1 |
/* |
2 |
* sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface |
3 |
* |
4 |
* SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#include "sysdeps.h" |
22 |
#include "cpu_emulation.h" |
23 |
#include "main.h" |
24 |
#include "prefs.h" |
25 |
#include "xlowmem.h" |
26 |
#include "emul_op.h" |
27 |
#include "rom_patches.h" |
28 |
#include "macos_util.h" |
29 |
#include "block-alloc.hpp" |
30 |
#include "sigsegv.h" |
31 |
#include "spcflags.h" |
32 |
#include "cpu/ppc/ppc-cpu.hpp" |
33 |
#include "cpu/ppc/ppc-operations.hpp" |
34 |
|
35 |
// Used for NativeOp trampolines |
36 |
#include "video.h" |
37 |
#include "name_registry.h" |
38 |
#include "serial.h" |
39 |
|
40 |
#include <stdio.h> |
41 |
|
42 |
#if ENABLE_MON |
43 |
#include "mon.h" |
44 |
#include "mon_disass.h" |
45 |
#endif |
46 |
|
47 |
#define DEBUG 0 |
48 |
#include "debug.h" |
49 |
|
50 |
static void enter_mon(void) |
51 |
{ |
52 |
// Start up mon in real-mode |
53 |
#if ENABLE_MON |
54 |
char *arg[4] = {"mon", "-m", "-r", NULL}; |
55 |
mon(3, arg); |
56 |
#endif |
57 |
} |
58 |
|
59 |
// Enable multicore (main/interrupts) cpu emulation? |
60 |
#define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0) |
61 |
|
62 |
// Enable Execute68k() safety checks? |
63 |
#define SAFE_EXEC_68K 1 |
64 |
|
65 |
// Save FP state in Execute68k()? |
66 |
#define SAVE_FP_EXEC_68K 1 |
67 |
|
68 |
// Interrupts in EMUL_OP mode? |
69 |
#define INTERRUPTS_IN_EMUL_OP_MODE 1 |
70 |
|
71 |
// Interrupts in native mode? |
72 |
#define INTERRUPTS_IN_NATIVE_MODE 1 |
73 |
|
74 |
// Pointer to Kernel Data |
75 |
static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE; |
76 |
|
77 |
|
78 |
/** |
79 |
* PowerPC emulator glue with special 'sheep' opcodes |
80 |
**/ |
81 |
|
82 |
struct sheepshaver_exec_return { }; |
83 |
|
84 |
class sheepshaver_cpu |
85 |
: public powerpc_cpu |
86 |
{ |
87 |
void init_decoder(); |
88 |
void execute_sheep(uint32 opcode); |
89 |
|
90 |
public: |
91 |
|
92 |
// Constructor |
93 |
sheepshaver_cpu(); |
94 |
|
95 |
// Condition Register accessors |
96 |
uint32 get_cr() const { return cr().get(); } |
97 |
void set_cr(uint32 v) { cr().set(v); } |
98 |
|
99 |
// Execution loop |
100 |
void execute(uint32 entry, bool enable_cache = false); |
101 |
|
102 |
// Execute 68k routine |
103 |
void execute_68k(uint32 entry, M68kRegisters *r); |
104 |
|
105 |
// Execute ppc routine |
106 |
void execute_ppc(uint32 entry); |
107 |
|
108 |
// Execute MacOS/PPC code |
109 |
uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args); |
110 |
|
111 |
// Resource manager thunk |
112 |
void get_resource(uint32 old_get_resource); |
113 |
|
114 |
// Handle MacOS interrupt |
115 |
void interrupt(uint32 entry); |
116 |
void handle_interrupt(); |
117 |
|
118 |
// spcflags for interrupts handling |
119 |
static uint32 spcflags; |
120 |
|
121 |
// Lazy memory allocator (one item at a time) |
122 |
void *operator new(size_t size) |
123 |
{ return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); } |
124 |
void operator delete(void *p) |
125 |
{ allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); } |
126 |
// FIXME: really make surre array allocation fail at link time? |
127 |
void *operator new[](size_t); |
128 |
void operator delete[](void *p); |
129 |
}; |
130 |
|
131 |
uint32 sheepshaver_cpu::spcflags = 0; |
132 |
lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator; |
133 |
|
134 |
sheepshaver_cpu::sheepshaver_cpu() |
135 |
: powerpc_cpu() |
136 |
{ |
137 |
init_decoder(); |
138 |
} |
139 |
|
140 |
void sheepshaver_cpu::init_decoder() |
141 |
{ |
142 |
#ifndef PPC_NO_STATIC_II_INDEX_TABLE |
143 |
static bool initialized = false; |
144 |
if (initialized) |
145 |
return; |
146 |
initialized = true; |
147 |
#endif |
148 |
|
149 |
static const instr_info_t sheep_ii_table[] = { |
150 |
{ "sheep", |
151 |
(execute_fn)&sheepshaver_cpu::execute_sheep, |
152 |
NULL, |
153 |
D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP |
154 |
} |
155 |
}; |
156 |
|
157 |
const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]); |
158 |
D(bug("SheepShaver extra decode table has %d entries\n", ii_count)); |
159 |
|
160 |
for (int i = 0; i < ii_count; i++) { |
161 |
const instr_info_t * ii = &sheep_ii_table[i]; |
162 |
init_decoder_entry(ii); |
163 |
} |
164 |
} |
165 |
|
166 |
// Forward declaration for native opcode handler |
167 |
static void NativeOp(int selector); |
168 |
|
169 |
/* NativeOp instruction format: |
170 |
+------------+--------------------------+--+----------+------------+ |
171 |
| 6 | |FN| OP | 2 | |
172 |
+------------+--------------------------+--+----------+------------+ |
173 |
0 5 |6 19 20 21 25 26 31 |
174 |
*/ |
175 |
|
176 |
typedef bit_field< 20, 20 > FN_field; |
177 |
typedef bit_field< 21, 25 > NATIVE_OP_field; |
178 |
typedef bit_field< 26, 31 > EMUL_OP_field; |
179 |
|
180 |
// Execute SheepShaver instruction |
181 |
void sheepshaver_cpu::execute_sheep(uint32 opcode) |
182 |
{ |
183 |
// D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24))); |
184 |
assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3); |
185 |
|
186 |
switch (opcode & 0x3f) { |
187 |
case 0: // EMUL_RETURN |
188 |
QuitEmulator(); |
189 |
break; |
190 |
|
191 |
case 1: // EXEC_RETURN |
192 |
throw sheepshaver_exec_return(); |
193 |
break; |
194 |
|
195 |
case 2: // EXEC_NATIVE |
196 |
NativeOp(NATIVE_OP_field::extract(opcode)); |
197 |
if (FN_field::test(opcode)) |
198 |
pc() = lr(); |
199 |
else |
200 |
pc() += 4; |
201 |
break; |
202 |
|
203 |
default: { // EMUL_OP |
204 |
M68kRegisters r68; |
205 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
206 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
207 |
for (int i = 0; i < 8; i++) |
208 |
r68.d[i] = gpr(8 + i); |
209 |
for (int i = 0; i < 7; i++) |
210 |
r68.a[i] = gpr(16 + i); |
211 |
r68.a[7] = gpr(1); |
212 |
EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3); |
213 |
for (int i = 0; i < 8; i++) |
214 |
gpr(8 + i) = r68.d[i]; |
215 |
for (int i = 0; i < 7; i++) |
216 |
gpr(16 + i) = r68.a[i]; |
217 |
gpr(1) = r68.a[7]; |
218 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
219 |
pc() += 4; |
220 |
break; |
221 |
} |
222 |
} |
223 |
} |
224 |
|
225 |
// Execution loop |
226 |
void sheepshaver_cpu::execute(uint32 entry, bool enable_cache) |
227 |
{ |
228 |
try { |
229 |
powerpc_cpu::execute(entry, enable_cache); |
230 |
} |
231 |
catch (sheepshaver_exec_return const &) { |
232 |
// Nothing, simply return |
233 |
} |
234 |
catch (...) { |
235 |
printf("ERROR: execute() received an unknown exception!\n"); |
236 |
QuitEmulator(); |
237 |
} |
238 |
} |
239 |
|
240 |
// Handle MacOS interrupt |
241 |
void sheepshaver_cpu::interrupt(uint32 entry) |
242 |
{ |
243 |
#if !MULTICORE_CPU |
244 |
// Save program counters and branch registers |
245 |
uint32 saved_pc = pc(); |
246 |
uint32 saved_lr = lr(); |
247 |
uint32 saved_ctr= ctr(); |
248 |
uint32 saved_sp = gpr(1); |
249 |
#endif |
250 |
|
251 |
// Initialize stack pointer to SheepShaver alternate stack base |
252 |
gpr(1) = SheepStack1Base - 64; |
253 |
|
254 |
// Build trampoline to return from interrupt |
255 |
uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) }; |
256 |
|
257 |
// Prepare registers for nanokernel interrupt routine |
258 |
kernel_data->v[0x004 >> 2] = htonl(gpr(1)); |
259 |
kernel_data->v[0x018 >> 2] = htonl(gpr(6)); |
260 |
|
261 |
gpr(6) = ntohl(kernel_data->v[0x65c >> 2]); |
262 |
assert(gpr(6) != 0); |
263 |
WriteMacInt32(gpr(6) + 0x13c, gpr(7)); |
264 |
WriteMacInt32(gpr(6) + 0x144, gpr(8)); |
265 |
WriteMacInt32(gpr(6) + 0x14c, gpr(9)); |
266 |
WriteMacInt32(gpr(6) + 0x154, gpr(10)); |
267 |
WriteMacInt32(gpr(6) + 0x15c, gpr(11)); |
268 |
WriteMacInt32(gpr(6) + 0x164, gpr(12)); |
269 |
WriteMacInt32(gpr(6) + 0x16c, gpr(13)); |
270 |
|
271 |
gpr(1) = KernelDataAddr; |
272 |
gpr(7) = ntohl(kernel_data->v[0x660 >> 2]); |
273 |
gpr(8) = 0; |
274 |
gpr(10) = (uint32)trampoline; |
275 |
gpr(12) = (uint32)trampoline; |
276 |
gpr(13) = get_cr(); |
277 |
|
278 |
// rlwimi. r7,r7,8,0,0 |
279 |
uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7)); |
280 |
record_cr0(result); |
281 |
gpr(7) = result; |
282 |
|
283 |
gpr(11) = 0xf072; // MSR (SRR1) |
284 |
cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000)); |
285 |
|
286 |
// Enter nanokernel |
287 |
execute(entry); |
288 |
|
289 |
#if !MULTICORE_CPU |
290 |
// Restore program counters and branch registers |
291 |
pc() = saved_pc; |
292 |
lr() = saved_lr; |
293 |
ctr()= saved_ctr; |
294 |
gpr(1) = saved_sp; |
295 |
#endif |
296 |
} |
297 |
|
298 |
// Execute 68k routine |
299 |
void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r) |
300 |
{ |
301 |
#if SAFE_EXEC_68K |
302 |
if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP) |
303 |
printf("FATAL: Execute68k() not called from EMUL_OP mode\n"); |
304 |
#endif |
305 |
|
306 |
// Save program counters and branch registers |
307 |
uint32 saved_pc = pc(); |
308 |
uint32 saved_lr = lr(); |
309 |
uint32 saved_ctr= ctr(); |
310 |
uint32 saved_cr = get_cr(); |
311 |
|
312 |
// Create MacOS stack frame |
313 |
// FIXME: make sure MacOS doesn't expect PPC registers to live on top |
314 |
uint32 sp = gpr(1); |
315 |
gpr(1) -= 56; |
316 |
WriteMacInt32(gpr(1), sp); |
317 |
|
318 |
// Save PowerPC registers |
319 |
uint32 saved_GPRs[19]; |
320 |
memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13)); |
321 |
#if SAVE_FP_EXEC_68K |
322 |
double saved_FPRs[18]; |
323 |
memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14)); |
324 |
#endif |
325 |
|
326 |
// Setup registers for 68k emulator |
327 |
cr().set(CR_SO_field<2>::mask()); // Supervisor mode |
328 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
329 |
gpr(8 + i) = r->d[i]; |
330 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
331 |
gpr(16 + i) = r->a[i]; |
332 |
gpr(23) = 0; |
333 |
gpr(24) = entry; |
334 |
gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR |
335 |
gpr(26) = 0; |
336 |
gpr(28) = 0; // VBR |
337 |
gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table |
338 |
gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator |
339 |
gpr(31) = KernelDataAddr + 0x1000; |
340 |
|
341 |
// Push return address (points to EXEC_RETURN opcode) on stack |
342 |
gpr(1) -= 4; |
343 |
WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE); |
344 |
|
345 |
// Rentering 68k emulator |
346 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
347 |
|
348 |
// Set r0 to 0 for 68k emulator |
349 |
gpr(0) = 0; |
350 |
|
351 |
// Execute 68k opcode |
352 |
uint32 opcode = ReadMacInt16(gpr(24)); |
353 |
gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2); |
354 |
gpr(29) += opcode * 8; |
355 |
execute(gpr(29)); |
356 |
|
357 |
// Save r25 (contains current 68k interrupt level) |
358 |
WriteMacInt32(XLM_68K_R25, gpr(25)); |
359 |
|
360 |
// Reentering EMUL_OP mode |
361 |
WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); |
362 |
|
363 |
// Save 68k registers |
364 |
for (int i = 0; i < 8; i++) // d[0]..d[7] |
365 |
r->d[i] = gpr(8 + i); |
366 |
for (int i = 0; i < 7; i++) // a[0]..a[6] |
367 |
r->a[i] = gpr(16 + i); |
368 |
|
369 |
// Restore PowerPC registers |
370 |
memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13)); |
371 |
#if SAVE_FP_EXEC_68K |
372 |
memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14)); |
373 |
#endif |
374 |
|
375 |
// Cleanup stack |
376 |
gpr(1) += 56; |
377 |
|
378 |
// Restore program counters and branch registers |
379 |
pc() = saved_pc; |
380 |
lr() = saved_lr; |
381 |
ctr()= saved_ctr; |
382 |
set_cr(saved_cr); |
383 |
} |
384 |
|
385 |
// Call MacOS PPC code |
386 |
uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args) |
387 |
{ |
388 |
// Save program counters and branch registers |
389 |
uint32 saved_pc = pc(); |
390 |
uint32 saved_lr = lr(); |
391 |
uint32 saved_ctr= ctr(); |
392 |
|
393 |
// Build trampoline with EXEC_RETURN |
394 |
uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) }; |
395 |
lr() = (uint32)trampoline; |
396 |
|
397 |
gpr(1) -= 64; // Create stack frame |
398 |
uint32 proc = ReadMacInt32(tvect); // Get routine address |
399 |
uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer |
400 |
|
401 |
// Save PowerPC registers |
402 |
uint32 regs[8]; |
403 |
regs[0] = gpr(2); |
404 |
for (int i = 0; i < nargs; i++) |
405 |
regs[i + 1] = gpr(i + 3); |
406 |
|
407 |
// Prepare and call MacOS routine |
408 |
gpr(2) = toc; |
409 |
for (int i = 0; i < nargs; i++) |
410 |
gpr(i + 3) = args[i]; |
411 |
execute(proc); |
412 |
uint32 retval = gpr(3); |
413 |
|
414 |
// Restore PowerPC registers |
415 |
for (int i = 0; i <= nargs; i++) |
416 |
gpr(i + 2) = regs[i]; |
417 |
|
418 |
// Cleanup stack |
419 |
gpr(1) += 64; |
420 |
|
421 |
// Restore program counters and branch registers |
422 |
pc() = saved_pc; |
423 |
lr() = saved_lr; |
424 |
ctr()= saved_ctr; |
425 |
|
426 |
return retval; |
427 |
} |
428 |
|
429 |
// Execute ppc routine |
430 |
inline void sheepshaver_cpu::execute_ppc(uint32 entry) |
431 |
{ |
432 |
// Save branch registers |
433 |
uint32 saved_lr = lr(); |
434 |
|
435 |
const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) }; |
436 |
lr() = (uint32)trampoline; |
437 |
|
438 |
execute(entry); |
439 |
|
440 |
// Restore branch registers |
441 |
lr() = saved_lr; |
442 |
} |
443 |
|
444 |
// Resource Manager thunk |
445 |
extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h); |
446 |
|
447 |
inline void sheepshaver_cpu::get_resource(uint32 old_get_resource) |
448 |
{ |
449 |
uint32 type = gpr(3); |
450 |
int16 id = gpr(4); |
451 |
|
452 |
// Create stack frame |
453 |
gpr(1) -= 56; |
454 |
|
455 |
// Call old routine |
456 |
execute_ppc(old_get_resource); |
457 |
|
458 |
// Call CheckLoad() |
459 |
uint32 handle = gpr(3); |
460 |
check_load_invoc(type, id, handle); |
461 |
gpr(3) = handle; |
462 |
|
463 |
// Cleanup stack |
464 |
gpr(1) += 56; |
465 |
} |
466 |
|
467 |
|
468 |
/** |
469 |
* SheepShaver CPU engine interface |
470 |
**/ |
471 |
|
472 |
static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow |
473 |
static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts |
474 |
static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context |
475 |
|
476 |
void FlushCodeCache(uintptr start, uintptr end) |
477 |
{ |
478 |
D(bug("FlushCodeCache(%08x, %08x)\n", start, end)); |
479 |
main_cpu->invalidate_cache_range(start, end); |
480 |
#if MULTICORE_CPU |
481 |
interrupt_cpu->invalidate_cache_range(start, end); |
482 |
#endif |
483 |
} |
484 |
|
485 |
static inline void cpu_push(sheepshaver_cpu *new_cpu) |
486 |
{ |
487 |
#if MULTICORE_CPU |
488 |
current_cpu = new_cpu; |
489 |
#endif |
490 |
} |
491 |
|
492 |
static inline void cpu_pop() |
493 |
{ |
494 |
#if MULTICORE_CPU |
495 |
current_cpu = main_cpu; |
496 |
#endif |
497 |
} |
498 |
|
499 |
// Dump PPC registers |
500 |
static void dump_registers(void) |
501 |
{ |
502 |
current_cpu->dump_registers(); |
503 |
} |
504 |
|
505 |
// Dump log |
506 |
static void dump_log(void) |
507 |
{ |
508 |
current_cpu->dump_log(); |
509 |
} |
510 |
|
511 |
/* |
512 |
* Initialize CPU emulation |
513 |
*/ |
514 |
|
515 |
static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
516 |
{ |
517 |
#if ENABLE_VOSF |
518 |
// Handle screen fault |
519 |
extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t); |
520 |
if (Screen_fault_handler(fault_address, fault_instruction)) |
521 |
return SIGSEGV_RETURN_SUCCESS; |
522 |
#endif |
523 |
|
524 |
const uintptr addr = (uintptr)fault_address; |
525 |
#if HAVE_SIGSEGV_SKIP_INSTRUCTION |
526 |
// Ignore writes to ROM |
527 |
if ((addr - ROM_BASE) < ROM_SIZE) |
528 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
529 |
|
530 |
// Ignore all other faults, if requested |
531 |
if (PrefsFindBool("ignoresegv")) |
532 |
return SIGSEGV_RETURN_FAILURE; |
533 |
#else |
534 |
#error "FIXME: You don't have the capability to skip instruction within signal handlers" |
535 |
#endif |
536 |
|
537 |
printf("SIGSEGV\n"); |
538 |
printf(" pc %p\n", fault_instruction); |
539 |
printf(" ea %p\n", fault_address); |
540 |
printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts"); |
541 |
dump_registers(); |
542 |
current_cpu->dump_log(); |
543 |
enter_mon(); |
544 |
QuitEmulator(); |
545 |
|
546 |
return SIGSEGV_RETURN_FAILURE; |
547 |
} |
548 |
|
549 |
void init_emul_ppc(void) |
550 |
{ |
551 |
// Initialize main CPU emulator |
552 |
main_cpu = new sheepshaver_cpu(); |
553 |
main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000)); |
554 |
WriteMacInt32(XLM_RUN_MODE, MODE_68K); |
555 |
|
556 |
#if MULTICORE_CPU |
557 |
// Initialize alternate CPU emulator to handle interrupts |
558 |
interrupt_cpu = new sheepshaver_cpu(); |
559 |
#endif |
560 |
|
561 |
// Install the handler for SIGSEGV |
562 |
sigsegv_install_handler(sigsegv_handler); |
563 |
|
564 |
#if ENABLE_MON |
565 |
// Install "regs" command in cxmon |
566 |
mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n"); |
567 |
mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n"); |
568 |
#endif |
569 |
} |
570 |
|
571 |
/* |
572 |
* Emulation loop |
573 |
*/ |
574 |
|
575 |
void emul_ppc(uint32 entry) |
576 |
{ |
577 |
current_cpu = main_cpu; |
578 |
#if DEBUG |
579 |
current_cpu->start_log(); |
580 |
#endif |
581 |
// start emulation loop and enable code translation or caching |
582 |
current_cpu->execute(entry, true); |
583 |
} |
584 |
|
585 |
/* |
586 |
* Handle PowerPC interrupt |
587 |
*/ |
588 |
|
589 |
#if ASYNC_IRQ |
590 |
void HandleInterrupt(void) |
591 |
{ |
592 |
main_cpu->handle_interrupt(); |
593 |
} |
594 |
#else |
595 |
void TriggerInterrupt(void) |
596 |
{ |
597 |
#if 0 |
598 |
WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1); |
599 |
#else |
600 |
// Trigger interrupt to main cpu only |
601 |
if (main_cpu) |
602 |
main_cpu->trigger_interrupt(); |
603 |
#endif |
604 |
} |
605 |
#endif |
606 |
|
607 |
void sheepshaver_cpu::handle_interrupt(void) |
608 |
{ |
609 |
// Do nothing if interrupts are disabled |
610 |
if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0) |
611 |
return; |
612 |
|
613 |
// Do nothing if there is no interrupt pending |
614 |
if (InterruptFlags == 0) |
615 |
return; |
616 |
|
617 |
// Disable MacOS stack sniffer |
618 |
WriteMacInt32(0x110, 0); |
619 |
|
620 |
// Interrupt action depends on current run mode |
621 |
switch (ReadMacInt32(XLM_RUN_MODE)) { |
622 |
case MODE_68K: |
623 |
// 68k emulator active, trigger 68k interrupt level 1 |
624 |
assert(current_cpu == main_cpu); |
625 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
626 |
set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2])); |
627 |
break; |
628 |
|
629 |
#if INTERRUPTS_IN_NATIVE_MODE |
630 |
case MODE_NATIVE: |
631 |
// 68k emulator inactive, in nanokernel? |
632 |
assert(current_cpu == main_cpu); |
633 |
if (gpr(1) != KernelDataAddr) { |
634 |
// Prepare for 68k interrupt level 1 |
635 |
WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); |
636 |
WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc, |
637 |
ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc) |
638 |
| tswap32(kernel_data->v[0x674 >> 2])); |
639 |
|
640 |
// Execute nanokernel interrupt routine (this will activate the 68k emulator) |
641 |
DisableInterrupt(); |
642 |
cpu_push(interrupt_cpu); |
643 |
if (ROMType == ROMTYPE_NEWWORLD) |
644 |
current_cpu->interrupt(ROM_BASE + 0x312b1c); |
645 |
else |
646 |
current_cpu->interrupt(ROM_BASE + 0x312a3c); |
647 |
cpu_pop(); |
648 |
} |
649 |
break; |
650 |
#endif |
651 |
|
652 |
#if INTERRUPTS_IN_EMUL_OP_MODE |
653 |
case MODE_EMUL_OP: |
654 |
// 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0 |
655 |
if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) { |
656 |
#if 1 |
657 |
// Execute full 68k interrupt routine |
658 |
M68kRegisters r; |
659 |
uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level |
660 |
WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1 |
661 |
static const uint8 proc[] = { |
662 |
0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word) |
663 |
0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address) |
664 |
0x40, 0xe7, // move sr,-(sp) (saved SR) |
665 |
0x20, 0x78, 0x00, 0x064, // move.l $64,a0 |
666 |
0x4e, 0xd0, // jmp (a0) |
667 |
M68K_RTS >> 8, M68K_RTS & 0xff // @1 |
668 |
}; |
669 |
Execute68k((uint32)proc, &r); |
670 |
WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level |
671 |
#else |
672 |
// Only update cursor |
673 |
if (HasMacStarted()) { |
674 |
if (InterruptFlags & INTFLAG_VIA) { |
675 |
ClearInterruptFlag(INTFLAG_VIA); |
676 |
ADBInterrupt(); |
677 |
ExecutePPC(VideoVBL); |
678 |
} |
679 |
} |
680 |
#endif |
681 |
} |
682 |
break; |
683 |
#endif |
684 |
} |
685 |
} |
686 |
|
687 |
/* |
688 |
* Execute NATIVE_OP opcode (called by PowerPC emulator) |
689 |
*/ |
690 |
|
691 |
#define POWERPC_NATIVE_OP_INIT(LR, OP) \ |
692 |
tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2) |
693 |
|
694 |
// FIXME: Make sure 32-bit relocations are used |
695 |
const uint32 NativeOpTable[NATIVE_OP_MAX] = { |
696 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY), |
697 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL), |
698 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL), |
699 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO), |
700 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ), |
701 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT), |
702 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM), |
703 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN), |
704 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE), |
705 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT), |
706 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV), |
707 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING), |
708 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN), |
709 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN), |
710 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT), |
711 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL), |
712 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS), |
713 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE), |
714 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE), |
715 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE), |
716 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE), |
717 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE), |
718 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE), |
719 |
POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT), |
720 |
POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT), |
721 |
POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE), |
722 |
}; |
723 |
|
724 |
static void get_resource(void); |
725 |
static void get_1_resource(void); |
726 |
static void get_ind_resource(void); |
727 |
static void get_1_ind_resource(void); |
728 |
static void r_get_resource(void); |
729 |
|
730 |
#define GPR(REG) current_cpu->gpr(REG) |
731 |
|
732 |
static void NativeOp(int selector) |
733 |
{ |
734 |
switch (selector) { |
735 |
case NATIVE_PATCH_NAME_REGISTRY: |
736 |
DoPatchNameRegistry(); |
737 |
break; |
738 |
case NATIVE_VIDEO_INSTALL_ACCEL: |
739 |
VideoInstallAccel(); |
740 |
break; |
741 |
case NATIVE_VIDEO_VBL: |
742 |
VideoVBL(); |
743 |
break; |
744 |
case NATIVE_VIDEO_DO_DRIVER_IO: |
745 |
GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4), |
746 |
(void *)GPR(5), GPR(6), GPR(7)); |
747 |
break; |
748 |
case NATIVE_GET_RESOURCE: |
749 |
get_resource(); |
750 |
break; |
751 |
case NATIVE_GET_1_RESOURCE: |
752 |
get_1_resource(); |
753 |
break; |
754 |
case NATIVE_GET_IND_RESOURCE: |
755 |
get_ind_resource(); |
756 |
break; |
757 |
case NATIVE_GET_1_IND_RESOURCE: |
758 |
get_1_ind_resource(); |
759 |
break; |
760 |
case NATIVE_R_GET_RESOURCE: |
761 |
r_get_resource(); |
762 |
break; |
763 |
case NATIVE_SERIAL_NOTHING: |
764 |
case NATIVE_SERIAL_OPEN: |
765 |
case NATIVE_SERIAL_PRIME_IN: |
766 |
case NATIVE_SERIAL_PRIME_OUT: |
767 |
case NATIVE_SERIAL_CONTROL: |
768 |
case NATIVE_SERIAL_STATUS: |
769 |
case NATIVE_SERIAL_CLOSE: { |
770 |
typedef int16 (*SerialCallback)(uint32, uint32); |
771 |
static const SerialCallback serial_callbacks[] = { |
772 |
SerialNothing, |
773 |
SerialOpen, |
774 |
SerialPrimeIn, |
775 |
SerialPrimeOut, |
776 |
SerialControl, |
777 |
SerialStatus, |
778 |
SerialClose |
779 |
}; |
780 |
GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4)); |
781 |
break; |
782 |
} |
783 |
case NATIVE_DISABLE_INTERRUPT: |
784 |
DisableInterrupt(); |
785 |
break; |
786 |
case NATIVE_ENABLE_INTERRUPT: |
787 |
EnableInterrupt(); |
788 |
break; |
789 |
case NATIVE_MAKE_EXECUTABLE: |
790 |
MakeExecutable(0, (void *)GPR(4), GPR(5)); |
791 |
break; |
792 |
default: |
793 |
printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector); |
794 |
QuitEmulator(); |
795 |
break; |
796 |
} |
797 |
} |
798 |
|
799 |
/* |
800 |
* Execute native subroutine (LR must contain return address) |
801 |
*/ |
802 |
|
803 |
void ExecuteNative(int selector) |
804 |
{ |
805 |
uint32 tvect[2]; |
806 |
tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector)); |
807 |
tvect[1] = 0; // Fake TVECT |
808 |
RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect); |
809 |
M68kRegisters r; |
810 |
Execute68k((uint32)&desc, &r); |
811 |
} |
812 |
|
813 |
/* |
814 |
* Execute 68k subroutine (must be ended with EXEC_RETURN) |
815 |
* This must only be called by the emul_thread when in EMUL_OP mode |
816 |
* r->a[7] is unused, the routine runs on the caller's stack |
817 |
*/ |
818 |
|
819 |
void Execute68k(uint32 pc, M68kRegisters *r) |
820 |
{ |
821 |
current_cpu->execute_68k(pc, r); |
822 |
} |
823 |
|
824 |
/* |
825 |
* Execute 68k A-Trap from EMUL_OP routine |
826 |
* r->a[7] is unused, the routine runs on the caller's stack |
827 |
*/ |
828 |
|
829 |
void Execute68kTrap(uint16 trap, M68kRegisters *r) |
830 |
{ |
831 |
uint16 proc[2]; |
832 |
proc[0] = htons(trap); |
833 |
proc[1] = htons(M68K_RTS); |
834 |
Execute68k((uint32)proc, r); |
835 |
} |
836 |
|
837 |
/* |
838 |
* Call MacOS PPC code |
839 |
*/ |
840 |
|
841 |
uint32 call_macos(uint32 tvect) |
842 |
{ |
843 |
return current_cpu->execute_macos_code(tvect, 0, NULL); |
844 |
} |
845 |
|
846 |
uint32 call_macos1(uint32 tvect, uint32 arg1) |
847 |
{ |
848 |
const uint32 args[] = { arg1 }; |
849 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
850 |
} |
851 |
|
852 |
uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2) |
853 |
{ |
854 |
const uint32 args[] = { arg1, arg2 }; |
855 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
856 |
} |
857 |
|
858 |
uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3) |
859 |
{ |
860 |
const uint32 args[] = { arg1, arg2, arg3 }; |
861 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
862 |
} |
863 |
|
864 |
uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4) |
865 |
{ |
866 |
const uint32 args[] = { arg1, arg2, arg3, arg4 }; |
867 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
868 |
} |
869 |
|
870 |
uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5) |
871 |
{ |
872 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 }; |
873 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
874 |
} |
875 |
|
876 |
uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6) |
877 |
{ |
878 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 }; |
879 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
880 |
} |
881 |
|
882 |
uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7) |
883 |
{ |
884 |
const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 }; |
885 |
return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); |
886 |
} |
887 |
|
888 |
/* |
889 |
* Resource Manager thunks |
890 |
*/ |
891 |
|
892 |
void get_resource(void) |
893 |
{ |
894 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE)); |
895 |
} |
896 |
|
897 |
void get_1_resource(void) |
898 |
{ |
899 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE)); |
900 |
} |
901 |
|
902 |
void get_ind_resource(void) |
903 |
{ |
904 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE)); |
905 |
} |
906 |
|
907 |
void get_1_ind_resource(void) |
908 |
{ |
909 |
current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE)); |
910 |
} |
911 |
|
912 |
void r_get_resource(void) |
913 |
{ |
914 |
current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE)); |
915 |
} |