ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.15
Committed: 2003-11-04T20:48:29Z (21 years ago) by gbeauche
Branch: MAIN
Changes since 1.14: +79 -0 lines
Log Message:
Add some statistics for interrupt handling, Execute68k/Trap, MacOS & NativeOp

File Contents

# Content
1 /*
2 * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3 *
4 * SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "sysdeps.h"
22 #include "cpu_emulation.h"
23 #include "main.h"
24 #include "prefs.h"
25 #include "xlowmem.h"
26 #include "emul_op.h"
27 #include "rom_patches.h"
28 #include "macos_util.h"
29 #include "block-alloc.hpp"
30 #include "sigsegv.h"
31 #include "cpu/ppc/ppc-cpu.hpp"
32 #include "cpu/ppc/ppc-operations.hpp"
33
34 // Used for NativeOp trampolines
35 #include "video.h"
36 #include "name_registry.h"
37 #include "serial.h"
38
39 #include <stdio.h>
40
41 #if ENABLE_MON
42 #include "mon.h"
43 #include "mon_disass.h"
44 #endif
45
46 #define DEBUG 0
47 #include "debug.h"
48
49 // Emulation time statistics
50 #define EMUL_TIME_STATS 1
51
52 #if EMUL_TIME_STATS
53 static clock_t emul_start_time;
54 static uint32 interrupt_count = 0;
55 static clock_t interrupt_time = 0;
56 static uint32 exec68k_count = 0;
57 static clock_t exec68k_time = 0;
58 static uint32 native_exec_count = 0;
59 static clock_t native_exec_time = 0;
60 static uint32 macos_exec_count = 0;
61 static clock_t macos_exec_time = 0;
62 #endif
63
64 static void enter_mon(void)
65 {
66 // Start up mon in real-mode
67 #if ENABLE_MON
68 char *arg[4] = {"mon", "-m", "-r", NULL};
69 mon(3, arg);
70 #endif
71 }
72
73 // Enable multicore (main/interrupts) cpu emulation?
74 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
75
76 // Enable Execute68k() safety checks?
77 #define SAFE_EXEC_68K 1
78
79 // Save FP state in Execute68k()?
80 #define SAVE_FP_EXEC_68K 1
81
82 // Interrupts in EMUL_OP mode?
83 #define INTERRUPTS_IN_EMUL_OP_MODE 1
84
85 // Interrupts in native mode?
86 #define INTERRUPTS_IN_NATIVE_MODE 1
87
88 // Pointer to Kernel Data
89 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
90
91
92 /**
93 * PowerPC emulator glue with special 'sheep' opcodes
94 **/
95
96 class sheepshaver_cpu
97 : public powerpc_cpu
98 {
99 void init_decoder();
100 void execute_sheep(uint32 opcode);
101
102 public:
103
104 // Constructor
105 sheepshaver_cpu();
106
107 // Condition Register accessors
108 uint32 get_cr() const { return cr().get(); }
109 void set_cr(uint32 v) { cr().set(v); }
110
111 // Execution loop
112 void execute(uint32 entry, bool enable_cache = false);
113
114 // Execute 68k routine
115 void execute_68k(uint32 entry, M68kRegisters *r);
116
117 // Execute ppc routine
118 void execute_ppc(uint32 entry);
119
120 // Execute MacOS/PPC code
121 uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
122
123 // Resource manager thunk
124 void get_resource(uint32 old_get_resource);
125
126 // Handle MacOS interrupt
127 void interrupt(uint32 entry);
128 void handle_interrupt();
129
130 // Lazy memory allocator (one item at a time)
131 void *operator new(size_t size)
132 { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
133 void operator delete(void *p)
134 { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
135 // FIXME: really make surre array allocation fail at link time?
136 void *operator new[](size_t);
137 void operator delete[](void *p);
138 };
139
140 lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
141
142 sheepshaver_cpu::sheepshaver_cpu()
143 : powerpc_cpu()
144 {
145 init_decoder();
146 }
147
148 void sheepshaver_cpu::init_decoder()
149 {
150 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
151 static bool initialized = false;
152 if (initialized)
153 return;
154 initialized = true;
155 #endif
156
157 static const instr_info_t sheep_ii_table[] = {
158 { "sheep",
159 (execute_pmf)&sheepshaver_cpu::execute_sheep,
160 NULL,
161 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
162 }
163 };
164
165 const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
166 D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
167
168 for (int i = 0; i < ii_count; i++) {
169 const instr_info_t * ii = &sheep_ii_table[i];
170 init_decoder_entry(ii);
171 }
172 }
173
174 // Forward declaration for native opcode handler
175 static void NativeOp(int selector);
176
177 /* NativeOp instruction format:
178 +------------+--------------------------+--+----------+------------+
179 | 6 | |FN| OP | 2 |
180 +------------+--------------------------+--+----------+------------+
181 0 5 |6 19 20 21 25 26 31
182 */
183
184 typedef bit_field< 20, 20 > FN_field;
185 typedef bit_field< 21, 25 > NATIVE_OP_field;
186 typedef bit_field< 26, 31 > EMUL_OP_field;
187
188 // Execute SheepShaver instruction
189 void sheepshaver_cpu::execute_sheep(uint32 opcode)
190 {
191 // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
192 assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
193
194 switch (opcode & 0x3f) {
195 case 0: // EMUL_RETURN
196 QuitEmulator();
197 break;
198
199 case 1: // EXEC_RETURN
200 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
201 break;
202
203 case 2: // EXEC_NATIVE
204 NativeOp(NATIVE_OP_field::extract(opcode));
205 if (FN_field::test(opcode))
206 pc() = lr();
207 else
208 pc() += 4;
209 break;
210
211 default: { // EMUL_OP
212 M68kRegisters r68;
213 WriteMacInt32(XLM_68K_R25, gpr(25));
214 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
215 for (int i = 0; i < 8; i++)
216 r68.d[i] = gpr(8 + i);
217 for (int i = 0; i < 7; i++)
218 r68.a[i] = gpr(16 + i);
219 r68.a[7] = gpr(1);
220 EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
221 for (int i = 0; i < 8; i++)
222 gpr(8 + i) = r68.d[i];
223 for (int i = 0; i < 7; i++)
224 gpr(16 + i) = r68.a[i];
225 gpr(1) = r68.a[7];
226 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
227 pc() += 4;
228 break;
229 }
230 }
231 }
232
233 // Execution loop
234 void sheepshaver_cpu::execute(uint32 entry, bool enable_cache)
235 {
236 powerpc_cpu::execute(entry, enable_cache);
237 }
238
239 // Handle MacOS interrupt
240 void sheepshaver_cpu::interrupt(uint32 entry)
241 {
242 #if EMUL_TIME_STATS
243 interrupt_count++;
244 const clock_t interrupt_start = clock();
245 #endif
246
247 #if !MULTICORE_CPU
248 // Save program counters and branch registers
249 uint32 saved_pc = pc();
250 uint32 saved_lr = lr();
251 uint32 saved_ctr= ctr();
252 uint32 saved_sp = gpr(1);
253 #endif
254
255 // Initialize stack pointer to SheepShaver alternate stack base
256 gpr(1) = SheepStack1Base - 64;
257
258 // Build trampoline to return from interrupt
259 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
260
261 // Prepare registers for nanokernel interrupt routine
262 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
263 kernel_data->v[0x018 >> 2] = htonl(gpr(6));
264
265 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
266 assert(gpr(6) != 0);
267 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
268 WriteMacInt32(gpr(6) + 0x144, gpr(8));
269 WriteMacInt32(gpr(6) + 0x14c, gpr(9));
270 WriteMacInt32(gpr(6) + 0x154, gpr(10));
271 WriteMacInt32(gpr(6) + 0x15c, gpr(11));
272 WriteMacInt32(gpr(6) + 0x164, gpr(12));
273 WriteMacInt32(gpr(6) + 0x16c, gpr(13));
274
275 gpr(1) = KernelDataAddr;
276 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
277 gpr(8) = 0;
278 gpr(10) = (uint32)trampoline;
279 gpr(12) = (uint32)trampoline;
280 gpr(13) = get_cr();
281
282 // rlwimi. r7,r7,8,0,0
283 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
284 record_cr0(result);
285 gpr(7) = result;
286
287 gpr(11) = 0xf072; // MSR (SRR1)
288 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
289
290 // Enter nanokernel
291 execute(entry);
292
293 #if !MULTICORE_CPU
294 // Restore program counters and branch registers
295 pc() = saved_pc;
296 lr() = saved_lr;
297 ctr()= saved_ctr;
298 gpr(1) = saved_sp;
299 #endif
300
301 #if EMUL_TIME_STATS
302 interrupt_time += (clock() - interrupt_start);
303 #endif
304 }
305
306 // Execute 68k routine
307 void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
308 {
309 #if EMUL_TIME_STATS
310 exec68k_count++;
311 const clock_t exec68k_start = clock();
312 #endif
313
314 #if SAFE_EXEC_68K
315 if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
316 printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
317 #endif
318
319 // Save program counters and branch registers
320 uint32 saved_pc = pc();
321 uint32 saved_lr = lr();
322 uint32 saved_ctr= ctr();
323 uint32 saved_cr = get_cr();
324
325 // Create MacOS stack frame
326 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
327 uint32 sp = gpr(1);
328 gpr(1) -= 56;
329 WriteMacInt32(gpr(1), sp);
330
331 // Save PowerPC registers
332 uint32 saved_GPRs[19];
333 memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
334 #if SAVE_FP_EXEC_68K
335 double saved_FPRs[18];
336 memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
337 #endif
338
339 // Setup registers for 68k emulator
340 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
341 for (int i = 0; i < 8; i++) // d[0]..d[7]
342 gpr(8 + i) = r->d[i];
343 for (int i = 0; i < 7; i++) // a[0]..a[6]
344 gpr(16 + i) = r->a[i];
345 gpr(23) = 0;
346 gpr(24) = entry;
347 gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
348 gpr(26) = 0;
349 gpr(28) = 0; // VBR
350 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
351 gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
352 gpr(31) = KernelDataAddr + 0x1000;
353
354 // Push return address (points to EXEC_RETURN opcode) on stack
355 gpr(1) -= 4;
356 WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
357
358 // Rentering 68k emulator
359 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
360
361 // Set r0 to 0 for 68k emulator
362 gpr(0) = 0;
363
364 // Execute 68k opcode
365 uint32 opcode = ReadMacInt16(gpr(24));
366 gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
367 gpr(29) += opcode * 8;
368 execute(gpr(29));
369
370 // Save r25 (contains current 68k interrupt level)
371 WriteMacInt32(XLM_68K_R25, gpr(25));
372
373 // Reentering EMUL_OP mode
374 WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
375
376 // Save 68k registers
377 for (int i = 0; i < 8; i++) // d[0]..d[7]
378 r->d[i] = gpr(8 + i);
379 for (int i = 0; i < 7; i++) // a[0]..a[6]
380 r->a[i] = gpr(16 + i);
381
382 // Restore PowerPC registers
383 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
384 #if SAVE_FP_EXEC_68K
385 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
386 #endif
387
388 // Cleanup stack
389 gpr(1) += 56;
390
391 // Restore program counters and branch registers
392 pc() = saved_pc;
393 lr() = saved_lr;
394 ctr()= saved_ctr;
395 set_cr(saved_cr);
396
397 #if EMUL_TIME_STATS
398 exec68k_time += (clock() - exec68k_start);
399 #endif
400 }
401
402 // Call MacOS PPC code
403 uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
404 {
405 #if EMUL_TIME_STATS
406 macos_exec_count++;
407 const clock_t macos_exec_start = clock();
408 #endif
409
410 // Save program counters and branch registers
411 uint32 saved_pc = pc();
412 uint32 saved_lr = lr();
413 uint32 saved_ctr= ctr();
414
415 // Build trampoline with EXEC_RETURN
416 uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
417 lr() = (uint32)trampoline;
418
419 gpr(1) -= 64; // Create stack frame
420 uint32 proc = ReadMacInt32(tvect); // Get routine address
421 uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
422
423 // Save PowerPC registers
424 uint32 regs[8];
425 regs[0] = gpr(2);
426 for (int i = 0; i < nargs; i++)
427 regs[i + 1] = gpr(i + 3);
428
429 // Prepare and call MacOS routine
430 gpr(2) = toc;
431 for (int i = 0; i < nargs; i++)
432 gpr(i + 3) = args[i];
433 execute(proc);
434 uint32 retval = gpr(3);
435
436 // Restore PowerPC registers
437 for (int i = 0; i <= nargs; i++)
438 gpr(i + 2) = regs[i];
439
440 // Cleanup stack
441 gpr(1) += 64;
442
443 // Restore program counters and branch registers
444 pc() = saved_pc;
445 lr() = saved_lr;
446 ctr()= saved_ctr;
447
448 #if EMUL_TIME_STATS
449 macos_exec_time += (clock() - macos_exec_start);
450 #endif
451
452 return retval;
453 }
454
455 // Execute ppc routine
456 inline void sheepshaver_cpu::execute_ppc(uint32 entry)
457 {
458 // Save branch registers
459 uint32 saved_lr = lr();
460
461 const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
462 lr() = (uint32)trampoline;
463
464 execute(entry);
465
466 // Restore branch registers
467 lr() = saved_lr;
468 }
469
470 // Resource Manager thunk
471 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
472
473 inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
474 {
475 uint32 type = gpr(3);
476 int16 id = gpr(4);
477
478 // Create stack frame
479 gpr(1) -= 56;
480
481 // Call old routine
482 execute_ppc(old_get_resource);
483
484 // Call CheckLoad()
485 uint32 handle = gpr(3);
486 check_load_invoc(type, id, handle);
487 gpr(3) = handle;
488
489 // Cleanup stack
490 gpr(1) += 56;
491 }
492
493
494 /**
495 * SheepShaver CPU engine interface
496 **/
497
498 static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
499 static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
500 static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
501
502 void FlushCodeCache(uintptr start, uintptr end)
503 {
504 D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
505 main_cpu->invalidate_cache_range(start, end);
506 #if MULTICORE_CPU
507 interrupt_cpu->invalidate_cache_range(start, end);
508 #endif
509 }
510
511 static inline void cpu_push(sheepshaver_cpu *new_cpu)
512 {
513 #if MULTICORE_CPU
514 current_cpu = new_cpu;
515 #endif
516 }
517
518 static inline void cpu_pop()
519 {
520 #if MULTICORE_CPU
521 current_cpu = main_cpu;
522 #endif
523 }
524
525 // Dump PPC registers
526 static void dump_registers(void)
527 {
528 current_cpu->dump_registers();
529 }
530
531 // Dump log
532 static void dump_log(void)
533 {
534 current_cpu->dump_log();
535 }
536
537 /*
538 * Initialize CPU emulation
539 */
540
541 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
542 {
543 #if ENABLE_VOSF
544 // Handle screen fault
545 extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
546 if (Screen_fault_handler(fault_address, fault_instruction))
547 return SIGSEGV_RETURN_SUCCESS;
548 #endif
549
550 const uintptr addr = (uintptr)fault_address;
551 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
552 // Ignore writes to ROM
553 if ((addr - ROM_BASE) < ROM_SIZE)
554 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
555
556 // Ignore all other faults, if requested
557 if (PrefsFindBool("ignoresegv"))
558 return SIGSEGV_RETURN_FAILURE;
559 #else
560 #error "FIXME: You don't have the capability to skip instruction within signal handlers"
561 #endif
562
563 printf("SIGSEGV\n");
564 printf(" pc %p\n", fault_instruction);
565 printf(" ea %p\n", fault_address);
566 printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
567 dump_registers();
568 current_cpu->dump_log();
569 enter_mon();
570 QuitEmulator();
571
572 return SIGSEGV_RETURN_FAILURE;
573 }
574
575 void init_emul_ppc(void)
576 {
577 // Initialize main CPU emulator
578 main_cpu = new sheepshaver_cpu();
579 main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
580 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
581
582 #if MULTICORE_CPU
583 // Initialize alternate CPU emulator to handle interrupts
584 interrupt_cpu = new sheepshaver_cpu();
585 #endif
586
587 // Install the handler for SIGSEGV
588 sigsegv_install_handler(sigsegv_handler);
589
590 #if ENABLE_MON
591 // Install "regs" command in cxmon
592 mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
593 mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
594 #endif
595
596 #if EMUL_TIME_STATS
597 emul_start_time = clock();
598 #endif
599 }
600
601 /*
602 * Deinitialize emulation
603 */
604
605 void exit_emul_ppc(void)
606 {
607 #if EMUL_TIME_STATS
608 clock_t emul_end_time = clock();
609
610 printf("### Statistics for SheepShaver emulation parts\n");
611 const clock_t emul_time = emul_end_time - emul_start_time;
612 printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
613 printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
614 (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
615
616 #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
617 printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
618 printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
619 double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
620 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
621 } while (0)
622
623 PRINT_STATS("Execute68k[Trap] execution", exec68k);
624 PRINT_STATS("NativeOp execution", native_exec);
625 PRINT_STATS("MacOS routine execution", macos_exec);
626
627 #undef PRINT_STATS
628 printf("\n");
629 #endif
630
631 delete main_cpu;
632 #if MULTICORE_CPU
633 delete interrupt_cpu;
634 #endif
635 }
636
637 /*
638 * Emulation loop
639 */
640
641 void emul_ppc(uint32 entry)
642 {
643 current_cpu = main_cpu;
644 #if DEBUG
645 current_cpu->start_log();
646 #endif
647 // start emulation loop and enable code translation or caching
648 current_cpu->execute(entry, true);
649 }
650
651 /*
652 * Handle PowerPC interrupt
653 */
654
655 #if ASYNC_IRQ
656 void HandleInterrupt(void)
657 {
658 main_cpu->handle_interrupt();
659 }
660 #else
661 void TriggerInterrupt(void)
662 {
663 #if 0
664 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
665 #else
666 // Trigger interrupt to main cpu only
667 if (main_cpu)
668 main_cpu->trigger_interrupt();
669 #endif
670 }
671 #endif
672
673 void sheepshaver_cpu::handle_interrupt(void)
674 {
675 // Do nothing if interrupts are disabled
676 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
677 return;
678
679 // Do nothing if there is no interrupt pending
680 if (InterruptFlags == 0)
681 return;
682
683 // Disable MacOS stack sniffer
684 WriteMacInt32(0x110, 0);
685
686 // Interrupt action depends on current run mode
687 switch (ReadMacInt32(XLM_RUN_MODE)) {
688 case MODE_68K:
689 // 68k emulator active, trigger 68k interrupt level 1
690 assert(current_cpu == main_cpu);
691 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
692 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
693 break;
694
695 #if INTERRUPTS_IN_NATIVE_MODE
696 case MODE_NATIVE:
697 // 68k emulator inactive, in nanokernel?
698 assert(current_cpu == main_cpu);
699 if (gpr(1) != KernelDataAddr) {
700 // Prepare for 68k interrupt level 1
701 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
702 WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
703 ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
704 | tswap32(kernel_data->v[0x674 >> 2]));
705
706 // Execute nanokernel interrupt routine (this will activate the 68k emulator)
707 DisableInterrupt();
708 cpu_push(interrupt_cpu);
709 if (ROMType == ROMTYPE_NEWWORLD)
710 current_cpu->interrupt(ROM_BASE + 0x312b1c);
711 else
712 current_cpu->interrupt(ROM_BASE + 0x312a3c);
713 cpu_pop();
714 }
715 break;
716 #endif
717
718 #if INTERRUPTS_IN_EMUL_OP_MODE
719 case MODE_EMUL_OP:
720 // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
721 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
722 #if 1
723 // Execute full 68k interrupt routine
724 M68kRegisters r;
725 uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
726 WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
727 static const uint8 proc[] = {
728 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
729 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
730 0x40, 0xe7, // move sr,-(sp) (saved SR)
731 0x20, 0x78, 0x00, 0x064, // move.l $64,a0
732 0x4e, 0xd0, // jmp (a0)
733 M68K_RTS >> 8, M68K_RTS & 0xff // @1
734 };
735 Execute68k((uint32)proc, &r);
736 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
737 #else
738 // Only update cursor
739 if (HasMacStarted()) {
740 if (InterruptFlags & INTFLAG_VIA) {
741 ClearInterruptFlag(INTFLAG_VIA);
742 ADBInterrupt();
743 ExecutePPC(VideoVBL);
744 }
745 }
746 #endif
747 }
748 break;
749 #endif
750 }
751 }
752
753 /*
754 * Execute NATIVE_OP opcode (called by PowerPC emulator)
755 */
756
757 #define POWERPC_NATIVE_OP_INIT(LR, OP) \
758 tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
759
760 // FIXME: Make sure 32-bit relocations are used
761 const uint32 NativeOpTable[NATIVE_OP_MAX] = {
762 POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
763 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
764 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
765 POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
766 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
767 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
768 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
769 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
770 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
771 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
772 POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
773 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
774 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
775 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
776 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
777 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
778 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
779 POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
780 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
781 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
782 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
783 POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
784 POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
785 POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
786 POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
787 POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE),
788 };
789
790 static void get_resource(void);
791 static void get_1_resource(void);
792 static void get_ind_resource(void);
793 static void get_1_ind_resource(void);
794 static void r_get_resource(void);
795
796 #define GPR(REG) current_cpu->gpr(REG)
797
798 static void NativeOp(int selector)
799 {
800 #if EMUL_TIME_STATS
801 native_exec_count++;
802 const clock_t native_exec_start = clock();
803 #endif
804
805 switch (selector) {
806 case NATIVE_PATCH_NAME_REGISTRY:
807 DoPatchNameRegistry();
808 break;
809 case NATIVE_VIDEO_INSTALL_ACCEL:
810 VideoInstallAccel();
811 break;
812 case NATIVE_VIDEO_VBL:
813 VideoVBL();
814 break;
815 case NATIVE_VIDEO_DO_DRIVER_IO:
816 GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
817 (void *)GPR(5), GPR(6), GPR(7));
818 break;
819 case NATIVE_GET_RESOURCE:
820 get_resource();
821 break;
822 case NATIVE_GET_1_RESOURCE:
823 get_1_resource();
824 break;
825 case NATIVE_GET_IND_RESOURCE:
826 get_ind_resource();
827 break;
828 case NATIVE_GET_1_IND_RESOURCE:
829 get_1_ind_resource();
830 break;
831 case NATIVE_R_GET_RESOURCE:
832 r_get_resource();
833 break;
834 case NATIVE_SERIAL_NOTHING:
835 case NATIVE_SERIAL_OPEN:
836 case NATIVE_SERIAL_PRIME_IN:
837 case NATIVE_SERIAL_PRIME_OUT:
838 case NATIVE_SERIAL_CONTROL:
839 case NATIVE_SERIAL_STATUS:
840 case NATIVE_SERIAL_CLOSE: {
841 typedef int16 (*SerialCallback)(uint32, uint32);
842 static const SerialCallback serial_callbacks[] = {
843 SerialNothing,
844 SerialOpen,
845 SerialPrimeIn,
846 SerialPrimeOut,
847 SerialControl,
848 SerialStatus,
849 SerialClose
850 };
851 GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
852 break;
853 }
854 case NATIVE_DISABLE_INTERRUPT:
855 DisableInterrupt();
856 break;
857 case NATIVE_ENABLE_INTERRUPT:
858 EnableInterrupt();
859 break;
860 case NATIVE_MAKE_EXECUTABLE:
861 MakeExecutable(0, (void *)GPR(4), GPR(5));
862 break;
863 default:
864 printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
865 QuitEmulator();
866 break;
867 }
868
869 #if EMUL_TIME_STATS
870 native_exec_time += (clock() - native_exec_start);
871 #endif
872 }
873
874 /*
875 * Execute native subroutine (LR must contain return address)
876 */
877
878 void ExecuteNative(int selector)
879 {
880 uint32 tvect[2];
881 tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
882 tvect[1] = 0; // Fake TVECT
883 RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
884 M68kRegisters r;
885 Execute68k((uint32)&desc, &r);
886 }
887
888 /*
889 * Execute 68k subroutine (must be ended with EXEC_RETURN)
890 * This must only be called by the emul_thread when in EMUL_OP mode
891 * r->a[7] is unused, the routine runs on the caller's stack
892 */
893
894 void Execute68k(uint32 pc, M68kRegisters *r)
895 {
896 current_cpu->execute_68k(pc, r);
897 }
898
899 /*
900 * Execute 68k A-Trap from EMUL_OP routine
901 * r->a[7] is unused, the routine runs on the caller's stack
902 */
903
904 void Execute68kTrap(uint16 trap, M68kRegisters *r)
905 {
906 uint16 proc[2];
907 proc[0] = htons(trap);
908 proc[1] = htons(M68K_RTS);
909 Execute68k((uint32)proc, r);
910 }
911
912 /*
913 * Call MacOS PPC code
914 */
915
916 uint32 call_macos(uint32 tvect)
917 {
918 return current_cpu->execute_macos_code(tvect, 0, NULL);
919 }
920
921 uint32 call_macos1(uint32 tvect, uint32 arg1)
922 {
923 const uint32 args[] = { arg1 };
924 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
925 }
926
927 uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
928 {
929 const uint32 args[] = { arg1, arg2 };
930 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
931 }
932
933 uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
934 {
935 const uint32 args[] = { arg1, arg2, arg3 };
936 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
937 }
938
939 uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
940 {
941 const uint32 args[] = { arg1, arg2, arg3, arg4 };
942 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
943 }
944
945 uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
946 {
947 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
948 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
949 }
950
951 uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
952 {
953 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
954 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
955 }
956
957 uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
958 {
959 const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
960 return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
961 }
962
963 /*
964 * Resource Manager thunks
965 */
966
967 void get_resource(void)
968 {
969 current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
970 }
971
972 void get_1_resource(void)
973 {
974 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
975 }
976
977 void get_ind_resource(void)
978 {
979 current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
980 }
981
982 void get_1_ind_resource(void)
983 {
984 current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
985 }
986
987 void r_get_resource(void)
988 {
989 current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
990 }