ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.39 by gbeauche, 2004-05-20T11:05:30Z vs.
Revision 1.58 by gbeauche, 2005-03-05T15:25:10Z

# Line 1 | Line 1
1   /*
2   *  sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3   *
4 < *  SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
4 > *  SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5   *
6   *  This program is free software; you can redistribute it and/or modify
7   *  it under the terms of the GNU General Public License as published by
# Line 42 | Line 42
42  
43   #include <stdio.h>
44   #include <stdlib.h>
45 + #ifdef HAVE_MALLOC_H
46 + #include <malloc.h>
47 + #endif
48 +
49 + #ifdef USE_SDL_VIDEO
50 + #include <SDL_events.h>
51 + #endif
52  
53   #if ENABLE_MON
54   #include "mon.h"
# Line 52 | Line 59
59   #include "debug.h"
60  
61   // Emulation time statistics
62 < #define EMUL_TIME_STATS 1
62 > #ifndef EMUL_TIME_STATS
63 > #define EMUL_TIME_STATS 0
64 > #endif
65  
66   #if EMUL_TIME_STATS
67   static clock_t emul_start_time;
68 < static uint32 interrupt_count = 0;
68 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69   static clock_t interrupt_time = 0;
70   static uint32 exec68k_count = 0;
71   static clock_t exec68k_time = 0;
# Line 84 | Line 93 | extern "C" void check_load_invoc(uint32
93   // PowerPC EmulOp to exit from emulation looop
94   const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95  
87 // Enable multicore (main/interrupts) cpu emulation?
88 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
89
90 // Enable interrupt routine safety checks?
91 #define SAFE_INTERRUPT_PPC 1
92
96   // Enable Execute68k() safety checks?
97   #define SAFE_EXEC_68K 1
98  
# Line 102 | Line 105 | const uint32 POWERPC_EXEC_RETURN = POWER
105   // Interrupts in native mode?
106   #define INTERRUPTS_IN_NATIVE_MODE 1
107  
105 // Enable native EMUL_OPs to be run without a mode switch
106 #define ENABLE_NATIVE_EMUL_OP 1
107
108   // Pointer to Kernel Data
109 < static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
109 > static KernelData * kernel_data;
110  
111   // SIGSEGV handler
112 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112 > sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113  
114   #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115   // Special trampolines for EmulOp and NativeOp
# Line 139 | Line 139 | class sheepshaver_cpu
139          void init_decoder();
140          void execute_sheep(uint32 opcode);
141  
142        // Filter out EMUL_OP routines that only call native code
143        bool filter_execute_emul_op(uint32 emul_op);
144
145        // "Native" EMUL_OP routines
146        void execute_emul_op_microseconds();
147        void execute_emul_op_idle_time_1();
148        void execute_emul_op_idle_time_2();
149
150        // CPU context to preserve on interrupt
151        class interrupt_context {
152                uint32 gpr[32];
153                uint32 pc;
154                uint32 lr;
155                uint32 ctr;
156                uint32 cr;
157                uint32 xer;
158                sheepshaver_cpu *cpu;
159                const char *where;
160        public:
161                interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
162                ~interrupt_context();
163        };
164
142   public:
143  
144          // Constructor
# Line 188 | Line 165 | public:
165          // Execute MacOS/PPC code
166          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167  
168 + #if PPC_ENABLE_JIT
169          // Compile one instruction
170          virtual int compile1(codegen_context_t & cg_context);
171 <
171 > #endif
172          // Resource manager thunk
173          void get_resource(uint32 old_get_resource);
174  
175          // Handle MacOS interrupt
176          void interrupt(uint32 entry);
199        void handle_interrupt();
177  
178          // Make sure the SIGSEGV handler can access CPU registers
179          friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180 +
181 +        // Memory allocator returning areas aligned on 16-byte boundaries
182 +        void *operator new(size_t size);
183 +        void operator delete(void *p);
184   };
185  
186   // Memory allocator returning areas aligned on 16-byte boundaries
187 < void *operator new(size_t size)
187 > void *sheepshaver_cpu::operator new(size_t size)
188   {
189          void *p;
190  
# Line 222 | Line 203 | void *operator new(size_t size)
203          return p;
204   }
205  
206 < void operator delete(void *p)
206 > void sheepshaver_cpu::operator delete(void *p)
207   {
208   #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
209   #if defined(__GLIBC__)
# Line 271 | Line 252 | typedef bit_field< 19, 19 > FN_field;
252   typedef bit_field< 20, 25 > NATIVE_OP_field;
253   typedef bit_field< 26, 31 > EMUL_OP_field;
254  
274 // "Native" EMUL_OP routines
275 #define GPR_A(REG) gpr(16 + (REG))
276 #define GPR_D(REG) gpr( 8 + (REG))
277
278 void sheepshaver_cpu::execute_emul_op_microseconds()
279 {
280        Microseconds(GPR_A(0), GPR_D(0));
281 }
282
283 void sheepshaver_cpu::execute_emul_op_idle_time_1()
284 {
285        // Sleep if no events pending
286        if (ReadMacInt32(0x14c) == 0)
287                Delay_usec(16667);
288        GPR_A(0) = ReadMacInt32(0x2b6);
289 }
290
291 void sheepshaver_cpu::execute_emul_op_idle_time_2()
292 {
293        // Sleep if no events pending
294        if (ReadMacInt32(0x14c) == 0)
295                Delay_usec(16667);
296        GPR_D(0) = (uint32)-2;
297 }
298
299 // Filter out EMUL_OP routines that only call native code
300 bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
301 {
302        switch (emul_op) {
303        case OP_MICROSECONDS:
304                execute_emul_op_microseconds();
305                return true;
306        case OP_IDLE_TIME:
307                execute_emul_op_idle_time_1();
308                return true;
309        case OP_IDLE_TIME_2:
310                execute_emul_op_idle_time_2();
311                return true;
312        }
313        return false;
314 }
315
255   // Execute EMUL_OP routine
256   void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
257   {
319 #if ENABLE_NATIVE_EMUL_OP
320        // First, filter out EMUL_OPs that can be executed without a mode switch
321        if (filter_execute_emul_op(emul_op))
322                return;
323 #endif
324
258          M68kRegisters r68;
259          WriteMacInt32(XLM_68K_R25, gpr(25));
260          WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
# Line 374 | Line 307 | void sheepshaver_cpu::execute_sheep(uint
307   }
308  
309   // Compile one instruction
310 + #if PPC_ENABLE_JIT
311   int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
312   {
379 #if PPC_ENABLE_JIT
313          const instr_info_t *ii = cg_context.instr_info;
314          if (ii->mnemo != PPC_I(SHEEP))
315                  return COMPILE_FAILURE;
# Line 447 | Line 380 | int sheepshaver_cpu::compile1(codegen_co
380                          status = COMPILE_CODE_OK;
381                          break;
382   #endif
450                case NATIVE_DISABLE_INTERRUPT:
451                        dg.gen_invoke(DisableInterrupt);
452                        status = COMPILE_CODE_OK;
453                        break;
454                case NATIVE_ENABLE_INTERRUPT:
455                        dg.gen_invoke(EnableInterrupt);
456                        status = COMPILE_CODE_OK;
457                        break;
383                  case NATIVE_BITBLT:
384                          dg.gen_load_T0_GPR(3);
385                          dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
# Line 472 | Line 397 | int sheepshaver_cpu::compile1(codegen_co
397                          break;
398                  }
399                  // Could we fully translate this NativeOp?
400 <                if (FN_field::test(opcode)) {
401 <                        if (status != COMPILE_FAILURE) {
400 >                if (status == COMPILE_CODE_OK) {
401 >                        if (!FN_field::test(opcode))
402 >                                cg_context.done_compile = false;
403 >                        else {
404                                  dg.gen_load_A0_LR();
405                                  dg.gen_set_PC_A0();
406 +                                cg_context.done_compile = true;
407                          }
480                        cg_context.done_compile = true;
481                        break;
482                }
483                else if (status != COMPILE_FAILURE) {
484                        cg_context.done_compile = false;
408                          break;
409                  }
410   #if PPC_REENTRANT_JIT
411                  // Try to execute NativeOp trampoline
412 <                dg.gen_set_PC_im(cg_context.pc + 4);
412 >                if (!FN_field::test(opcode))
413 >                        dg.gen_set_PC_im(cg_context.pc + 4);
414 >                else {
415 >                        dg.gen_load_A0_LR();
416 >                        dg.gen_set_PC_A0();
417 >                }
418                  dg.gen_mov_32_T0_im(selector);
419                  dg.gen_jmp(native_op_trampoline);
420                  cg_context.done_compile = true;
# Line 494 | Line 422 | int sheepshaver_cpu::compile1(codegen_co
422                  break;
423   #endif
424                  // Invoke NativeOp handler
425 <                typedef void (*func_t)(dyngen_cpu_base, uint32);
426 <                func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
427 <                dg.gen_invoke_CPU_im(func, selector);
428 <                cg_context.done_compile = false;
429 <                status = COMPILE_CODE_OK;
425 >                if (!FN_field::test(opcode)) {
426 >                        typedef void (*func_t)(dyngen_cpu_base, uint32);
427 >                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
428 >                        dg.gen_invoke_CPU_im(func, selector);
429 >                        cg_context.done_compile = false;
430 >                        status = COMPILE_CODE_OK;
431 >                }
432 >                // Otherwise, let it generate a call to execute_sheep() which
433 >                // will cause necessary updates to the program counter
434                  break;
435          }
436  
437          default: {      // EMUL_OP
438                  uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
507 #if ENABLE_NATIVE_EMUL_OP
508                typedef void (*emul_op_func_t)(dyngen_cpu_base);
509                emul_op_func_t emul_op_func = 0;
510                switch (emul_op) {
511                case OP_MICROSECONDS:
512                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
513                        break;
514                case OP_IDLE_TIME:
515                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
516                        break;
517                case OP_IDLE_TIME_2:
518                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
519                        break;
520                }
521                if (emul_op_func) {
522                        dg.gen_invoke_CPU(emul_op_func);
523                        cg_context.done_compile = false;
524                        status = COMPILE_CODE_OK;
525                        break;
526                }
527 #endif
439   #if PPC_REENTRANT_JIT
440                  // Try to execute EmulOp trampoline
441                  dg.gen_set_PC_im(cg_context.pc + 4);
# Line 544 | Line 455 | int sheepshaver_cpu::compile1(codegen_co
455          }
456          }
457          return status;
547 #endif
548        return COMPILE_FAILURE;
549 }
550
551 // CPU context to preserve on interrupt
552 sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
553 {
554 #if SAFE_INTERRUPT_PPC >= 2
555        cpu = _cpu;
556        where = _where;
557
558        // Save interrupt context
559        memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
560        pc = cpu->pc();
561        lr = cpu->lr();
562        ctr = cpu->ctr();
563        cr = cpu->get_cr();
564        xer = cpu->get_xer();
565 #endif
458   }
567
568 sheepshaver_cpu::interrupt_context::~interrupt_context()
569 {
570 #if SAFE_INTERRUPT_PPC >= 2
571        // Check whether CPU context was preserved by interrupt
572        if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
573                printf("FATAL: %s: interrupt clobbers registers\n", where);
574                for (int i = 0; i < 32; i++)
575                        if (gpr[i] != cpu->gpr(i))
576                                printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
577        }
578        if (pc != cpu->pc())
579                printf("FATAL: %s: interrupt clobbers PC\n", where);
580        if (lr != cpu->lr())
581                printf("FATAL: %s: interrupt clobbers LR\n", where);
582        if (ctr != cpu->ctr())
583                printf("FATAL: %s: interrupt clobbers CTR\n", where);
584        if (cr != cpu->get_cr())
585                printf("FATAL: %s: interrupt clobbers CR\n", where);
586        if (xer != cpu->get_xer())
587                printf("FATAL: %s: interrupt clobbers XER\n", where);
459   #endif
589 }
460  
461   // Handle MacOS interrupt
462   void sheepshaver_cpu::interrupt(uint32 entry)
463   {
464   #if EMUL_TIME_STATS
465 <        interrupt_count++;
465 >        ppc_interrupt_count++;
466          const clock_t interrupt_start = clock();
467   #endif
468  
599 #if SAFE_INTERRUPT_PPC
600        static int depth = 0;
601        if (depth != 0)
602                printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
603        depth++;
604 #endif
605
606 #if !MULTICORE_CPU
469          // Save program counters and branch registers
470          uint32 saved_pc = pc();
471          uint32 saved_lr = lr();
472          uint32 saved_ctr= ctr();
473          uint32 saved_sp = gpr(1);
612 #endif
474  
475          // Initialize stack pointer to SheepShaver alternate stack base
476          gpr(1) = SignalStackBase() - 64;
# Line 649 | Line 510 | void sheepshaver_cpu::interrupt(uint32 e
510          // Enter nanokernel
511          execute(entry);
512  
652 #if !MULTICORE_CPU
513          // Restore program counters and branch registers
514          pc() = saved_pc;
515          lr() = saved_lr;
516          ctr()= saved_ctr;
517          gpr(1) = saved_sp;
658 #endif
518  
519   #if EMUL_TIME_STATS
520          interrupt_time += (clock() - interrupt_start);
521   #endif
663
664 #if SAFE_INTERRUPT_PPC
665        depth--;
666 #endif
522   }
523  
524   // Execute 68k routine
# Line 857 | Line 712 | inline void sheepshaver_cpu::get_resourc
712   *              SheepShaver CPU engine interface
713   **/
714  
715 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
716 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
862 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
715 > // PowerPC CPU emulator
716 > static sheepshaver_cpu *ppc_cpu = NULL;
717  
718   void FlushCodeCache(uintptr start, uintptr end)
719   {
720          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
721 <        main_cpu->invalidate_cache_range(start, end);
868 < #if MULTICORE_CPU
869 <        interrupt_cpu->invalidate_cache_range(start, end);
870 < #endif
871 < }
872 <
873 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
874 < {
875 < #if MULTICORE_CPU
876 <        current_cpu = new_cpu;
877 < #endif
878 < }
879 <
880 < static inline void cpu_pop()
881 < {
882 < #if MULTICORE_CPU
883 <        current_cpu = main_cpu;
884 < #endif
721 >        ppc_cpu->invalidate_cache_range(start, end);
722   }
723  
724   // Dump PPC registers
725   static void dump_registers(void)
726   {
727 <        current_cpu->dump_registers();
727 >        ppc_cpu->dump_registers();
728   }
729  
730   // Dump log
731   static void dump_log(void)
732   {
733 <        current_cpu->dump_log();
733 >        ppc_cpu->dump_log();
734   }
735  
736   /*
737   *  Initialize CPU emulation
738   */
739  
740 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
740 > sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
741   {
742   #if ENABLE_VOSF
743          // Handle screen fault
# Line 912 | Line 749 | static sigsegv_return_t sigsegv_handler(
749          const uintptr addr = (uintptr)fault_address;
750   #if HAVE_SIGSEGV_SKIP_INSTRUCTION
751          // Ignore writes to ROM
752 <        if ((addr - ROM_BASE) < ROM_SIZE)
752 >        if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
753                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
754  
755          // Get program counter of target CPU
756 <        sheepshaver_cpu * const cpu = current_cpu;
756 >        sheepshaver_cpu * const cpu = ppc_cpu;
757          const uint32 pc = cpu->pc();
758          
759          // Fault in Mac ROM or RAM?
760 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
760 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
761          if (mac_fault) {
762  
763                  // "VM settings" during MacOS 8 installation
# Line 940 | Line 777 | static sigsegv_return_t sigsegv_handler(
777                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
778                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
779                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780 +        
781 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
782 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
783 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
784 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
785 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786  
787                  // Ignore writes to the zero page
788                  else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
# Line 956 | Line 799 | static sigsegv_return_t sigsegv_handler(
799          printf("SIGSEGV\n");
800          printf("  pc %p\n", fault_instruction);
801          printf("  ea %p\n", fault_address);
959        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
802          dump_registers();
803 <        current_cpu->dump_log();
803 >        ppc_cpu->dump_log();
804          enter_mon();
805          QuitEmulator();
806  
# Line 967 | Line 809 | static sigsegv_return_t sigsegv_handler(
809  
810   void init_emul_ppc(void)
811   {
812 +        // Get pointer to KernelData in host address space
813 +        kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
814 +
815          // Initialize main CPU emulator
816 <        main_cpu = new sheepshaver_cpu();
817 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
818 <        main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
816 >        ppc_cpu = new sheepshaver_cpu();
817 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
818 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
819          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
820  
976 #if MULTICORE_CPU
977        // Initialize alternate CPU emulator to handle interrupts
978        interrupt_cpu = new sheepshaver_cpu();
979 #endif
980
981        // Install the handler for SIGSEGV
982        sigsegv_install_handler(sigsegv_handler);
983
821   #if ENABLE_MON
822          // Install "regs" command in cxmon
823          mon_add_command("regs", dump_registers, "regs                     Dump PowerPC registers\n");
# Line 1006 | Line 843 | void exit_emul_ppc(void)
843          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
844          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
845                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
846 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
847 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
848  
849   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
850                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 1022 | Line 861 | void exit_emul_ppc(void)
861          printf("\n");
862   #endif
863  
864 <        delete main_cpu;
1026 < #if MULTICORE_CPU
1027 <        delete interrupt_cpu;
1028 < #endif
864 >        delete ppc_cpu;
865   }
866  
867   #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
# Line 1060 | Line 896 | void init_emul_op_trampolines(basic_dyng
896  
897   void emul_ppc(uint32 entry)
898   {
1063        current_cpu = main_cpu;
899   #if 0
900 <        current_cpu->start_log();
900 >        ppc_cpu->start_log();
901   #endif
902          // start emulation loop and enable code translation or caching
903 <        current_cpu->execute(entry);
903 >        ppc_cpu->execute(entry);
904   }
905  
906   /*
907   *  Handle PowerPC interrupt
908   */
909  
1075 #if ASYNC_IRQ
1076 void HandleInterrupt(void)
1077 {
1078        main_cpu->handle_interrupt();
1079 }
1080 #else
910   void TriggerInterrupt(void)
911   {
912   #if 0
913    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
914   #else
915    // Trigger interrupt to main cpu only
916 <  if (main_cpu)
917 <          main_cpu->trigger_interrupt();
916 >  if (ppc_cpu)
917 >          ppc_cpu->trigger_interrupt();
918   #endif
919   }
1091 #endif
920  
921 < void sheepshaver_cpu::handle_interrupt(void)
921 > void HandleInterrupt(powerpc_registers *r)
922   {
923 <        // Do nothing if interrupts are disabled
924 <        if (*(int32 *)XLM_IRQ_NEST > 0)
925 <                return;
923 > #ifdef USE_SDL_VIDEO
924 >        // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
925 >        SDL_PumpEvents();
926 > #endif
927  
928 <        // Do nothing if there is no interrupt pending
929 <        if (InterruptFlags == 0)
928 >        // Do nothing if interrupts are disabled
929 >        if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
930                  return;
931  
932 <        // Disable MacOS stack sniffer
933 <        WriteMacInt32(0x110, 0);
932 >        // Increment interrupt counter
933 > #if EMUL_TIME_STATS
934 >        interrupt_count++;
935 > #endif
936  
937          // Interrupt action depends on current run mode
938          switch (ReadMacInt32(XLM_RUN_MODE)) {
939          case MODE_68K:
940                  // 68k emulator active, trigger 68k interrupt level 1
1110                assert(current_cpu == main_cpu);
941                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
942 <                set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
942 >                r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
943                  break;
944      
945   #if INTERRUPTS_IN_NATIVE_MODE
946          case MODE_NATIVE:
947                  // 68k emulator inactive, in nanokernel?
948 <                assert(current_cpu == main_cpu);
1119 <                if (gpr(1) != KernelDataAddr) {
1120 <                        interrupt_context ctx(this, "PowerPC mode");
948 >                if (r->gpr[1] != KernelDataAddr) {
949  
950                          // Prepare for 68k interrupt level 1
951                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
# Line 1127 | Line 955 | void sheepshaver_cpu::handle_interrupt(v
955        
956                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
957                          DisableInterrupt();
1130                        cpu_push(interrupt_cpu);
958                          if (ROMType == ROMTYPE_NEWWORLD)
959 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
959 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
960                          else
961 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
1135 <                        cpu_pop();
961 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
962                  }
963                  break;
964   #endif
# Line 1141 | Line 967 | void sheepshaver_cpu::handle_interrupt(v
967          case MODE_EMUL_OP:
968                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
969                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
970 <                        interrupt_context ctx(this, "68k mode");
970 > #if EMUL_TIME_STATS
971 >                        const clock_t interrupt_start = clock();
972 > #endif
973   #if 1
974                          // Execute full 68k interrupt routine
975                          M68kRegisters r;
976                          uint32 old_r25 = ReadMacInt32(XLM_68K_R25);     // Save interrupt level
977                          WriteMacInt32(XLM_68K_R25, 0x21);                       // Execute with interrupt level 1
978 <                        static const uint8 proc[] = {
978 >                        static const uint8 proc_template[] = {
979                                  0x3f, 0x3c, 0x00, 0x00,                 // move.w       #$0000,-(sp)    (fake format word)
980                                  0x48, 0x7a, 0x00, 0x0a,                 // pea          @1(pc)                  (return address)
981                                  0x40, 0xe7,                                             // move         sr,-(sp)                (saved SR)
# Line 1155 | Line 983 | void sheepshaver_cpu::handle_interrupt(v
983                                  0x4e, 0xd0,                                             // jmp          (a0)
984                                  M68K_RTS >> 8, M68K_RTS & 0xff  // @1
985                          };
986 <                        Execute68k((uint32)proc, &r);
986 >                        BUILD_SHEEPSHAVER_PROCEDURE(proc);
987 >                        Execute68k(proc, &r);
988                          WriteMacInt32(XLM_68K_R25, old_r25);            // Restore interrupt level
989   #else
990                          // Only update cursor
# Line 1167 | Line 996 | void sheepshaver_cpu::handle_interrupt(v
996                                  }
997                          }
998   #endif
999 + #if EMUL_TIME_STATS
1000 +                        interrupt_time += (clock() - interrupt_start);
1001 + #endif
1002                  }
1003                  break;
1004   #endif
# Line 1198 | Line 1030 | void sheepshaver_cpu::execute_native_op(
1030                  VideoVBL();
1031                  break;
1032          case NATIVE_VIDEO_DO_DRIVER_IO:
1033 <                gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1202 <                                                                                           (void *)gpr(5), gpr(6), gpr(7));
1033 >                gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1034                  break;
1204 #ifdef WORDS_BIGENDIAN
1035          case NATIVE_ETHER_IRQ:
1036                  EtherIRQ();
1037                  break;
# Line 1223 | Line 1053 | void sheepshaver_cpu::execute_native_op(
1053          case NATIVE_ETHER_RSRV:
1054                  gpr(3) = ether_rsrv((queue_t *)gpr(3));
1055                  break;
1226 #else
1227        case NATIVE_ETHER_INIT:
1228                // FIXME: needs more complicated thunks
1229                gpr(3) = false;
1230                break;
1231 #endif
1056          case NATIVE_SYNC_HOOK:
1057                  gpr(3) = NQD_sync_hook(gpr(3));
1058                  break;
# Line 1283 | Line 1107 | void sheepshaver_cpu::execute_native_op(
1107                  get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1108                  break;
1109          }
1286        case NATIVE_DISABLE_INTERRUPT:
1287                DisableInterrupt();
1288                break;
1289        case NATIVE_ENABLE_INTERRUPT:
1290                EnableInterrupt();
1291                break;
1110          case NATIVE_MAKE_EXECUTABLE:
1111 <                MakeExecutable(0, (void *)gpr(4), gpr(5));
1111 >                MakeExecutable(0, gpr(4), gpr(5));
1112                  break;
1113          case NATIVE_CHECK_LOAD_INVOC:
1114                  check_load_invoc(gpr(3), gpr(4), gpr(5));
# Line 1314 | Line 1132 | void sheepshaver_cpu::execute_native_op(
1132  
1133   void Execute68k(uint32 pc, M68kRegisters *r)
1134   {
1135 <        current_cpu->execute_68k(pc, r);
1135 >        ppc_cpu->execute_68k(pc, r);
1136   }
1137  
1138   /*
# Line 1337 | Line 1155 | void Execute68kTrap(uint16 trap, M68kReg
1155  
1156   uint32 call_macos(uint32 tvect)
1157   {
1158 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1158 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1159   }
1160  
1161   uint32 call_macos1(uint32 tvect, uint32 arg1)
1162   {
1163          const uint32 args[] = { arg1 };
1164 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1164 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1165   }
1166  
1167   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1168   {
1169          const uint32 args[] = { arg1, arg2 };
1170 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1170 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171   }
1172  
1173   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1174   {
1175          const uint32 args[] = { arg1, arg2, arg3 };
1176 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1176 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177   }
1178  
1179   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1180   {
1181          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1182 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1182 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183   }
1184  
1185   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1186   {
1187          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1188 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1188 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1189   }
1190  
1191   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1192   {
1193          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1194 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1194 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1195   }
1196  
1197   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1198   {
1199          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1200 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1200 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1201   }
1202  
1203   /*
# Line 1388 | Line 1206 | uint32 call_macos7(uint32 tvect, uint32
1206  
1207   void get_resource(void)
1208   {
1209 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1209 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1210   }
1211  
1212   void get_1_resource(void)
1213   {
1214 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1214 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1215   }
1216  
1217   void get_ind_resource(void)
1218   {
1219 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1219 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1220   }
1221  
1222   void get_1_ind_resource(void)
1223   {
1224 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1224 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1225   }
1226  
1227   void r_get_resource(void)
1228   {
1229 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1229 >        ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1230   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines