68K 1
87
88 // Save FP state in Execute68k()?
89 #define SAVE_FP_EXEC_68K 1
90
91 // Interrupts in EMUL_OP mode?
92 #define INTERRUPTS_IN_EMUL_OP_MODE 1
93
94 // Interrupts in native mode?
95 #define INTERRUPTS_IN_NATIVE_MODE 1
96
97 // Pointer to Kernel Data
98 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
99
100 // SIGSEGV handler
101 static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
102
103 // JIT Compiler enabled?
104 static inline bool enable_jit_p()
105 {
106 return PrefsFindBool("jit");
107 }
108
109
110 /**
111 * PowerPC emulator glue with special 'sheep' opcodes
112 **/
113
114 enum {
115 PPC_I(SHEEP) = PPC_I(MAX),
116 PPC_I(SHEEP_MAX)
117 };
118
119 class sheepshaver_cpu
120 : public powerpc_cpu
121 {
122 void init_decoder();
123 void execute_sheep(uint32 opcode);
124
125 public:
126
127 // Constructor
128 sheepshaver_cpu();
129
130 // CR & XER accessors
131 uint32 get_cr() const { return cr().get(); }
132 void set_cr(uint32 v) { cr().set(v); }
133 uint32 get_xer() const { return xer().get(); }
134 void set_xer(uint32 v) { xer().set(v); }
135
136 // Execute 68k routine
137 void execute_68k(uint32 entry, M68kRegisters *r);
138
139 // Execute ppc routine
140 void execute_ppc(uint32 entry);
141
142 // Execute MacOS/PPC code
143 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
144
145 // Resource manager thunk
146 void get_resource(uint32 old_get_resource);
147
148 // Handle MacOS interrupt
149 void interrupt(uint32 entry);
150 void handle_interrupt();
151
152 // Lazy memory allocator (one item at a time)
153 void *operator new(size_t size)
154 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
155 void operator delete(void *p)
156 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
157 // FIXME: really make surre array allocation fail at link time?
158 void *operator new[](size_t);
159 void operator delete[](void *p);
160
161 // Make sure the SIGSEGV handler can access CPU registers
162 friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
163 };
164
165 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
166
167 sheepshaver_cpu::sheepshaver_cpu()
168 : powerpc_cpu(enable_jit_p())
169 {
170 init_decoder();
171 }
172
173 void sheepshaver_cpu::init_decoder()
174 {
175 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
176 static bool initialized = false;
177 if (initialized)
178 return;
179 initialized = true;
180 #endif
181
182 static const instr_info_t sheep_ii_table[] = {
183 { "sheep",
184 (execute_pmf)&sheepshaver_cpu::execute_sheep,
185 NULL,
186 PPC_I(SHEEP),
187 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
188 }
189 };
190
191 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
192 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
193
194 for (int i = 0; i < ii_count; i++) {
195 const instr_info_t * ii = &sheep_ii_table[i];
196 init_decoder_entry(ii);
197 }
198 }
199
200 // Forward declaration for native opcode handler
201 static void NativeOp(int selector);
202
203 /* NativeOp instruction format:
204 +------------+--------------------------+--+----------+------------+
205 | 6 | |FN| OP | 2 |
206 +------------+--------------------------+--+----------+------------+
207 0 5 |6 19 20 21 25 26 31
208 */
209
210 typedef bit_field< 20, 20 > FN_field;
211 typedef bit_field< 21, 25 > NATIVE_OP_field;
212 typedef bit_field< 26, 31 > EMUL_OP_field;
213
214 // Execute SheepShaver instruction
215 void sheepshaver_cpu::execute_sheep(uint32 opcode)
216 {
217 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
218 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
219
220 switch (opcode & 0x3f) {
221 case 0: // EMUL_RETURN
222 QuitEmulator();
223 break;
224
225 case 1: // EXEC_RETURN
226 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
227 break;
228
229 case 2: // EXEC_NATIVE
230 NativeOp(NATIVE_OP_field::extract(opcode));
231 if (FN_field::test(opcode))
232 pc() = lr();
233 else
234 pc() += 4;
235 break;
236
237 default: { // EMUL_OP
238 M68kRegisters r68;
239 WriteMacInt32(XLM_68K_R25, gpr(25));
240 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
241 for (int i = 0; i < 8; i++)
242 r68.d[i] = gpr(8 + i);
243 for (int i = 0; i < 7; i++)
244 r68.a[i] = gpr(16 + i);
245 r68.a[7] = gpr(1);
246 uint32 saved_cr = get_cr() & CR_field<2>::mask();
247 uint32 saved_xer = get_xer();
248 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
249 set_cr(saved_cr);
250 set_xer(saved_xer);
251 for (int i = 0; i < 8; i++)
252 gpr(8 + i) = r68.d[i];
253 for (int i = 0; i < 7; i++)
254 gpr(16 + i) = r68.a[i];
255 gpr(1) = r68.a[7];
256 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
257 pc() += 4;
258 break;
259 }
260 }
261 }
262
263 // Handle MacOS interrupt
264 void sheepshaver_cpu::interrupt(uint32 entry)
265 {
266 #if EMUL_TIME_STATS
267 interrupt_count++;
268 const clock_t interrupt_start = clock();
269 #endif
270
271 #if !MULTICORE_CPU
272 // Save program counters and branch registers
273 uint32 saved_pc = pc();
274 uint32 saved_lr = lr();
275 uint32 saved_ctr= ctr();
276 uint32 saved_sp = gpr(1);
277 #endif
278
279 // Initialize stack pointer to SheepShaver alternate stack base
280 gpr(1) = SignalStackBase() - 64;
281
282 // Build trampoline to return from interrupt
283 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
284
285 // Prepare registers for nanokernel interrupt routine
286 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
287 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
288
289 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
290 assert(gpr(6) != 0);
291 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
292 WriteMacInt32(gpr(6) + 0x144, gpr(8));
293 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
294 WriteMacInt32(gpr(6) + 0x154, gpr(10));
295 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
296 WriteMacInt32(gpr(6) + 0x164, gpr(12));
297 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
298
299 gpr(1) = KernelDataAddr;
300 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
301 gpr(8) = 0;
302 gpr(10) = trampoline.addr();
303 gpr(12) = trampoline.addr();
304 gpr(13) = get_cr();
305
306 // rlwimi. r7,r7,8,0,0
307 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
308 record_cr0(result);
309 gpr(7) = result;
310
311 gpr(11) = 0xf072; // MSR (SRR1)
312 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
313
314 // Enter nanokernel
315 execute(entry);
316
317 #if !MULTICORE_CPU
318 // Restore program counters and branch registers
319 pc() = saved_pc;
320 lr() = saved_lr;
321 ctr()= saved_ctr;
322 gpr(1) = saved_sp;
323 #endif
324
325 #if EMUL_TIME_STATS
326 interrupt_time += (clock() - interrupt_start);
327 #endif
328 }
329
330 // Execute 68k routine
331 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
332 {
333 #if EMUL_TIME_STATS
334 exec68k_count++;
335 const clock_t exec68k_start = clock();
336 #endif
337
338 #if SAFE_EXEC_68K
339 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
340 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
341 #endif
342
343 // Save program counters and branch registers
344 uint32 saved_pc = pc();
345 uint32 saved_lr = lr();
346 uint32 saved_ctr= ctr();
347 uint32 saved_cr = get_cr();
348
349 // Create MacOS stack frame
350 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
351 uint32 sp = gpr(1);
352 gpr(1) -= 56;
353 WriteMacInt32(gpr(1), sp);
354
355 // Save PowerPC registers
356 uint32 saved_GPRs[19];
357 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
358 #if SAVE_FP_EXEC_68K
359 double saved_FPRs[18];
360 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
361 #endif
362
363 // Setup registers for 68k emulator
364 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
365 for (int i = 0; i < 8; i++) // d[0]..d[7]
366 gpr(8 + i) = r->d[i];
367 for (int i = 0; i < 7; i++) // a[0]..a[6]
368 gpr(16 + i) = r->a[i];
369 gpr(23) = 0;
370 gpr(24) = entry;
371 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
372 gpr(26) = 0;
373 gpr(28) = 0; // VBR
374 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
375 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
376 gpr(31) = KernelDataAddr + 0x1000;
377
378 // Push return address (points to EXEC_RETURN opcode) on stack
379 gpr(1) -= 4;
380 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
381
382 // Rentering 68k emulator
383 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
384
385 // Set r0 to 0 for 68k emulator
386 gpr(0) = 0;
387
388 // Execute 68k opcode
389 uint32 opcode = ReadMacInt16(gpr(24));
390 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
391 gpr(29) += opcode * 8;
392 execute(gpr(29));
393
394 // Save r25 (contains current 68k interrupt level)
395 WriteMacInt32(XLM_68K_R25, gpr(25));
396
397 // Reentering EMUL_OP mode
398 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
399
400 // Save 68k registers
401 for (int i = 0; i < 8; i++) // d[0]..d[7]
402 r->d[i] = gpr(8 + i);
403 for (int i = 0; i < 7; i++) // a[0]..a[6]
404 r->a[i] = gpr(16 + i);
405
406 // Restore PowerPC registers
407 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
408 #if SAVE_FP_EXEC_68K
409 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
410 #endif
411
412 // Cleanup stack
413 gpr(1) += 56;
414
415 // Restore program counters and branch registers
416 pc() = saved_pc;
417 lr() = saved_lr;
418 ctr()= saved_ctr;
419 set_cr(saved_cr);
420
421 #if EMUL_TIME_STATS
422 exec68k_time += (clock() - exec68k_start);
423 #endif
424 }
425
426 // Call MacOS PPC code
427 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
428 {
429 #if EMUL_TIME_STATS
430 macos_exec_count++;
431 const clock_t macos_exec_start = clock();
432 #endif
433
434 // Save program counters and branch registers
435 uint32 saved_pc = pc();
436 uint32 saved_lr = lr();
437 uint32 saved_ctr= ctr();
438
439 // Build trampoline with EXEC_RETURN
440 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
441 lr() = trampoline.addr();
442
443 gpr(1) -= 64; // Create stack frame
444 uint32 proc = ReadMacInt32(tvect); // Get routine address
445 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
446
447 // Save PowerPC registers
448 uint32 regs[8];
449 regs[0] = gpr(2);
450 for (int i = 0; i < nargs; i++)
451 regs[i + 1] = gpr(i + 3);
452
453 // Prepare and call MacOS routine
454 gpr(2) = toc;
455 for (int i = 0; i < nargs; i++)
456 gpr(i + 3) = args[i];
457 execute(proc);
458 uint32 retval = gpr(3);
459
460 // Restore PowerPC registers
461 for (int i = 0; i <= nargs; i++)
462 gpr(i + 2) = regs[i];
463
464 // Cleanup stack
465 gpr(1) += 64;
466
467 // Restore program counters and branch registers
468 pc() = saved_pc;
469 lr() = saved_lr;
470 ctr()= saved_ctr;
471
472 #if EMUL_TIME_STATS
473 macos_exec_time += (clock() - macos_exec_start);
474 #endif
475
476 return retval;
477 }
478
479 // Execute ppc routine
480 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
481 {
482 // Save branch registers
483 uint32 saved_lr = lr();
484
485 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
486 WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
487 lr() = trampoline.addr();
488
489 execute(entry);
490
491 // Restore branch registers
492 lr() = saved_lr;
493 }
494
495 // Resource Manager thunk
496 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
497
498 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
499 {
500 uint32 type = gpr(3);
501 int16 id = gpr(4);
502
503 // Create stack frame
504 gpr(1) -= 56;
505
506 // Call old routine
507 execute_ppc(old_get_resource);
508
509 // Call CheckLoad()
510 uint32 handle = gpr(3);
511 check_load_invoc(type, id, handle);
512 gpr(3) = handle;
513
514 // Cleanup stack
515 gpr(1) += 56;
516 }
517
518
519 /**
520 * SheepShaver CPU engine interface
521 **/
522
523 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
524 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
525 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
526
527 void FlushCodeCache(uintptr start, uintptr end)
528 {
529 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
530 main_cpu->invalidate_cache_range(start, end);
531 #if MULTICORE_CPU
532 interrupt_cpu->invalidate_cache_range(start, end);
533 #endif
534 }
535
536 static inline void cpu_push(sheepshaver_cpu *new_cpu)
537 {
538 #if MULTICORE_CPU
539 current_cpu = new_cpu;
540 #endif
541 }
542
543 static inline void cpu_pop()
544 {
545 #if MULTICORE_CPU
546 current_cpu = main_cpu;
547 #endif
548 }
549
550 // Dump PPC registers
551 static void dump_registers(void)
552 {
553 current_cpu->dump_registers();
554 }
555
556 // Dump log
557 static void dump_log(void)
558 {
559 current_cpu->dump_log();
560 }
561
562 /*
563 * Initialize CPU emulation
564 */
565
566 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
567 {
568 #if ENABLE_VOSF
569 // Handle screen fault
570 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
571 if (Screen_fault_handler(fault_address, fault_instruction))
572 return SIGSEGV_RETURN_SUCCESS;
573 #endif
574
575 const uintptr addr = (uintptr)fault_address;
576 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
577 // Ignore writes to ROM
578 if ((addr - ROM_BASE) < ROM_SIZE)
579 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
580
581 // Get program counter of target CPU
582 sheepshaver_cpu * const cpu = current_cpu;
583 const uint32 pc = cpu->pc();
584
585 // Fault in Mac ROM or RAM?
586 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
587 if (mac_fault) {
588
589 // "VM settings" during MacOS 8 installation
590 if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
591 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
592
593 // MacOS 8.5 installation
594 else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
595 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
596
597 // MacOS 8 serial drivers on startup
598 else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
599 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
600
601 // MacOS 8.1 serial drivers on startup
602 else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
603 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
604 else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
605 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
606
607 // Ignore all other faults, if requested
608 if (PrefsFindBool("ignoresegv"))
609 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
610 }
611 #else
612 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
613 #endif
614
615 printf("SIGSEGV\n");
616 printf(" pc %p\n", fault_instruction);
617 printf(" ea %p\n", fault_address);
618 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
619 dump_registers();
620 current_cpu->dump_log();
621 enter_mon();
622 QuitEmulator();
623
624 return SIGSEGV_RETURN_FAILURE;
625 }
626
627 void init_emul_ppc(void)
628 {
629 // Initialize main CPU emulator
630 main_cpu = new sheepshaver_cpu();
631 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
632 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
633 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
634
635 #if MULTICORE_CPU
636 // Initialize alternate CPU emulator to handle interrupts
637 interrupt_cpu = new sheepshaver_cpu();
638 #endif
639
640 // Install the handler for SIGSEGV
641 sigsegv_install_handler(sigsegv_handler);
642
643 #if ENABLE_MON
644 // Install "regs" command in cxmon
645 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
646 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
647 #endif
648
649 #if EMUL_TIME_STATS
650 emul_start_time = clock();
651 #endif
652 }
653
654 /*
655 * Deinitialize emulation
656 */
657
658 void exit_emul_ppc(void)
659 {
660 #if EMUL_TIME_STATS
661 clock_t emul_end_time = clock();
662
663 printf("### Statistics for SheepShaver emulation parts\n");
664 const clock_t emul_time = emul_end_time - emul_start_time;
665 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
666 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
667 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
668
669 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
670 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
671 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
672 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
673 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
674 } while (0)
675
676 PRINT_STATS("Execute68k[Trap] execution", exec68k);
677 PRINT_STATS("NativeOp execution", native_exec);
678 PRINT_STATS("MacOS routine execution", macos_exec);
679
680 #undef PRINT_STATS
681 printf("\n");
682 #endif
683
684 delete main_cpu;
685 #if MULTICORE_CPU
686 delete interrupt_cpu;
687 #endif
688 }
689
690 /*
691 * Emulation loop
692 */
693
694 void emul_ppc(uint32 entry)
695 {
696 current_cpu = main_cpu;
697 #if 0
698 current_cpu->start_log();
699 #endif
700 // start emulation loop and enable code translation or caching
701 current_cpu->execute(entry);
702 }
703
704 /*
705 * Handle PowerPC interrupt
706 */
707
708 #if ASYNC_IRQ
709 void HandleInterrupt(void)
710 {
711 main_cpu->handle_interrupt();
712 }
713 #else
714 void TriggerInterrupt(void)
715 {
716 #if 0
717 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
718 #else
719 // Trigger interrupt to main cpu only
720 if (main_cpu)
721 main_cpu->trigger_interrupt();
722 #endif
723 }
724 #endif
725
726 void sheepshaver_cpu::handle_interrupt(void)
727 {
728 // Do nothing if interrupts are disabled
729 if (*(int32 *)XLM_IRQ_NEST > 0)
730 return;
731
732 // Do nothing if there is no interrupt pending
733 if (InterruptFlags == 0)
734 return;
735
736 // Disable MacOS stack sniffer
737 WriteMacInt32(0x110, 0);
738
739 // Interrupt action depends on current run mode
740 switch (ReadMacInt32(XLM_RUN_MODE)) {
741 case MODE_68K:
742 // 68k emulator active, trigger 68k interrupt level 1
743 assert(current_cpu == main_cpu);
744 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
745 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
746 break;
747
748 #if INTERRUPTS_IN_NATIVE_MODE
749 case MODE_NATIVE:
750 // 68k emulator inactive, in nanokernel?
751 assert(current_cpu == main_cpu);
752 if (gpr(1) != KernelDataAddr) {
753 // Prepare for 68k interrupt level 1
754 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
755 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
756 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
757 | tswap32(kernel_data->v[0x674 >> 2]));
758
759 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
760 DisableInterrupt();
761 cpu_push(interrupt_cpu);
762 if (ROMType == ROMTYPE_NEWWORLD)
763 current_cpu->interrupt(ROM_BASE + 0x312b1c);
764 else
765 current_cpu->interrupt(ROM_BASE + 0x312a3c);
766 cpu_pop();
767 }
768 break;
769 #endif
770
771 #if INTERRUPTS_IN_EMUL_OP_MODE
772 case MODE_EMUL_OP:
773 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
774 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
775 #if 1
776 // Execute full 68k interrupt routine
777 M68kRegisters r;
778 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
779 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
780 static const uint8 proc[] = {
781 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
782 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
783 0x40, 0xe7, // move sr,-(sp) (saved SR)
784 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
785 0x4e, 0xd0, // jmp (a0)
786 M68K_RTS >> 8, M68K_RTS & 0xff // @1
787 };
788 Execute68k((uint32)proc, &r);
789 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
790 #else
791 // Only update cursor
792 if (HasMacStarted()) {
793 if (InterruptFlags & INTFLAG_VIA) {
794 ClearInterruptFlag(INTFLAG_VIA);
795 ADBInterrupt();
796 ExecuteNative(NATIVE_VIDEO_VBL);
797 }
798 }
799 #endif
800 }
801 break;
802 #endif
803 }
804 }
805
806 static void get_resource(void);
807 static void get_1_resource(void);
808 static void get_ind_resource(void);
809 static void get_1_ind_resource(void);
810 static void r_get_resource(void);
811
812 #define GPR(REG) current_cpu->gpr(REG)
813
814 static void NativeOp(int selector)
815 {
816 #if EMUL_TIME_STATS
817 native_exec_count++;
818 const clock_t native_exec_start = clock();
819 #endif
820
821 switch (selector) {
822 case NATIVE_PATCH_NAME_REGISTRY:
823 DoPatchNameRegistry();
824 break;
825 case NATIVE_VIDEO_INSTALL_ACCEL:
826 VideoInstallAccel();
827 break;
828 case NATIVE_VIDEO_VBL:
829 VideoVBL();
830 break;
831 case NATIVE_VIDEO_DO_DRIVER_IO:
832 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
833 (void *)GPR(5), GPR(6), GPR(7));
834 break;
835 #ifdef WORDS_BIGENDIAN
836 case NATIVE_ETHER_IRQ:
837 EtherIRQ();
838 break;
839 case NATIVE_ETHER_INIT:
840 GPR(3) = InitStreamModule((void *)GPR(3));
841 break;
842 case NATIVE_ETHER_TERM:
843 TerminateStreamModule();
844 break;
845 case NATIVE_ETHER_OPEN:
846 GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
847 break;
848 case NATIVE_ETHER_CLOSE:
849 GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
850 break;
851 case NATIVE_ETHER_WPUT:
852 GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
853 break;
854 case NATIVE_ETHER_RSRV:
855 GPR(3) = ether_rsrv((queue_t *)GPR(3));
856 break;
857 #else
858 case NATIVE_ETHER_INIT:
859 // FIXME: needs more complicated thunks
860 GPR(3) = false;
861 break;
862 #endif
863 case NATIVE_SERIAL_NOTHING:
864 case NATIVE_SERIAL_OPEN:
865 case NATIVE_SERIAL_PRIME_IN:
866 case NATIVE_SERIAL_PRIME_OUT:
867 case NATIVE_SERIAL_CONTROL:
868 case NATIVE_SERIAL_STATUS:
869 case NATIVE_SERIAL_CLOSE: {
870 typedef int16 (*SerialCallback)(uint32, uint32);
871 static const SerialCallback serial_callbacks[] = {
872 SerialNothing,
873 SerialOpen,
874 SerialPrimeIn,
875 SerialPrimeOut,
876 SerialControl,
877 SerialStatus,
878 SerialClose
879 };
880 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
881 break;
882 }
883 case NATIVE_GET_RESOURCE:
884 case NATIVE_GET_1_RESOURCE:
885 case NATIVE_GET_IND_RESOURCE:
886 case NATIVE_GET_1_IND_RESOURCE:
887 case NATIVE_R_GET_RESOURCE: {
888 typedef void (*GetResourceCallback)(void);
889 static const GetResourceCallback get_resource_callbacks[] = {
890 get_resource,
891 get_1_resource,
892 get_ind_resource,
893 get_1_ind_resource,
894 r_get_resource
895 };
896 get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
897 break;
898 }
899 case NATIVE_DISABLE_INTERRUPT:
900 DisableInterrupt();
901 break;
902 case NATIVE_ENABLE_INTERRUPT:
903 EnableInterrupt();
904 break;
905 case NATIVE_MAKE_EXECUTABLE:
906 MakeExecutable(0, (void *)GPR(4), GPR(5));
907 break;
908 default:
909 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
910 QuitEmulator();
911 break;
912 }
913
914 #if EMUL_TIME_STATS
915 native_exec_time += (clock() - native_exec_start);
916 #endif
917 }
918
919 /*
920 * Execute 68k subroutine (must be ended with EXEC_RETURN)
921 * This must only be called by the emul_thread when in EMUL_OP mode
922 * r->a[7] is unused, the routine runs on the caller's stack
923 */
924
925 void Execute68k(uint32 pc, M68kRegisters *r)
926 {
927 current_cpu->execute_68k(pc, r);
928 }
929
930 /*
931 * Execute 68k A-Trap from EMUL_OP routine
932 * r->a[7] is unused, the routine runs on the caller's stack
933 */
934
935 void Execute68kTrap(uint16 trap, M68kRegisters *r)
936 {
937 SheepVar proc_var(4);
938 uint32 proc = proc_var.addr();
939 WriteMacInt16(proc, trap);
940 WriteMacInt16(proc + 2, M68K_RTS);
941 Execute68k(proc, r);
942 }
943
944 /*
945 * Call MacOS PPC code
946 */
947
948 uint32 call_macos(uint32 tvect)
949 {
950 return current_cpu->execute_macos_code(tvect, 0, NULL);
951 }
952
953 uint32 call_macos1(uint32 tvect, uint32 arg1)
954 {
955 const uint32 args[] = { arg1 };
956 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
957 }
958
959 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
960 {
961 const uint32 args[] = { arg1, arg2 };
962 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
963 }
964
965 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
966 {
967 const uint32 args[] = { arg1, arg2, arg3 };
968 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
969 }
970
971 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
972 {
973 const uint32 args[] = { arg1, arg2, arg3, arg4 };
974 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
975 }
976
977 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
978 {
979 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
980 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
981 }
982
983 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
984 {
985 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
986 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
987 }
988
989 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
990 {
991 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
992 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
993 }
994
995 /*
996 * Resource Manager thunks
997 */
998
999 void get_resource(void)
1000 {
1001 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1002 }
1003
1004 void get_1_resource(void)
1005 {
1006 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1007 }
1008
1009 void get_ind_resource(void)
1010 {
1011 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1012 }
1013
1014 void get_1_ind_resource(void)
1015 {
1016 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1017 }
1018
1019 void r_get_resource(void)
1020 {
1021 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1022 }