1 |
/* |
2 |
* sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface |
3 |
* |
4 |
* SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#include "sysdeps.h" |
22 |
#include "cpu_emulation.h" |
23 |
#include "main.h" |
24 |
#include "prefs.h" |
25 |
#include "xlowmem.h" |
26 |
#include "emul_op.h" |
27 |
#include "rom_patches.h" |
28 |
#include "macos_util.h" |
29 |
#include "block-alloc.hpp" |
30 |
#include "sigsegv.h" |
31 |
#include "cpu/ppc/ppc-cpu.hpp" |
32 |
#include "cpu/ppc/ppc-operations.hpp" |
33 |
#include "cpu/ppc/ppc-instructions.hpp" |
34 |
#include "thunks.h" |
35 |
|
36 |
// Used for NativeOp trampolines |
37 |
#include "video.h" |
38 |
#include "name_registry.h" |
39 |
#include "serial.h" |
40 |
#include "ether.h" |
41 |
|
42 |
#include <stdio.h> |
43 |
|
44 |
#if ENABLE_MON |
45 |
#include "mon.h" |
46 |
#include "mon_disass.h" |
47 |
#endif |
48 |
|
49 |
#define DEBUG 0 |
50 |
#include "debug.h" |
51 |
|
52 |
// Emulation time statistics |
53 |
#define EMUL_TIME_STATS 1 |
54 |
|
55 |
#if EMUL_TIME_STATS |
56 |
static clock_t emul_start_time; |
57 |
static uint32 interrupt_count = 0; |
58 |
static clock_t interrupt_time = 0; |
59 |
static uint32 exec68k_count = 0; |
60 |
static clock_t exec68k_time = 0; |
61 |
static uint32 native_exec_count = 0; |
62 |
static clock_t native_exec_time = 0; |
63 |
static uint32 macos_exec_count = 0; |
64 |
static clock_t macos_exec_time = 0; |
65 |
#endif |
66 |
|
67 |
static void enter_mon(void) |
68 |
{ |
69 |
// Start up mon in real-mode |
70 |
#if ENABLE_MON |
71 |
char *arg[4] = {"mon", "-m", "-r", NULL}; |
72 |
mon(3, arg); |
73 |
#endif |
74 |
} |
75 |
|
76 |
// PowerPC EmulOp to exit from emulation looop |
77 |
const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1; |
78 |
|
79 |
// Enable multicore (main/interrupts) cpu emulation? |
80 |
#define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0) |
81 |
|
82 |
// Enable Execute68k() safety checks? |
83 |
#define SAFE_EXEC_68K 1 |
84 |
|
85 |
// Save FP state in Execute68k()? |
86 |
#define SAVE_FP_EXEC_68K 1 |
87 |
|
88 |
// Interrupts in EMUL_OP mode? |
89 |
#define INTERRUPTS_IN_EMUL_OP_MODE 1 |
90 |
|
91 |
// Interrupts in native mode? |
92 |
#define INTERRUPTS_IN_NATIVE_MODE 1 |
93 |
|
94 |
// Pointer to Kernel Data |
95 |
static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE; |
96 |
|
97 |
// SIGSEGV handler |
98 |
static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t); |
99 |
|
100 |
// JIT Compiler enabled? |
101 |
static inline bool enable_jit_p() |
102 |
{ |
103 |
return PrefsFindBool("jit"); |
104 |
} |
105 |
|
106 |
|
107 |
/** |
108 |
* PowerPC emulator glue with special 'sheep' opcodes |
109 |
**/ |
110 |
|
111 |
enum { |
112 |
PPC_I(SHEEP) = PPC_I(MAX), |
113 |
PPC_I(SHEEP_MAX) |
114 |
}; |
115 |
|
116 |
class sheepshaver_cpu |
117 |
: public powerpc_cpu |
118 |
{ |
119 |
void init_decoder(); |
120 |
void execute_sheep(uint32 opcode); |
121 |
|
122 |
public: |
123 |
|
124 |
// Constructor |
125 |
sheepshaver_cpu(); |
126 |
|
127 |
// Condition Register accessors |
128 |
uint32 get_cr() const { return cr().get(); } |
129 |
void set_cr(uint32 v) { cr().set(v); } |
130 |
|
131 |
// Execute 68k routine |
132 |
void execute_68k(uint32 entry, M68kRegisters *r); |
133 |
|
134 |
// Execute ppc routine |
135 |
void execute_ppc(uint32 entry); |
136 |
|
137 |
// Execute MacOS/PPC code |
138 |
uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args); |
139 |
|
140 |
// Resource manager thunk |
141 |
void get_resource(uint32 old_get_resource); |
142 |
|
143 |
// Handle MacOS interrupt |
144 |
void interrupt(uint32 entry); |
145 |
void handle_interrupt(); |
146 |
|
147 |
// Lazy memory allocator (one item at a time) |
148 |
void *operator new(size_t size) |
149 |
{ return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); } |
150 |
void operator delete(void *p) |
151 |
{ allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); } |
152 |
// FIXME: really make surre array allocation fail at link time? |
153 |
void *operator new[](size_t); |
154 |
void operator delete[](void *p); |
155 |
|
156 |
// Make sure the SIGSEGV handler can access CPU registers |
157 |
friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t); |
158 |
}; |
159 |
|
160 |
lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator; |
161 |
|
162 |
sheepshaver_cpu::sheepshaver_cpu() |
163 |
: powerpc_cpu(enable_jit_p()) |
164 |
{ |
165 |
init_decoder(); |
166 |
} |
167 |
|
168 |
void sheepshaver_cpu::init_decoder() |
169 |
{ |
170 |
#ifndef PPC_NO_STATIC_II_INDEX_TABLE |
171 |
static bool initialized = false; |
172 |
if (initialized) |
173 |
return; |
174 |
initialized = true; |
175 |
#endif |
176 |
|
177 |
static const instr_info_t sheep_ii_table[] = { |
178 |
{ "sheep", |
179 |
(execute_pmf)&sheepshaver_cpu::execute_sheep, |
180 |
NULL, |
181 |
PPC_I(SHEEP), |
182 |
D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP |
183 |
} |
184 |
}; |
185 |
|
186 |
const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]); |
187 |
D(bug("SheepShaver extra decode table has %d entries\n", ii_count)); |
188 |
|
189 |
for (int i = 0; i < ii_count; i++) { |
190 |
const instr_info_t * ii = &sheep_ii_table[i]; |
191 |
init_decoder_entry(ii); |
192 |
} |
193 |
} |
194 |
|
195 |
// Forward declaration for native opcode handler |
196 |
static void NativeOp(int selector); |
197 |
|
198 |
/* NativeOp instruction format: |
199 |
+------------+--------------------------+--+----------+------------+ |
200 |
| 6 | |FN| OP | 2 | |
201 |
+------------+--------------------------+--+----------+------------+ |
202 |
0 5 |6 19 20 21 25 26 31 |
203 |
*/ |
204 |
|
205 |
typedef bit_field< 20, 20 > FN_field; |
206 |
typedef bit_field< 21, 25 > NATIVE_OP_field; |
207 |
typedef bit_field< 26, 31 > EMUL_OP_field; |
208 |
|
209 |
// Execute SheepShaver instruction |
210 |
void sheepshaver_cpu::execute_sheep(uint32 opcode) |
211 |
{ |
212 |
// D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24))); |
213 |
assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3); |
214 |
|
215 |
switch (opcode & 0x3f) { |
216 |
case 0: // EMUL_RETURN |
217 |
QuitEmulator(); |
218 |
break; |
219 |
|
220 |
case 1: // EXEC_RETURN |
221 |
spcflags().set(SPCFLAG_CPU_EXEC_RETURN); |
222 |
break; |
223 |
|
224 |
case 2: // EXEC_NATIVE |
225 |
NativeOp(NATIVE_OP_field::extract(opcode)); |
226 |
if (FN_field::test(opcode)) |
227 |
pc() = lr(); |
228 |
else |
229 |
pc() += 4; |
230 |
break; |
231 |
|
232 |
default: { // EMUL_OP |
233 |
M68kRegisters r68; |
234 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
235 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
236 |
for (int i = 0; i < 8; i++) |
237 |
r68.d[i] = gpr(8 + i); |
238 |
for (int i = 0; i < 7; i++) |
239 |
r68.a[i] = gpr(16 + i); |
240 |
r68.a[7] = gpr(1); |
241 |
EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3); |
242 |
for (int i = 0; i < 8; i++) |
243 |
gpr(8 + i) = r68.d[i]; |
244 |
for (int i = 0; i < 7; i++) |
245 |
gpr(16 + i) = r68.a[i]; |
246 |
gpr(1) = r68.a[7]; |
247 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
248 |
pc() += 4; |
249 |
break; |
250 |
} |
251 |
} |
252 |
} |
253 |
|
254 |
// Handle MacOS interrupt |
255 |
void sheepshaver_cpu::interrupt(uint32 entry) |
256 |
{ |
257 |
#if EMUL_TIME_STATS |
258 |
interrupt_count++; |
259 |
const clock_t interrupt_start = clock(); |
260 |
#endif |
261 |
|
262 |
#if !MULTICORE_CPU |
263 |
// Save program counters and branch registers |
264 |
uint32 saved_pc = pc(); |
265 |
uint32 saved_lr = lr(); |
266 |
uint32 saved_ctr= ctr(); |
267 |
uint32 saved_sp = gpr(1); |
268 |
#endif |
269 |
|
270 |
// Initialize stack pointer to SheepShaver alternate stack base |
271 |
SheepArray<64> stack_area; |
272 |
gpr(1) = stack_area.addr(); |
273 |
|
274 |
// Build trampoline to return from interrupt |
275 |
SheepVar32 trampoline = POWERPC_EXEC_RETURN; |
276 |
|
277 |
// Prepare registers for nanokernel interrupt routine |
278 |
kernel_data->v[0x004 >> 2] = htonl(gpr(1)); |
279 |
kernel_data->v[0x018 >> 2] = htonl(gpr(6)); |
280 |
|
281 |
gpr(6) = ntohl(kernel_data->v[0x65c >> 2]); |
282 |
assert(gpr(6) != 0); |
283 |
WriteMacInt32(gpr(6) + 0x13c, gpr(7)); |
284 |
WriteMacInt32(gpr(6) + 0x144, gpr(8)); |
285 |
WriteMacInt32(gpr(6) + 0x14c, gpr(9)); |
286 |
WriteMacInt32(gpr(6) + 0x154, gpr(10)); |
287 |
WriteMacInt32(gpr(6) + 0x15c, gpr(11)); |
288 |
WriteMacInt32(gpr(6) + 0x164, gpr(12)); |
289 |
WriteMacInt32(gpr(6) + 0x16c, gpr(13)); |
290 |
|
291 |
gpr(1) = KernelDataAddr; |
292 |
gpr(7) = ntohl(kernel_data->v[0x660 >> 2]); |
293 |
gpr(8) = 0; |
294 |
gpr(10) = trampoline.addr(); |
295 |
gpr(12) = trampoline.addr(); |
296 |
gpr(13) = get_cr(); |
297 |
|
298 |
// rlwimi. r7,r7,8,0,0 |
299 |
uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7)); |
300 |
record_cr0(result); |
301 |
gpr(7) = result; |
302 |
|
303 |
gpr(11) = 0xf072; // MSR (SRR1) |
304 |
cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000)); |
305 |
|
306 |
// Enter nanokernel |
307 |
execute(entry); |
308 |
|
309 |
#if !MULTICORE_CPU |
310 |
// Restore program counters and branch registers |
311 |
pc() = saved_pc; |
312 |
lr() = saved_lr; |
313 |
ctr()= saved_ctr; |
314 |
gpr(1) = saved_sp; |
315 |
#endif |
316 |
|
317 |
#if EMUL_TIME_STATS |
318 |
interrupt_time += (clock() - interrupt_start); |
319 |
#endif |
320 |
} |
321 |
|
322 |
// Execute 68k routine |
323 |
void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r) |
324 |
{ |
325 |
#if EMUL_TIME_STATS |
326 |
exec68k_count++; |
327 |
const clock_t exec68k_start = clock(); |
328 |
#endif |
329 |
|
330 |
#if SAFE_EXEC_68K |
331 |
if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP) |
332 |
printf("FATAL: Execute68k() not called from EMUL_OP mode\n"); |
333 |
#endif |
334 |
|
335 |
// Save program counters and branch registers |
336 |
uint32 saved_pc = pc(); |
337 |
uint32 saved_lr = lr(); |
338 |
uint32 saved_ctr= ctr(); |
339 |
uint32 saved_cr = get_cr(); |
340 |
|
341 |
// Create MacOS stack frame |
342 |
// FIXME: make sure MacOS doesn't expect PPC registers to live on top |
343 |
uint32 sp = gpr(1); |
344 |
gpr(1) -= 56; |
345 |
WriteMacInt32(gpr(1), sp); |
346 |
|
347 |
// Save PowerPC registers |
348 |
uint32 saved_GPRs[19]; |
349 |
memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13)); |
350 |
#if SAVE_FP_EXEC_68K |
351 |
double saved_FPRs[18]; |
352 |
memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14)); |
353 |
#endif |
354 |
|
355 |
// Setup registers for 68k emulator |
356 |
cr().set(CR_SO_field<2>::mask()); // Supervisor mode |
357 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
358 |
gpr(8 + i) = r->d[i]; |
359 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
360 |
gpr(16 + i) = r->a[i]; |
361 |
gpr(23) = 0; |
362 |
gpr(24) = entry; |
363 |
gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR |
364 |
gpr(26) = 0; |
365 |
gpr(28) = 0; // VBR |
366 |
gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table |
367 |
gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator |
368 |
gpr(31) = KernelDataAddr + 0x1000; |
369 |
|
370 |
// Push return address (points to EXEC_RETURN opcode) on stack |
371 |
gpr(1) -= 4; |
372 |
WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE); |
373 |
|
374 |
// Rentering 68k emulator |
375 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
376 |
|
377 |
// Set r0 to 0 for 68k emulator |
378 |
gpr(0) = 0; |
379 |
|
380 |
// Execute 68k opcode |
381 |
uint32 opcode = ReadMacInt16(gpr(24)); |
382 |
gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2); |
383 |
gpr(29) += opcode * 8; |
384 |
execute(gpr(29)); |
385 |
|
386 |
// Save r25 (contains current 68k interrupt level) |
387 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
388 |
|
389 |
// Reentering EMUL_OP mode |
390 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
391 |
|
392 |
// Save 68k registers |
393 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
394 |
r->d[i] = gpr(8 + i); |
395 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
396 |
r->a[i] = gpr(16 + i); |
397 |
|
398 |
// Restore PowerPC registers |
399 |
memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13)); |
400 |
#if SAVE_FP_EXEC_68K |
401 |
memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14)); |
402 |
#endif |
403 |
|
404 |
// Cleanup stack |
405 |
gpr(1) += 56; |
406 |
|
407 |
// Restore program counters and branch registers |
408 |
pc() = saved_pc; |
409 |
lr() = saved_lr; |
410 |
ctr()= saved_ctr; |
411 |
set_cr(saved_cr); |
412 |
|
413 |
#if EMUL_TIME_STATS |
414 |
exec68k_time += (clock() - exec68k_start); |
415 |
#endif |
416 |
} |
417 |
|
418 |
// Call MacOS PPC code |
419 |
uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args) |
420 |
{ |
421 |
#if EMUL_TIME_STATS |
422 |
macos_exec_count++; |
423 |
const clock_t macos_exec_start = clock(); |
424 |
#endif |
425 |
|
426 |
// Save program counters and branch registers |
427 |
uint32 saved_pc = pc(); |
428 |
uint32 saved_lr = lr(); |
429 |
uint32 saved_ctr= ctr(); |
430 |
|
431 |
// Build trampoline with EXEC_RETURN |
432 |
SheepVar32 trampoline = POWERPC_EXEC_RETURN; |
433 |
lr() = trampoline.addr(); |
434 |
|
435 |
gpr(1) -= 64; // Create stack frame |
436 |
uint32 proc = ReadMacInt32(tvect); // Get routine address |
437 |
uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer |
438 |
|
439 |
// Save PowerPC registers |
440 |
uint32 regs[8]; |
441 |
regs[0] = gpr(2); |
442 |
for (int i = 0; i < nargs; i++) |
443 |
regs[i + 1] = gpr(i + 3); |
444 |
|
445 |
// Prepare and call MacOS routine |
446 |
gpr(2) = toc; |
447 |
for (int i = 0; i < nargs; i++) |
448 |
gpr(i + 3) = args[i]; |
449 |
execute(proc); |
450 |
uint32 retval = gpr(3); |
451 |
|
452 |
// Restore PowerPC registers |
453 |
for (int i = 0; i <= nargs; i++) |
454 |
gpr(i + 2) = regs[i]; |
455 |
|
456 |
// Cleanup stack |
457 |
gpr(1) += 64; |
458 |
|
459 |
// Restore program counters and branch registers |
460 |
pc() = saved_pc; |
461 |
lr() = saved_lr; |
462 |
ctr()= saved_ctr; |
463 |
|
464 |
#if EMUL_TIME_STATS |
465 |
macos_exec_time += (clock() - macos_exec_start); |
466 |
#endif |
467 |
|
468 |
return retval; |
469 |
} |
470 |
|
471 |
// Execute ppc routine |
472 |
inline void sheepshaver_cpu::execute_ppc(uint32 entry) |
473 |
{ |
474 |
// Save branch registers |
475 |
uint32 saved_lr = lr(); |
476 |
|
477 |
SheepVar32 trampoline = POWERPC_EXEC_RETURN; |
478 |
WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN); |
479 |
lr() = trampoline.addr(); |
480 |
|
481 |
execute(entry); |
482 |
|
483 |
// Restore branch registers |
484 |
lr() = saved_lr; |
485 |
} |
486 |
|
487 |
// Resource Manager thunk |
488 |
extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h); |
489 |
|
490 |
inline void sheepshaver_cpu::get_resource(uint32 old_get_resource) |
491 |
{ |
492 |
uint32 type = gpr(3); |
493 |
int16 id = gpr(4); |
494 |
|
495 |
// Create stack frame |
496 |
gpr(1) -= 56; |
497 |
|
498 |
// Call old routine |
499 |
execute_ppc(old_get_resource); |
500 |
|
501 |
// Call CheckLoad() |
502 |
uint32 handle = gpr(3); |
503 |
check_load_invoc(type, id, handle); |
504 |
gpr(3) = handle; |
505 |
|
506 |
// Cleanup stack |
507 |
gpr(1) += 56; |
508 |
} |
509 |
|
510 |
|
511 |
/** |
512 |
* SheepShaver CPU engine interface |
513 |
**/ |
514 |
|
515 |
static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow |
516 |
static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts |
517 |
static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context |
518 |
|
519 |
void FlushCodeCache(uintptr start, uintptr end) |
520 |
{ |
521 |
D(bug("FlushCodeCache(%08x, %08x)\n", start, end)); |
522 |
main_cpu->invalidate_cache_range(start, end); |
523 |
#if MULTICORE_CPU |
524 |
interrupt_cpu->invalidate_cache_range(start, end); |
525 |
#endif |
526 |
} |
527 |
|
528 |
static inline void cpu_push(sheepshaver_cpu *new_cpu) |
529 |
{ |
530 |
#if MULTICORE_CPU |
531 |
current_cpu = new_cpu; |
532 |
#endif |
533 |
} |
534 |
|
535 |
static inline void cpu_pop() |
536 |
{ |
537 |
#if MULTICORE_CPU |
538 |
current_cpu = main_cpu; |
539 |
#endif |
540 |
} |
541 |
|
542 |
// Dump PPC registers |
543 |
static void dump_registers(void) |
544 |
{ |
545 |
current_cpu->dump_registers(); |
546 |
} |
547 |
|
548 |
// Dump log |
549 |
static void dump_log(void) |
550 |
{ |
551 |
current_cpu->dump_log(); |
552 |
} |
553 |
|
554 |
/* |
555 |
* Initialize CPU emulation |
556 |
*/ |
557 |
|
558 |
static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
559 |
{ |
560 |
#if ENABLE_VOSF |
561 |
// Handle screen fault |
562 |
extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t); |
563 |
if (Screen_fault_handler(fault_address, fault_instruction)) |
564 |
return SIGSEGV_RETURN_SUCCESS; |
565 |
#endif |
566 |
|
567 |
const uintptr addr = (uintptr)fault_address; |
568 |
#if HAVE_SIGSEGV_SKIP_INSTRUCTION |
569 |
// Ignore writes to ROM |
570 |
if ((addr - ROM_BASE) < ROM_SIZE) |
571 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
572 |
|
573 |
// Get program counter of target CPU |
574 |
sheepshaver_cpu * const cpu = current_cpu; |
575 |
const uint32 pc = cpu->pc(); |
576 |
|
577 |
// Fault in Mac ROM or RAM? |
578 |
bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)); |
579 |
if (mac_fault) { |
580 |
|
581 |
// "VM settings" during MacOS 8 installation |
582 |
if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000) |
583 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
584 |
|
585 |
// MacOS 8.5 installation |
586 |
else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000) |
587 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
588 |
|
589 |
// MacOS 8 serial drivers on startup |
590 |
else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000)) |
591 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
592 |
|
593 |
// MacOS 8.1 serial drivers on startup |
594 |
else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000)) |
595 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
596 |
else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000)) |
597 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
598 |
|
599 |
// Ignore all other faults, if requested |
600 |
if (PrefsFindBool("ignoresegv")) |
601 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
602 |
} |
603 |
#else |
604 |
#error "FIXME: You don't have the capability to skip instruction within signal handlers" |
605 |
#endif |
606 |
|
607 |
printf("SIGSEGV\n"); |
608 |
printf(" pc %p\n", fault_instruction); |
609 |
printf(" ea %p\n", fault_address); |
610 |
printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts"); |
611 |
dump_registers(); |
612 |
current_cpu->dump_log(); |
613 |
enter_mon(); |
614 |
QuitEmulator(); |
615 |
|
616 |
return SIGSEGV_RETURN_FAILURE; |
617 |
} |
618 |
|
619 |
void init_emul_ppc(void) |
620 |
{ |
621 |
// Initialize main CPU emulator |
622 |
main_cpu = new sheepshaver_cpu(); |
623 |
main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000)); |
624 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
625 |
|
626 |
#if MULTICORE_CPU |
627 |
// Initialize alternate CPU emulator to handle interrupts |
628 |
interrupt_cpu = new sheepshaver_cpu(); |
629 |
#endif |
630 |
|
631 |
// Install the handler for SIGSEGV |
632 |
sigsegv_install_handler(sigsegv_handler); |
633 |
|
634 |
#if ENABLE_MON |
635 |
// Install "regs" command in cxmon |
636 |
mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n"); |
637 |
mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n"); |
638 |
#endif |
639 |
|
640 |
#if EMUL_TIME_STATS |
641 |
emul_start_time = clock(); |
642 |
#endif |
643 |
} |
644 |
|
645 |
/* |
646 |
* Deinitialize emulation |
647 |
*/ |
648 |
|
649 |
void exit_emul_ppc(void) |
650 |
{ |
651 |
#if EMUL_TIME_STATS |
652 |
clock_t emul_end_time = clock(); |
653 |
|
654 |
printf("### Statistics for SheepShaver emulation parts\n"); |
655 |
const clock_t emul_time = emul_end_time - emul_start_time; |
656 |
printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC)); |
657 |
printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count, |
658 |
(double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time)); |
659 |
|
660 |
#define PRINT_STATS(LABEL, VAR_PREFIX) do { \ |
661 |
printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \ |
662 |
printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \ |
663 |
double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \ |
664 |
100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \ |
665 |
} while (0) |
666 |
|
667 |
PRINT_STATS("Execute68k[Trap] execution", exec68k); |
668 |
PRINT_STATS("NativeOp execution", native_exec); |
669 |
PRINT_STATS("MacOS routine execution", macos_exec); |
670 |
|
671 |
#undef PRINT_STATS |
672 |
printf("\n"); |
673 |
#endif |
674 |
|
675 |
delete main_cpu; |
676 |
#if MULTICORE_CPU |
677 |
delete interrupt_cpu; |
678 |
#endif |
679 |
} |
680 |
|
681 |
/* |
682 |
* Emulation loop |
683 |
*/ |
684 |
|
685 |
void emul_ppc(uint32 entry) |
686 |
{ |
687 |
current_cpu = main_cpu; |
688 |
#if DEBUG |
689 |
current_cpu->start_log(); |
690 |
#endif |
691 |
// start emulation loop and enable code translation or caching |
692 |
current_cpu->execute(entry); |
693 |
} |
694 |
|
695 |
/* |
696 |
* Handle PowerPC interrupt |
697 |
*/ |
698 |
|
699 |
#if ASYNC_IRQ |
700 |
void HandleInterrupt(void) |
701 |
{ |
702 |
main_cpu->handle_interrupt(); |
703 |
} |
704 |
#else |
705 |
void TriggerInterrupt(void) |
706 |
{ |
707 |
#if 0 |
708 |
WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1); |
709 |
#else |
710 |
// Trigger interrupt to main cpu only |
711 |
if (main_cpu) |
712 |
main_cpu->trigger_interrupt(); |
713 |
#endif |
714 |
} |
715 |
#endif |
716 |
|
717 |
void sheepshaver_cpu::handle_interrupt(void) |
718 |
{ |
719 |
// Do nothing if interrupts are disabled |
720 |
if (*(int32 *)XLM_IRQ_NEST > 0) |
721 |
return; |
722 |
|
723 |
// Do nothing if there is no interrupt pending |
724 |
if (InterruptFlags == 0) |
725 |
return; |
726 |
|
727 |
// Disable MacOS stack sniffer |
728 |
WriteMacInt32(0x110, 0); |
729 |
|
730 |
// Interrupt action depends on current run mode |
731 |
switch (ReadMacInt32(XLM_RUN_MODE)) { |
732 |
case MODE_68K: |
733 |
// 68k emulator active, trigger 68k interrupt level 1 |
734 |
assert(current_cpu == main_cpu); |
735 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
736 |
set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2])); |
737 |
break; |
738 |
|
739 |
#if INTERRUPTS_IN_NATIVE_MODE |
740 |
case MODE_NATIVE: |
741 |
// 68k emulator inactive, in nanokernel? |
742 |
assert(current_cpu == main_cpu); |
743 |
if (gpr(1) != KernelDataAddr) { |
744 |
// Prepare for 68k interrupt level 1 |
745 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
746 |
WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc, |
747 |
ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc) |
748 |
| tswap32(kernel_data->v[0x674 >> 2])); |
749 |
|
750 |
// Execute nanokernel interrupt routine (this will activate the 68k emulator) |
751 |
DisableInterrupt(); |
752 |
cpu_push(interrupt_cpu); |
753 |
if (ROMType == ROMTYPE_NEWWORLD) |
754 |
current_cpu->interrupt(ROM_BASE + 0x312b1c); |
755 |
else |
756 |
current_cpu->interrupt(ROM_BASE + 0x312a3c); |
757 |
cpu_pop(); |
758 |
} |
759 |
break; |
760 |
#endif |
761 |
|
762 |
#if INTERRUPTS_IN_EMUL_OP_MODE |
763 |
case MODE_EMUL_OP: |
764 |
// 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0 |
765 |
if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) { |
766 |
#if 1 |
767 |
// Execute full 68k interrupt routine |
768 |
M68kRegisters r; |
769 |
uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level |
770 |
WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1 |
771 |
static const uint8 proc[] = { |
772 |
0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word) |
773 |
0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address) |
774 |
0x40, 0xe7, // move sr,-(sp) (saved SR) |
775 |
0x20, 0x78, 0x00, 0x064, // move.l $64,a0 |
776 |
0x4e, 0xd0, // jmp (a0) |
777 |
M68K_RTS >> 8, M68K_RTS & 0xff // @1 |
778 |
}; |
779 |
Execute68k((uint32)proc, &r); |
780 |
WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level |
781 |
#else |
782 |
// Only update cursor |
783 |
if (HasMacStarted()) { |
784 |
if (InterruptFlags & INTFLAG_VIA) { |
785 |
ClearInterruptFlag(INTFLAG_VIA); |
786 |
ADBInterrupt(); |
787 |
ExecutePPC(VideoVBL); |
788 |
} |
789 |
} |
790 |
#endif |
791 |
} |
792 |
break; |
793 |
#endif |
794 |
} |
795 |
} |
796 |
|
797 |
static void get_resource(void); |
798 |
static void get_1_resource(void); |
799 |
static void get_ind_resource(void); |
800 |
static void get_1_ind_resource(void); |
801 |
static void r_get_resource(void); |
802 |
|
803 |
#define GPR(REG) current_cpu->gpr(REG) |
804 |
|
805 |
static void NativeOp(int selector) |
806 |
{ |
807 |
#if EMUL_TIME_STATS |
808 |
native_exec_count++; |
809 |
const clock_t native_exec_start = clock(); |
810 |
#endif |
811 |
|
812 |
switch (selector) { |
813 |
case NATIVE_PATCH_NAME_REGISTRY: |
814 |
DoPatchNameRegistry(); |
815 |
break; |
816 |
case NATIVE_VIDEO_INSTALL_ACCEL: |
817 |
VideoInstallAccel(); |
818 |
break; |
819 |
case NATIVE_VIDEO_VBL: |
820 |
VideoVBL(); |
821 |
break; |
822 |
case NATIVE_VIDEO_DO_DRIVER_IO: |
823 |
GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4), |
824 |
(void *)GPR(5), GPR(6), GPR(7)); |
825 |
break; |
826 |
#ifdef WORDS_BIGENDIAN |
827 |
case NATIVE_ETHER_IRQ: |
828 |
EtherIRQ(); |
829 |
break; |
830 |
case NATIVE_ETHER_INIT: |
831 |
GPR(3) = InitStreamModule((void *)GPR(3)); |
832 |
break; |
833 |
case NATIVE_ETHER_TERM: |
834 |
TerminateStreamModule(); |
835 |
break; |
836 |
case NATIVE_ETHER_OPEN: |
837 |
GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7)); |
838 |
break; |
839 |
case NATIVE_ETHER_CLOSE: |
840 |
GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5)); |
841 |
break; |
842 |
case NATIVE_ETHER_WPUT: |
843 |
GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4)); |
844 |
break; |
845 |
case NATIVE_ETHER_RSRV: |
846 |
GPR(3) = ether_rsrv((queue_t *)GPR(3)); |
847 |
break; |
848 |
#else |
849 |
case NATIVE_ETHER_INIT: |
850 |
// FIXME: needs more complicated thunks |
851 |
GPR(3) = false; |
852 |
break; |
853 |
#endif |
854 |
case NATIVE_SERIAL_NOTHING: |
855 |
case NATIVE_SERIAL_OPEN: |
856 |
case NATIVE_SERIAL_PRIME_IN: |
857 |
case NATIVE_SERIAL_PRIME_OUT: |
858 |
case NATIVE_SERIAL_CONTROL: |
859 |
case NATIVE_SERIAL_STATUS: |
860 |
case NATIVE_SERIAL_CLOSE: { |
861 |
typedef int16 (*SerialCallback)(uint32, uint32); |
862 |
static const SerialCallback serial_callbacks[] = { |
863 |
SerialNothing, |
864 |
SerialOpen, |
865 |
SerialPrimeIn, |
866 |
SerialPrimeOut, |
867 |
SerialControl, |
868 |
SerialStatus, |
869 |
SerialClose |
870 |
}; |
871 |
GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4)); |
872 |
break; |
873 |
} |
874 |
case NATIVE_GET_RESOURCE: |
875 |
case NATIVE_GET_1_RESOURCE: |
876 |
case NATIVE_GET_IND_RESOURCE: |
877 |
case NATIVE_GET_1_IND_RESOURCE: |
878 |
case NATIVE_R_GET_RESOURCE: { |
879 |
typedef void (*GetResourceCallback)(void); |
880 |
static const GetResourceCallback get_resource_callbacks[] = { |
881 |
get_resource, |
882 |
get_1_resource, |
883 |
get_ind_resource, |
884 |
get_1_ind_resource, |
885 |
r_get_resource |
886 |
}; |
887 |
get_resource_callbacks[selector - NATIVE_GET_RESOURCE](); |
888 |
break; |
889 |
} |
890 |
case NATIVE_DISABLE_INTERRUPT: |
891 |
DisableInterrupt(); |
892 |
break; |
893 |
case NATIVE_ENABLE_INTERRUPT: |
894 |
EnableInterrupt(); |
895 |
break; |
896 |
case NATIVE_MAKE_EXECUTABLE: |
897 |
MakeExecutable(0, (void *)GPR(4), GPR(5)); |
898 |
break; |
899 |
default: |
900 |
printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector); |
901 |
QuitEmulator(); |
902 |
break; |
903 |
} |
904 |
|
905 |
#if EMUL_TIME_STATS |
906 |
native_exec_time += (clock() - native_exec_start); |
907 |
#endif |
908 |
} |
909 |
|
910 |
/* |
911 |
* Execute native subroutine (LR must contain return address) |
912 |
*/ |
913 |
|
914 |
void ExecuteNative(int selector) |
915 |
{ |
916 |
SheepRoutineDescriptor desc(0, NativeTVECT(selector)); |
917 |
M68kRegisters r; |
918 |
Execute68k(desc.addr(), &r); |
919 |
} |
920 |
|
921 |
/* |
922 |
* Execute 68k subroutine (must be ended with EXEC_RETURN) |
923 |
* This must only be called by the emul_thread when in EMUL_OP mode |
924 |
* r->a[7] is unused, the routine runs on the caller's stack |
925 |
*/ |
926 |
|
927 |
void Execute68k(uint32 pc, M68kRegisters *r) |
928 |
{ |
929 |
current_cpu->execute_68k(pc, r); |
930 |
} |
931 |
|
932 |
/* |
933 |
* Execute 68k A-Trap from EMUL_OP routine |
934 |
* r->a[7] is unused, the routine runs on the caller's stack |
935 |
*/ |
936 |
|
937 |
void Execute68kTrap(uint16 trap, M68kRegisters *r) |
938 |
{ |
939 |
SheepVar proc_var(4); |
940 |
uint32 proc = proc_var.addr(); |
941 |
WriteMacInt16(proc, trap); |
942 |
WriteMacInt16(proc + 2, M68K_RTS); |
943 |
Execute68k(proc, r); |
944 |
} |
945 |
|
946 |
/* |
947 |
* Call MacOS PPC code |
948 |
*/ |
949 |
|
950 |
uint32 call_macos(uint32 tvect) |
951 |
{ |
952 |
return current_cpu->execute_macos_code(tvect, 0, NULL); |
953 |
} |
954 |
|
955 |
uint32 call_macos1(uint32 tvect, uint32 arg1) |
956 |
{ |
957 |
const uint32 args[] = { arg1 }; |
958 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
959 |
} |
960 |
|
961 |
uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2) |
962 |
{ |
963 |
const uint32 args[] = { arg1, arg2 }; |
964 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
965 |
} |
966 |
|
967 |
uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3) |
968 |
{ |
969 |
const uint32 args[] = { arg1, arg2, arg3 }; |
970 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
971 |
} |
972 |
|
973 |
uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4) |
974 |
{ |
975 |
const uint32 args[] = { arg1, arg2, arg3, arg4 }; |
976 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
977 |
} |
978 |
|
979 |
uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5) |
980 |
{ |
981 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 }; |
982 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
983 |
} |
984 |
|
985 |
uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6) |
986 |
{ |
987 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 }; |
988 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
989 |
} |
990 |
|
991 |
uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7) |
992 |
{ |
993 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 }; |
994 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
995 |
} |
996 |
|
997 |
/* |
998 |
* Resource Manager thunks |
999 |
*/ |
1000 |
|
1001 |
void get_resource(void) |
1002 |
{ |
1003 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE)); |
1004 |
} |
1005 |
|
1006 |
void get_1_resource(void) |
1007 |
{ |
1008 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE)); |
1009 |
} |
1010 |
|
1011 |
void get_ind_resource(void) |
1012 |
{ |
1013 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE)); |
1014 |
} |
1015 |
|
1016 |
void get_1_ind_resource(void) |
1017 |
{ |
1018 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE)); |
1019 |
} |
1020 |
|
1021 |
void r_get_resource(void) |
1022 |
{ |
1023 |
current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE)); |
1024 |
} |