ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.39 by gbeauche, 2004-05-20T11:05:30Z vs.
Revision 1.50 by gbeauche, 2004-07-11T07:54:56Z

# Line 43 | Line 43
43   #include <stdio.h>
44   #include <stdlib.h>
45  
46 + #ifdef USE_SDL_VIDEO
47 + #include <SDL_events.h>
48 + #endif
49 +
50   #if ENABLE_MON
51   #include "mon.h"
52   #include "mon_disass.h"
# Line 52 | Line 56
56   #include "debug.h"
57  
58   // Emulation time statistics
59 < #define EMUL_TIME_STATS 1
59 > #ifndef EMUL_TIME_STATS
60 > #define EMUL_TIME_STATS 0
61 > #endif
62  
63   #if EMUL_TIME_STATS
64   static clock_t emul_start_time;
65 < static uint32 interrupt_count = 0;
65 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
66   static clock_t interrupt_time = 0;
67   static uint32 exec68k_count = 0;
68   static clock_t exec68k_time = 0;
# Line 84 | Line 90 | extern "C" void check_load_invoc(uint32
90   // PowerPC EmulOp to exit from emulation looop
91   const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
92  
87 // Enable multicore (main/interrupts) cpu emulation?
88 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
89
93   // Enable interrupt routine safety checks?
94   #define SAFE_INTERRUPT_PPC 1
95  
# Line 102 | Line 105 | const uint32 POWERPC_EXEC_RETURN = POWER
105   // Interrupts in native mode?
106   #define INTERRUPTS_IN_NATIVE_MODE 1
107  
105 // Enable native EMUL_OPs to be run without a mode switch
106 #define ENABLE_NATIVE_EMUL_OP 1
107
108   // Pointer to Kernel Data
109   static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
110  
111   // SIGSEGV handler
112 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112 > sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113  
114   #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115   // Special trampolines for EmulOp and NativeOp
# Line 139 | Line 139 | class sheepshaver_cpu
139          void init_decoder();
140          void execute_sheep(uint32 opcode);
141  
142        // Filter out EMUL_OP routines that only call native code
143        bool filter_execute_emul_op(uint32 emul_op);
144
145        // "Native" EMUL_OP routines
146        void execute_emul_op_microseconds();
147        void execute_emul_op_idle_time_1();
148        void execute_emul_op_idle_time_2();
149
142          // CPU context to preserve on interrupt
143          class interrupt_context {
144                  uint32 gpr[32];
# Line 271 | Line 263 | typedef bit_field< 19, 19 > FN_field;
263   typedef bit_field< 20, 25 > NATIVE_OP_field;
264   typedef bit_field< 26, 31 > EMUL_OP_field;
265  
274 // "Native" EMUL_OP routines
275 #define GPR_A(REG) gpr(16 + (REG))
276 #define GPR_D(REG) gpr( 8 + (REG))
277
278 void sheepshaver_cpu::execute_emul_op_microseconds()
279 {
280        Microseconds(GPR_A(0), GPR_D(0));
281 }
282
283 void sheepshaver_cpu::execute_emul_op_idle_time_1()
284 {
285        // Sleep if no events pending
286        if (ReadMacInt32(0x14c) == 0)
287                Delay_usec(16667);
288        GPR_A(0) = ReadMacInt32(0x2b6);
289 }
290
291 void sheepshaver_cpu::execute_emul_op_idle_time_2()
292 {
293        // Sleep if no events pending
294        if (ReadMacInt32(0x14c) == 0)
295                Delay_usec(16667);
296        GPR_D(0) = (uint32)-2;
297 }
298
299 // Filter out EMUL_OP routines that only call native code
300 bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
301 {
302        switch (emul_op) {
303        case OP_MICROSECONDS:
304                execute_emul_op_microseconds();
305                return true;
306        case OP_IDLE_TIME:
307                execute_emul_op_idle_time_1();
308                return true;
309        case OP_IDLE_TIME_2:
310                execute_emul_op_idle_time_2();
311                return true;
312        }
313        return false;
314 }
315
266   // Execute EMUL_OP routine
267   void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
268   {
319 #if ENABLE_NATIVE_EMUL_OP
320        // First, filter out EMUL_OPs that can be executed without a mode switch
321        if (filter_execute_emul_op(emul_op))
322                return;
323 #endif
324
269          M68kRegisters r68;
270          WriteMacInt32(XLM_68K_R25, gpr(25));
271          WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
# Line 447 | Line 391 | int sheepshaver_cpu::compile1(codegen_co
391                          status = COMPILE_CODE_OK;
392                          break;
393   #endif
450                case NATIVE_DISABLE_INTERRUPT:
451                        dg.gen_invoke(DisableInterrupt);
452                        status = COMPILE_CODE_OK;
453                        break;
454                case NATIVE_ENABLE_INTERRUPT:
455                        dg.gen_invoke(EnableInterrupt);
456                        status = COMPILE_CODE_OK;
457                        break;
394                  case NATIVE_BITBLT:
395                          dg.gen_load_T0_GPR(3);
396                          dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
# Line 472 | Line 408 | int sheepshaver_cpu::compile1(codegen_co
408                          break;
409                  }
410                  // Could we fully translate this NativeOp?
411 <                if (FN_field::test(opcode)) {
412 <                        if (status != COMPILE_FAILURE) {
411 >                if (status == COMPILE_CODE_OK) {
412 >                        if (!FN_field::test(opcode))
413 >                                cg_context.done_compile = false;
414 >                        else {
415                                  dg.gen_load_A0_LR();
416                                  dg.gen_set_PC_A0();
417 +                                cg_context.done_compile = true;
418                          }
480                        cg_context.done_compile = true;
481                        break;
482                }
483                else if (status != COMPILE_FAILURE) {
484                        cg_context.done_compile = false;
419                          break;
420                  }
421   #if PPC_REENTRANT_JIT
422                  // Try to execute NativeOp trampoline
423 <                dg.gen_set_PC_im(cg_context.pc + 4);
423 >                if (!FN_field::test(opcode))
424 >                        dg.gen_set_PC_im(cg_context.pc + 4);
425 >                else {
426 >                        dg.gen_load_A0_LR();
427 >                        dg.gen_set_PC_A0();
428 >                }
429                  dg.gen_mov_32_T0_im(selector);
430                  dg.gen_jmp(native_op_trampoline);
431                  cg_context.done_compile = true;
# Line 494 | Line 433 | int sheepshaver_cpu::compile1(codegen_co
433                  break;
434   #endif
435                  // Invoke NativeOp handler
436 <                typedef void (*func_t)(dyngen_cpu_base, uint32);
437 <                func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
438 <                dg.gen_invoke_CPU_im(func, selector);
439 <                cg_context.done_compile = false;
440 <                status = COMPILE_CODE_OK;
436 >                if (!FN_field::test(opcode)) {
437 >                        typedef void (*func_t)(dyngen_cpu_base, uint32);
438 >                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
439 >                        dg.gen_invoke_CPU_im(func, selector);
440 >                        cg_context.done_compile = false;
441 >                        status = COMPILE_CODE_OK;
442 >                }
443 >                // Otherwise, let it generate a call to execute_sheep() which
444 >                // will cause necessary updates to the program counter
445                  break;
446          }
447  
448          default: {      // EMUL_OP
449                  uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
507 #if ENABLE_NATIVE_EMUL_OP
508                typedef void (*emul_op_func_t)(dyngen_cpu_base);
509                emul_op_func_t emul_op_func = 0;
510                switch (emul_op) {
511                case OP_MICROSECONDS:
512                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
513                        break;
514                case OP_IDLE_TIME:
515                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
516                        break;
517                case OP_IDLE_TIME_2:
518                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
519                        break;
520                }
521                if (emul_op_func) {
522                        dg.gen_invoke_CPU(emul_op_func);
523                        cg_context.done_compile = false;
524                        status = COMPILE_CODE_OK;
525                        break;
526                }
527 #endif
450   #if PPC_REENTRANT_JIT
451                  // Try to execute EmulOp trampoline
452                  dg.gen_set_PC_im(cg_context.pc + 4);
# Line 592 | Line 514 | sheepshaver_cpu::interrupt_context::~int
514   void sheepshaver_cpu::interrupt(uint32 entry)
515   {
516   #if EMUL_TIME_STATS
517 <        interrupt_count++;
517 >        ppc_interrupt_count++;
518          const clock_t interrupt_start = clock();
519   #endif
520  
# Line 603 | Line 525 | void sheepshaver_cpu::interrupt(uint32 e
525          depth++;
526   #endif
527  
606 #if !MULTICORE_CPU
528          // Save program counters and branch registers
529          uint32 saved_pc = pc();
530          uint32 saved_lr = lr();
531          uint32 saved_ctr= ctr();
532          uint32 saved_sp = gpr(1);
612 #endif
533  
534          // Initialize stack pointer to SheepShaver alternate stack base
535          gpr(1) = SignalStackBase() - 64;
# Line 649 | Line 569 | void sheepshaver_cpu::interrupt(uint32 e
569          // Enter nanokernel
570          execute(entry);
571  
652 #if !MULTICORE_CPU
572          // Restore program counters and branch registers
573          pc() = saved_pc;
574          lr() = saved_lr;
575          ctr()= saved_ctr;
576          gpr(1) = saved_sp;
658 #endif
577  
578   #if EMUL_TIME_STATS
579          interrupt_time += (clock() - interrupt_start);
# Line 857 | Line 775 | inline void sheepshaver_cpu::get_resourc
775   *              SheepShaver CPU engine interface
776   **/
777  
778 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
779 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
862 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
778 > // PowerPC CPU emulator
779 > static sheepshaver_cpu *ppc_cpu = NULL;
780  
781   void FlushCodeCache(uintptr start, uintptr end)
782   {
783          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
784 <        main_cpu->invalidate_cache_range(start, end);
868 < #if MULTICORE_CPU
869 <        interrupt_cpu->invalidate_cache_range(start, end);
870 < #endif
871 < }
872 <
873 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
874 < {
875 < #if MULTICORE_CPU
876 <        current_cpu = new_cpu;
877 < #endif
878 < }
879 <
880 < static inline void cpu_pop()
881 < {
882 < #if MULTICORE_CPU
883 <        current_cpu = main_cpu;
884 < #endif
784 >        ppc_cpu->invalidate_cache_range(start, end);
785   }
786  
787   // Dump PPC registers
788   static void dump_registers(void)
789   {
790 <        current_cpu->dump_registers();
790 >        ppc_cpu->dump_registers();
791   }
792  
793   // Dump log
794   static void dump_log(void)
795   {
796 <        current_cpu->dump_log();
796 >        ppc_cpu->dump_log();
797   }
798  
799   /*
800   *  Initialize CPU emulation
801   */
802  
803 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
803 > sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
804   {
805   #if ENABLE_VOSF
806          // Handle screen fault
# Line 916 | Line 816 | static sigsegv_return_t sigsegv_handler(
816                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
817  
818          // Get program counter of target CPU
819 <        sheepshaver_cpu * const cpu = current_cpu;
819 >        sheepshaver_cpu * const cpu = ppc_cpu;
820          const uint32 pc = cpu->pc();
821          
822          // Fault in Mac ROM or RAM?
823 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
823 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
824          if (mac_fault) {
825  
826                  // "VM settings" during MacOS 8 installation
# Line 940 | Line 840 | static sigsegv_return_t sigsegv_handler(
840                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
841                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
842                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
843 +        
844 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
845 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
846 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
847 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
848 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
849  
850                  // Ignore writes to the zero page
851                  else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
# Line 956 | Line 862 | static sigsegv_return_t sigsegv_handler(
862          printf("SIGSEGV\n");
863          printf("  pc %p\n", fault_instruction);
864          printf("  ea %p\n", fault_address);
959        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
865          dump_registers();
866 <        current_cpu->dump_log();
866 >        ppc_cpu->dump_log();
867          enter_mon();
868          QuitEmulator();
869  
# Line 968 | Line 873 | static sigsegv_return_t sigsegv_handler(
873   void init_emul_ppc(void)
874   {
875          // Initialize main CPU emulator
876 <        main_cpu = new sheepshaver_cpu();
877 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
878 <        main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
876 >        ppc_cpu = new sheepshaver_cpu();
877 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
878 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
879          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
880  
976 #if MULTICORE_CPU
977        // Initialize alternate CPU emulator to handle interrupts
978        interrupt_cpu = new sheepshaver_cpu();
979 #endif
980
981        // Install the handler for SIGSEGV
982        sigsegv_install_handler(sigsegv_handler);
983
881   #if ENABLE_MON
882          // Install "regs" command in cxmon
883          mon_add_command("regs", dump_registers, "regs                     Dump PowerPC registers\n");
# Line 1006 | Line 903 | void exit_emul_ppc(void)
903          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
904          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
905                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
906 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
907 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
908  
909   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
910                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 1022 | Line 921 | void exit_emul_ppc(void)
921          printf("\n");
922   #endif
923  
924 <        delete main_cpu;
1026 < #if MULTICORE_CPU
1027 <        delete interrupt_cpu;
1028 < #endif
924 >        delete ppc_cpu;
925   }
926  
927   #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
# Line 1060 | Line 956 | void init_emul_op_trampolines(basic_dyng
956  
957   void emul_ppc(uint32 entry)
958   {
1063        current_cpu = main_cpu;
959   #if 0
960 <        current_cpu->start_log();
960 >        ppc_cpu->start_log();
961   #endif
962          // start emulation loop and enable code translation or caching
963 <        current_cpu->execute(entry);
963 >        ppc_cpu->execute(entry);
964   }
965  
966   /*
967   *  Handle PowerPC interrupt
968   */
969  
1075 #if ASYNC_IRQ
1076 void HandleInterrupt(void)
1077 {
1078        main_cpu->handle_interrupt();
1079 }
1080 #else
970   void TriggerInterrupt(void)
971   {
972   #if 0
973    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
974   #else
975    // Trigger interrupt to main cpu only
976 <  if (main_cpu)
977 <          main_cpu->trigger_interrupt();
976 >  if (ppc_cpu)
977 >          ppc_cpu->trigger_interrupt();
978   #endif
979   }
1091 #endif
980  
981   void sheepshaver_cpu::handle_interrupt(void)
982   {
983 + #ifdef USE_SDL_VIDEO
984 +        // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
985 +        SDL_PumpEvents();
986 + #endif
987 +
988          // Do nothing if interrupts are disabled
989 <        if (*(int32 *)XLM_IRQ_NEST > 0)
989 >        if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
990                  return;
991  
992 <        // Do nothing if there is no interrupt pending
993 <        if (InterruptFlags == 0)
994 <                return;
992 >        // Current interrupt nest level
993 >        static int interrupt_depth = 0;
994 >        ++interrupt_depth;
995 > #if EMUL_TIME_STATS
996 >        interrupt_count++;
997 > #endif
998  
999          // Disable MacOS stack sniffer
1000          WriteMacInt32(0x110, 0);
# Line 1107 | Line 1003 | void sheepshaver_cpu::handle_interrupt(v
1003          switch (ReadMacInt32(XLM_RUN_MODE)) {
1004          case MODE_68K:
1005                  // 68k emulator active, trigger 68k interrupt level 1
1110                assert(current_cpu == main_cpu);
1006                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1007                  set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1008                  break;
# Line 1115 | Line 1010 | void sheepshaver_cpu::handle_interrupt(v
1010   #if INTERRUPTS_IN_NATIVE_MODE
1011          case MODE_NATIVE:
1012                  // 68k emulator inactive, in nanokernel?
1013 <                assert(current_cpu == main_cpu);
1119 <                if (gpr(1) != KernelDataAddr) {
1013 >                if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1014                          interrupt_context ctx(this, "PowerPC mode");
1015  
1016                          // Prepare for 68k interrupt level 1
# Line 1127 | Line 1021 | void sheepshaver_cpu::handle_interrupt(v
1021        
1022                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1023                          DisableInterrupt();
1130                        cpu_push(interrupt_cpu);
1024                          if (ROMType == ROMTYPE_NEWWORLD)
1025 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
1025 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1026                          else
1027 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
1135 <                        cpu_pop();
1027 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1028                  }
1029                  break;
1030   #endif
# Line 1142 | Line 1034 | void sheepshaver_cpu::handle_interrupt(v
1034                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1035                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1036                          interrupt_context ctx(this, "68k mode");
1037 + #if EMUL_TIME_STATS
1038 +                        const clock_t interrupt_start = clock();
1039 + #endif
1040   #if 1
1041                          // Execute full 68k interrupt routine
1042                          M68kRegisters r;
# Line 1167 | Line 1062 | void sheepshaver_cpu::handle_interrupt(v
1062                                  }
1063                          }
1064   #endif
1065 + #if EMUL_TIME_STATS
1066 +                        interrupt_time += (clock() - interrupt_start);
1067 + #endif
1068                  }
1069                  break;
1070   #endif
1071          }
1072 +
1073 +        // We are done with this interrupt
1074 +        --interrupt_depth;
1075   }
1076  
1077   static void get_resource(void);
# Line 1201 | Line 1102 | void sheepshaver_cpu::execute_native_op(
1102                  gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1103                                                                                             (void *)gpr(5), gpr(6), gpr(7));
1104                  break;
1204 #ifdef WORDS_BIGENDIAN
1105          case NATIVE_ETHER_IRQ:
1106                  EtherIRQ();
1107                  break;
# Line 1223 | Line 1123 | void sheepshaver_cpu::execute_native_op(
1123          case NATIVE_ETHER_RSRV:
1124                  gpr(3) = ether_rsrv((queue_t *)gpr(3));
1125                  break;
1226 #else
1227        case NATIVE_ETHER_INIT:
1228                // FIXME: needs more complicated thunks
1229                gpr(3) = false;
1230                break;
1231 #endif
1126          case NATIVE_SYNC_HOOK:
1127                  gpr(3) = NQD_sync_hook(gpr(3));
1128                  break;
# Line 1283 | Line 1177 | void sheepshaver_cpu::execute_native_op(
1177                  get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1178                  break;
1179          }
1286        case NATIVE_DISABLE_INTERRUPT:
1287                DisableInterrupt();
1288                break;
1289        case NATIVE_ENABLE_INTERRUPT:
1290                EnableInterrupt();
1291                break;
1180          case NATIVE_MAKE_EXECUTABLE:
1181                  MakeExecutable(0, (void *)gpr(4), gpr(5));
1182                  break;
# Line 1314 | Line 1202 | void sheepshaver_cpu::execute_native_op(
1202  
1203   void Execute68k(uint32 pc, M68kRegisters *r)
1204   {
1205 <        current_cpu->execute_68k(pc, r);
1205 >        ppc_cpu->execute_68k(pc, r);
1206   }
1207  
1208   /*
# Line 1337 | Line 1225 | void Execute68kTrap(uint16 trap, M68kReg
1225  
1226   uint32 call_macos(uint32 tvect)
1227   {
1228 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1228 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1229   }
1230  
1231   uint32 call_macos1(uint32 tvect, uint32 arg1)
1232   {
1233          const uint32 args[] = { arg1 };
1234 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1234 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1235   }
1236  
1237   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1238   {
1239          const uint32 args[] = { arg1, arg2 };
1240 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1240 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1241   }
1242  
1243   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1244   {
1245          const uint32 args[] = { arg1, arg2, arg3 };
1246 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1246 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1247   }
1248  
1249   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1250   {
1251          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1252 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1252 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1253   }
1254  
1255   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1256   {
1257          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1258 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1258 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1259   }
1260  
1261   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1262   {
1263          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1264 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1264 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1265   }
1266  
1267   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1268   {
1269          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1270 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1270 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1271   }
1272  
1273   /*
# Line 1388 | Line 1276 | uint32 call_macos7(uint32 tvect, uint32
1276  
1277   void get_resource(void)
1278   {
1279 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1279 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1280   }
1281  
1282   void get_1_resource(void)
1283   {
1284 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1284 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1285   }
1286  
1287   void get_ind_resource(void)
1288   {
1289 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1289 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1290   }
1291  
1292   void get_1_ind_resource(void)
1293   {
1294 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1294 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1295   }
1296  
1297   void r_get_resource(void)
1298   {
1299 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1299 >        ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1300   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines