ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.30 by gbeauche, 2004-02-24T11:12:54Z vs.
Revision 1.67 by gbeauche, 2006-01-21T17:18:53Z

# Line 1 | Line 1
1   /*
2   *  sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3   *
4 < *  SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
4 > *  SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5   *
6   *  This program is free software; you can redistribute it and/or modify
7   *  it under the terms of the GNU General Public License as published by
# Line 38 | Line 38
38   #include "name_registry.h"
39   #include "serial.h"
40   #include "ether.h"
41 + #include "timer.h"
42  
43   #include <stdio.h>
44 + #include <stdlib.h>
45 + #ifdef HAVE_MALLOC_H
46 + #include <malloc.h>
47 + #endif
48 +
49 + #ifdef USE_SDL_VIDEO
50 + #include <SDL_events.h>
51 + #endif
52  
53   #if ENABLE_MON
54   #include "mon.h"
# Line 50 | Line 59
59   #include "debug.h"
60  
61   // Emulation time statistics
62 < #define EMUL_TIME_STATS 1
62 > #ifndef EMUL_TIME_STATS
63 > #define EMUL_TIME_STATS 0
64 > #endif
65  
66   #if EMUL_TIME_STATS
67   static clock_t emul_start_time;
68 < static uint32 interrupt_count = 0;
68 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69   static clock_t interrupt_time = 0;
70   static uint32 exec68k_count = 0;
71   static clock_t exec68k_time = 0;
# Line 82 | Line 93 | extern "C" void check_load_invoc(uint32
93   // PowerPC EmulOp to exit from emulation looop
94   const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95  
85 // Enable multicore (main/interrupts) cpu emulation?
86 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87
96   // Enable Execute68k() safety checks?
97   #define SAFE_EXEC_68K 1
98  
# Line 98 | Line 106 | const uint32 POWERPC_EXEC_RETURN = POWER
106   #define INTERRUPTS_IN_NATIVE_MODE 1
107  
108   // Pointer to Kernel Data
109 < static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
109 > static KernelData * kernel_data;
110  
111   // SIGSEGV handler
112 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112 > sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 >
114 > #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115 > // Special trampolines for EmulOp and NativeOp
116 > static uint8 *emul_op_trampoline;
117 > static uint8 *native_op_trampoline;
118 > #endif
119  
120   // JIT Compiler enabled?
121   static inline bool enable_jit_p()
# Line 136 | Line 150 | public:
150          uint32 get_xer() const          { return xer().get(); }
151          void set_xer(uint32 v)          { xer().set(v); }
152  
153 +        // Execute NATIVE_OP routine
154 +        void execute_native_op(uint32 native_op);
155 +
156          // Execute EMUL_OP routine
157          void execute_emul_op(uint32 emul_op);
158  
# Line 148 | Line 165 | public:
165          // Execute MacOS/PPC code
166          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167  
168 + #if PPC_ENABLE_JIT
169          // Compile one instruction
170 <        virtual bool compile1(codegen_context_t & cg_context);
171 <
170 >        virtual int compile1(codegen_context_t & cg_context);
171 > #endif
172          // Resource manager thunk
173          void get_resource(uint32 old_get_resource);
174  
175          // Handle MacOS interrupt
176          void interrupt(uint32 entry);
159        void handle_interrupt();
177  
178          // Make sure the SIGSEGV handler can access CPU registers
179          friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180   };
181  
165 // Memory allocator returning areas aligned on 16-byte boundaries
166 void *operator new(size_t size)
167 {
168        void *p;
169
170        /* XXX: try different approaches */
171        if (posix_memalign(&p, 16, size) != 0)
172                throw std::bad_alloc();
173
174        return p;
175 }
176
177 void operator delete(void *p)
178 {
179        free(p);
180 }
181
182   sheepshaver_cpu::sheepshaver_cpu()
183          : powerpc_cpu(enable_jit_p())
184   {
# Line 205 | Line 205 | void sheepshaver_cpu::init_decoder()
205          }
206   }
207  
208 // Forward declaration for native opcode handler
209 static void NativeOp(int selector);
210
208   /*              NativeOp instruction format:
209 <                +------------+--------------------------+--+----------+------------+
210 <                |      6     |                          |FN|    OP    |      2     |
211 <                +------------+--------------------------+--+----------+------------+
212 <                 0         5 |6                       19 20 21      25 26        31
209 >                +------------+-------------------------+--+-----------+------------+
210 >                |      6     |                         |FN|    OP     |      2     |
211 >                +------------+-------------------------+--+-----------+------------+
212 >                 0         5 |6                      18 19 20      25 26        31
213   */
214  
215 < typedef bit_field< 20, 20 > FN_field;
216 < typedef bit_field< 21, 25 > NATIVE_OP_field;
215 > typedef bit_field< 19, 19 > FN_field;
216 > typedef bit_field< 20, 25 > NATIVE_OP_field;
217   typedef bit_field< 26, 31 > EMUL_OP_field;
218  
219   // Execute EMUL_OP routine
# Line 230 | Line 227 | void sheepshaver_cpu::execute_emul_op(ui
227          for (int i = 0; i < 7; i++)
228                  r68.a[i] = gpr(16 + i);
229          r68.a[7] = gpr(1);
230 <        uint32 saved_cr = get_cr() & CR_field<2>::mask();
230 >        uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
231          uint32 saved_xer = get_xer();
232          EmulOp(&r68, gpr(24), emul_op);
233          set_cr(saved_cr);
# Line 259 | Line 256 | void sheepshaver_cpu::execute_sheep(uint
256                  break;
257  
258          case 2:         // EXEC_NATIVE
259 <                NativeOp(NATIVE_OP_field::extract(opcode));
259 >                execute_native_op(NATIVE_OP_field::extract(opcode));
260                  if (FN_field::test(opcode))
261                          pc() = lr();
262                  else
# Line 274 | Line 271 | void sheepshaver_cpu::execute_sheep(uint
271   }
272  
273   // Compile one instruction
277 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
278 {
274   #if PPC_ENABLE_JIT
275 + int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
276 + {
277          const instr_info_t *ii = cg_context.instr_info;
278          if (ii->mnemo != PPC_I(SHEEP))
279 <                return false;
279 >                return COMPILE_FAILURE;
280  
281 <        bool compiled = false;
281 >        int status = COMPILE_FAILURE;
282          powerpc_dyngen & dg = cg_context.codegen;
283          uint32 opcode = cg_context.opcode;
284  
285          switch (opcode & 0x3f) {
286          case 0:         // EMUL_RETURN
287                  dg.gen_invoke(QuitEmulator);
288 <                compiled = true;
288 >                status = COMPILE_CODE_OK;
289                  break;
290  
291          case 1:         // EXEC_RETURN
292                  dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
293 <                compiled = true;
293 >                // Don't check for pending interrupts, we do know we have to
294 >                // get out of this block ASAP
295 >                dg.gen_exec_return();
296 >                status = COMPILE_EPILOGUE_OK;
297                  break;
298  
299          case 2: {       // EXEC_NATIVE
300                  uint32 selector = NATIVE_OP_field::extract(opcode);
301                  switch (selector) {
302 + #if !PPC_REENTRANT_JIT
303 +                // Filter out functions that may invoke Execute68k() or
304 +                // CallMacOS(), this would break reentrancy as they could
305 +                // invalidate the translation cache and even overwrite
306 +                // continuation code when we are done with them.
307                  case NATIVE_PATCH_NAME_REGISTRY:
308                          dg.gen_invoke(DoPatchNameRegistry);
309 <                        compiled = true;
309 >                        status = COMPILE_CODE_OK;
310                          break;
311                  case NATIVE_VIDEO_INSTALL_ACCEL:
312                          dg.gen_invoke(VideoInstallAccel);
313 <                        compiled = true;
313 >                        status = COMPILE_CODE_OK;
314                          break;
315                  case NATIVE_VIDEO_VBL:
316                          dg.gen_invoke(VideoVBL);
317 <                        compiled = true;
317 >                        status = COMPILE_CODE_OK;
318                          break;
319                  case NATIVE_GET_RESOURCE:
320                  case NATIVE_GET_1_RESOURCE:
# Line 327 | Line 332 | bool sheepshaver_cpu::compile1(codegen_c
332                          typedef void (*func_t)(dyngen_cpu_base, uint32);
333                          func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
334                          dg.gen_invoke_CPU_im(func, old_get_resource);
335 <                        compiled = true;
335 >                        status = COMPILE_CODE_OK;
336                          break;
337                  }
333                case NATIVE_DISABLE_INTERRUPT:
334                        dg.gen_invoke(DisableInterrupt);
335                        compiled = true;
336                        break;
337                case NATIVE_ENABLE_INTERRUPT:
338                        dg.gen_invoke(EnableInterrupt);
339                        compiled = true;
340                        break;
338                  case NATIVE_CHECK_LOAD_INVOC:
339                          dg.gen_load_T0_GPR(3);
340                          dg.gen_load_T1_GPR(4);
341                          dg.gen_se_16_32_T1();
342                          dg.gen_load_T2_GPR(5);
343                          dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
344 <                        compiled = true;
344 >                        status = COMPILE_CODE_OK;
345 >                        break;
346 > #endif
347 >                case NATIVE_BITBLT:
348 >                        dg.gen_load_T0_GPR(3);
349 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
350 >                        status = COMPILE_CODE_OK;
351 >                        break;
352 >                case NATIVE_INVRECT:
353 >                        dg.gen_load_T0_GPR(3);
354 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
355 >                        status = COMPILE_CODE_OK;
356 >                        break;
357 >                case NATIVE_FILLRECT:
358 >                        dg.gen_load_T0_GPR(3);
359 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
360 >                        status = COMPILE_CODE_OK;
361                          break;
362                  }
363 <                if (FN_field::test(opcode)) {
364 <                        if (compiled) {
363 >                // Could we fully translate this NativeOp?
364 >                if (status == COMPILE_CODE_OK) {
365 >                        if (!FN_field::test(opcode))
366 >                                cg_context.done_compile = false;
367 >                        else {
368                                  dg.gen_load_A0_LR();
369                                  dg.gen_set_PC_A0();
370 +                                cg_context.done_compile = true;
371                          }
372 <                        cg_context.done_compile = true;
372 >                        break;
373                  }
374 <                else
374 > #if PPC_REENTRANT_JIT
375 >                // Try to execute NativeOp trampoline
376 >                if (!FN_field::test(opcode))
377 >                        dg.gen_set_PC_im(cg_context.pc + 4);
378 >                else {
379 >                        dg.gen_load_A0_LR();
380 >                        dg.gen_set_PC_A0();
381 >                }
382 >                dg.gen_mov_32_T0_im(selector);
383 >                dg.gen_jmp(native_op_trampoline);
384 >                cg_context.done_compile = true;
385 >                status = COMPILE_EPILOGUE_OK;
386 >                break;
387 > #endif
388 >                // Invoke NativeOp handler
389 >                if (!FN_field::test(opcode)) {
390 >                        typedef void (*func_t)(dyngen_cpu_base, uint32);
391 >                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
392 >                        dg.gen_invoke_CPU_im(func, selector);
393                          cg_context.done_compile = false;
394 +                        status = COMPILE_CODE_OK;
395 +                }
396 +                // Otherwise, let it generate a call to execute_sheep() which
397 +                // will cause necessary updates to the program counter
398                  break;
399          }
400  
401          default: {      // EMUL_OP
402 +                uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
403 + #if PPC_REENTRANT_JIT
404 +                // Try to execute EmulOp trampoline
405 +                dg.gen_set_PC_im(cg_context.pc + 4);
406 +                dg.gen_mov_32_T0_im(emul_op);
407 +                dg.gen_jmp(emul_op_trampoline);
408 +                cg_context.done_compile = true;
409 +                status = COMPILE_EPILOGUE_OK;
410 +                break;
411 + #endif
412 +                // Invoke EmulOp handler
413                  typedef void (*func_t)(dyngen_cpu_base, uint32);
414                  func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
415 <                dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
415 >                dg.gen_invoke_CPU_im(func, emul_op);
416                  cg_context.done_compile = false;
417 <                compiled = true;
417 >                status = COMPILE_CODE_OK;
418                  break;
419          }
420          }
421 <        return compiled;
372 < #endif
373 <        return false;
421 >        return status;
422   }
423 + #endif
424  
425   // Handle MacOS interrupt
426   void sheepshaver_cpu::interrupt(uint32 entry)
427   {
428   #if EMUL_TIME_STATS
429 <        interrupt_count++;
429 >        ppc_interrupt_count++;
430          const clock_t interrupt_start = clock();
431   #endif
432  
384 #if !MULTICORE_CPU
433          // Save program counters and branch registers
434          uint32 saved_pc = pc();
435          uint32 saved_lr = lr();
436          uint32 saved_ctr= ctr();
437          uint32 saved_sp = gpr(1);
390 #endif
438  
439          // Initialize stack pointer to SheepShaver alternate stack base
440          gpr(1) = SignalStackBase() - 64;
# Line 427 | Line 474 | void sheepshaver_cpu::interrupt(uint32 e
474          // Enter nanokernel
475          execute(entry);
476  
430 #if !MULTICORE_CPU
477          // Restore program counters and branch registers
478          pc() = saved_pc;
479          lr() = saved_lr;
480          ctr()= saved_ctr;
481          gpr(1) = saved_sp;
436 #endif
482  
483   #if EMUL_TIME_STATS
484          interrupt_time += (clock() - interrupt_start);
# Line 631 | Line 676 | inline void sheepshaver_cpu::get_resourc
676   *              SheepShaver CPU engine interface
677   **/
678  
679 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
680 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
636 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
679 > // PowerPC CPU emulator
680 > static sheepshaver_cpu *ppc_cpu = NULL;
681  
682   void FlushCodeCache(uintptr start, uintptr end)
683   {
684          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
685 <        main_cpu->invalidate_cache_range(start, end);
642 < #if MULTICORE_CPU
643 <        interrupt_cpu->invalidate_cache_range(start, end);
644 < #endif
645 < }
646 <
647 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
648 < {
649 < #if MULTICORE_CPU
650 <        current_cpu = new_cpu;
651 < #endif
652 < }
653 <
654 < static inline void cpu_pop()
655 < {
656 < #if MULTICORE_CPU
657 <        current_cpu = main_cpu;
658 < #endif
685 >        ppc_cpu->invalidate_cache_range(start, end);
686   }
687  
688   // Dump PPC registers
689   static void dump_registers(void)
690   {
691 <        current_cpu->dump_registers();
691 >        ppc_cpu->dump_registers();
692   }
693  
694   // Dump log
695   static void dump_log(void)
696   {
697 <        current_cpu->dump_log();
697 >        ppc_cpu->dump_log();
698   }
699  
700   /*
701   *  Initialize CPU emulation
702   */
703  
704 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
704 > sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
705   {
706   #if ENABLE_VOSF
707          // Handle screen fault
# Line 686 | Line 713 | static sigsegv_return_t sigsegv_handler(
713          const uintptr addr = (uintptr)fault_address;
714   #if HAVE_SIGSEGV_SKIP_INSTRUCTION
715          // Ignore writes to ROM
716 <        if ((addr - ROM_BASE) < ROM_SIZE)
716 >        if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
717                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718  
719          // Get program counter of target CPU
720 <        sheepshaver_cpu * const cpu = current_cpu;
720 >        sheepshaver_cpu * const cpu = ppc_cpu;
721          const uint32 pc = cpu->pc();
722          
723          // Fault in Mac ROM or RAM?
724 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
724 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
725          if (mac_fault) {
726  
727                  // "VM settings" during MacOS 8 installation
# Line 714 | Line 741 | static sigsegv_return_t sigsegv_handler(
741                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
743                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
744 +        
745 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
746 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
747 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
748 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
749 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750  
751                  // Ignore writes to the zero page
752                  else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
# Line 727 | Line 760 | static sigsegv_return_t sigsegv_handler(
760   #error "FIXME: You don't have the capability to skip instruction within signal handlers"
761   #endif
762  
763 <        printf("SIGSEGV\n");
764 <        printf("  pc %p\n", fault_instruction);
765 <        printf("  ea %p\n", fault_address);
733 <        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
763 >        fprintf(stderr, "SIGSEGV\n");
764 >        fprintf(stderr, "  pc %p\n", fault_instruction);
765 >        fprintf(stderr, "  ea %p\n", fault_address);
766          dump_registers();
767 <        current_cpu->dump_log();
767 >        ppc_cpu->dump_log();
768          enter_mon();
769          QuitEmulator();
770  
# Line 741 | Line 773 | static sigsegv_return_t sigsegv_handler(
773  
774   void init_emul_ppc(void)
775   {
776 +        // Get pointer to KernelData in host address space
777 +        kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
778 +
779          // Initialize main CPU emulator
780 <        main_cpu = new sheepshaver_cpu();
781 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
782 <        main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
780 >        ppc_cpu = new sheepshaver_cpu();
781 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
782 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
783          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
784  
750 #if MULTICORE_CPU
751        // Initialize alternate CPU emulator to handle interrupts
752        interrupt_cpu = new sheepshaver_cpu();
753 #endif
754
755        // Install the handler for SIGSEGV
756        sigsegv_install_handler(sigsegv_handler);
757
785   #if ENABLE_MON
786          // Install "regs" command in cxmon
787          mon_add_command("regs", dump_registers, "regs                     Dump PowerPC registers\n");
# Line 780 | Line 807 | void exit_emul_ppc(void)
807          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
808          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
809                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
810 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
811 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
812  
813   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
814                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 796 | Line 825 | void exit_emul_ppc(void)
825          printf("\n");
826   #endif
827  
828 <        delete main_cpu;
829 < #if MULTICORE_CPU
830 <        delete interrupt_cpu;
831 < #endif
828 >        delete ppc_cpu;
829 >        ppc_cpu = NULL;
830 > }
831 >
832 > #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
833 > // Initialize EmulOp trampolines
834 > void init_emul_op_trampolines(basic_dyngen & dg)
835 > {
836 >        typedef void (*func_t)(dyngen_cpu_base, uint32);
837 >        func_t func;
838 >
839 >        // EmulOp
840 >        emul_op_trampoline = dg.gen_start();
841 >        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
842 >        dg.gen_invoke_CPU_T0(func);
843 >        dg.gen_exec_return();
844 >        dg.gen_end();
845 >
846 >        // NativeOp
847 >        native_op_trampoline = dg.gen_start();
848 >        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
849 >        dg.gen_invoke_CPU_T0(func);    
850 >        dg.gen_exec_return();
851 >        dg.gen_end();
852 >
853 >        D(bug("EmulOp trampoline:   %p\n", emul_op_trampoline));
854 >        D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
855   }
856 + #endif
857  
858   /*
859   *  Emulation loop
# Line 808 | Line 861 | void exit_emul_ppc(void)
861  
862   void emul_ppc(uint32 entry)
863   {
811        current_cpu = main_cpu;
864   #if 0
865 <        current_cpu->start_log();
865 >        ppc_cpu->start_log();
866   #endif
867          // start emulation loop and enable code translation or caching
868 <        current_cpu->execute(entry);
868 >        ppc_cpu->execute(entry);
869   }
870  
871   /*
872   *  Handle PowerPC interrupt
873   */
874  
823 #if ASYNC_IRQ
824 void HandleInterrupt(void)
825 {
826        main_cpu->handle_interrupt();
827 }
828 #else
875   void TriggerInterrupt(void)
876   {
877 +        idle_resume();
878   #if 0
879    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
880   #else
881    // Trigger interrupt to main cpu only
882 <  if (main_cpu)
883 <          main_cpu->trigger_interrupt();
882 >  if (ppc_cpu)
883 >          ppc_cpu->trigger_interrupt();
884   #endif
885   }
839 #endif
886  
887 < void sheepshaver_cpu::handle_interrupt(void)
887 > void HandleInterrupt(powerpc_registers *r)
888   {
889 <        // Do nothing if interrupts are disabled
890 <        if (*(int32 *)XLM_IRQ_NEST > 0)
891 <                return;
889 > #ifdef USE_SDL_VIDEO
890 >        // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
891 >        SDL_PumpEvents();
892 > #endif
893  
894 <        // Do nothing if there is no interrupt pending
895 <        if (InterruptFlags == 0)
894 >        // Do nothing if interrupts are disabled
895 >        if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
896                  return;
897  
898 <        // Disable MacOS stack sniffer
899 <        WriteMacInt32(0x110, 0);
898 >        // Update interrupt count
899 > #if EMUL_TIME_STATS
900 >        interrupt_count++;
901 > #endif
902  
903          // Interrupt action depends on current run mode
904          switch (ReadMacInt32(XLM_RUN_MODE)) {
905          case MODE_68K:
906                  // 68k emulator active, trigger 68k interrupt level 1
858                assert(current_cpu == main_cpu);
907                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
908 <                set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
908 >                r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
909                  break;
910      
911   #if INTERRUPTS_IN_NATIVE_MODE
912          case MODE_NATIVE:
913                  // 68k emulator inactive, in nanokernel?
914 <                assert(current_cpu == main_cpu);
915 <                if (gpr(1) != KernelDataAddr) {
914 >                if (r->gpr[1] != KernelDataAddr) {
915 >
916                          // Prepare for 68k interrupt level 1
917                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
918                          WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
# Line 873 | Line 921 | void sheepshaver_cpu::handle_interrupt(v
921        
922                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
923                          DisableInterrupt();
876                        cpu_push(interrupt_cpu);
924                          if (ROMType == ROMTYPE_NEWWORLD)
925 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
925 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
926                          else
927 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
881 <                        cpu_pop();
927 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
928                  }
929                  break;
930   #endif
# Line 887 | Line 933 | void sheepshaver_cpu::handle_interrupt(v
933          case MODE_EMUL_OP:
934                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
935                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
936 + #if EMUL_TIME_STATS
937 +                        const clock_t interrupt_start = clock();
938 + #endif
939   #if 1
940                          // Execute full 68k interrupt routine
941                          M68kRegisters r;
942                          uint32 old_r25 = ReadMacInt32(XLM_68K_R25);     // Save interrupt level
943                          WriteMacInt32(XLM_68K_R25, 0x21);                       // Execute with interrupt level 1
944 <                        static const uint8 proc[] = {
944 >                        static const uint8 proc_template[] = {
945                                  0x3f, 0x3c, 0x00, 0x00,                 // move.w       #$0000,-(sp)    (fake format word)
946                                  0x48, 0x7a, 0x00, 0x0a,                 // pea          @1(pc)                  (return address)
947                                  0x40, 0xe7,                                             // move         sr,-(sp)                (saved SR)
# Line 900 | Line 949 | void sheepshaver_cpu::handle_interrupt(v
949                                  0x4e, 0xd0,                                             // jmp          (a0)
950                                  M68K_RTS >> 8, M68K_RTS & 0xff  // @1
951                          };
952 <                        Execute68k((uint32)proc, &r);
952 >                        BUILD_SHEEPSHAVER_PROCEDURE(proc);
953 >                        Execute68k(proc, &r);
954                          WriteMacInt32(XLM_68K_R25, old_r25);            // Restore interrupt level
955   #else
956                          // Only update cursor
# Line 912 | Line 962 | void sheepshaver_cpu::handle_interrupt(v
962                                  }
963                          }
964   #endif
965 + #if EMUL_TIME_STATS
966 +                        interrupt_time += (clock() - interrupt_start);
967 + #endif
968                  }
969                  break;
970   #endif
# Line 924 | Line 977 | static void get_ind_resource(void);
977   static void get_1_ind_resource(void);
978   static void r_get_resource(void);
979  
980 < #define GPR(REG) current_cpu->gpr(REG)
981 <
929 < static void NativeOp(int selector)
980 > // Execute NATIVE_OP routine
981 > void sheepshaver_cpu::execute_native_op(uint32 selector)
982   {
983   #if EMUL_TIME_STATS
984          native_exec_count++;
# Line 944 | Line 996 | static void NativeOp(int selector)
996                  VideoVBL();
997                  break;
998          case NATIVE_VIDEO_DO_DRIVER_IO:
999 <                GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1000 <                                                                                           (void *)GPR(5), GPR(6), GPR(7));
999 >                gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1000 >                break;
1001 >        case NATIVE_ETHER_AO_GET_HWADDR:
1002 >                AO_get_ethernet_address(gpr(3));
1003 >                break;
1004 >        case NATIVE_ETHER_AO_ADD_MULTI:
1005 >                AO_enable_multicast(gpr(3));
1006 >                break;
1007 >        case NATIVE_ETHER_AO_DEL_MULTI:
1008 >                AO_disable_multicast(gpr(3));
1009 >                break;
1010 >        case NATIVE_ETHER_AO_SEND_PACKET:
1011 >                AO_transmit_packet(gpr(3));
1012                  break;
950 #ifdef WORDS_BIGENDIAN
1013          case NATIVE_ETHER_IRQ:
1014                  EtherIRQ();
1015                  break;
1016          case NATIVE_ETHER_INIT:
1017 <                GPR(3) = InitStreamModule((void *)GPR(3));
1017 >                gpr(3) = InitStreamModule((void *)gpr(3));
1018                  break;
1019          case NATIVE_ETHER_TERM:
1020                  TerminateStreamModule();
1021                  break;
1022          case NATIVE_ETHER_OPEN:
1023 <                GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1023 >                gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1024                  break;
1025          case NATIVE_ETHER_CLOSE:
1026 <                GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1026 >                gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1027                  break;
1028          case NATIVE_ETHER_WPUT:
1029 <                GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1029 >                gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1030                  break;
1031          case NATIVE_ETHER_RSRV:
1032 <                GPR(3) = ether_rsrv((queue_t *)GPR(3));
1032 >                gpr(3) = ether_rsrv((queue_t *)gpr(3));
1033                  break;
1034 < #else
1035 <        case NATIVE_ETHER_INIT:
1036 <                // FIXME: needs more complicated thunks
1037 <                GPR(3) = false;
1034 >        case NATIVE_SYNC_HOOK:
1035 >                gpr(3) = NQD_sync_hook(gpr(3));
1036 >                break;
1037 >        case NATIVE_BITBLT_HOOK:
1038 >                gpr(3) = NQD_bitblt_hook(gpr(3));
1039 >                break;
1040 >        case NATIVE_BITBLT:
1041 >                NQD_bitblt(gpr(3));
1042 >                break;
1043 >        case NATIVE_FILLRECT_HOOK:
1044 >                gpr(3) = NQD_fillrect_hook(gpr(3));
1045 >                break;
1046 >        case NATIVE_INVRECT:
1047 >                NQD_invrect(gpr(3));
1048 >                break;
1049 >        case NATIVE_FILLRECT:
1050 >                NQD_fillrect(gpr(3));
1051                  break;
977 #endif
1052          case NATIVE_SERIAL_NOTHING:
1053          case NATIVE_SERIAL_OPEN:
1054          case NATIVE_SERIAL_PRIME_IN:
# Line 992 | Line 1066 | static void NativeOp(int selector)
1066                          SerialStatus,
1067                          SerialClose
1068                  };
1069 <                GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1069 >                gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1070                  break;
1071          }
1072          case NATIVE_GET_RESOURCE:
# Line 1002 | Line 1076 | static void NativeOp(int selector)
1076          case NATIVE_R_GET_RESOURCE: {
1077                  typedef void (*GetResourceCallback)(void);
1078                  static const GetResourceCallback get_resource_callbacks[] = {
1079 <                        get_resource,
1080 <                        get_1_resource,
1081 <                        get_ind_resource,
1082 <                        get_1_ind_resource,
1083 <                        r_get_resource
1079 >                        ::get_resource,
1080 >                        ::get_1_resource,
1081 >                        ::get_ind_resource,
1082 >                        ::get_1_ind_resource,
1083 >                        ::r_get_resource
1084                  };
1085                  get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1086                  break;
1087          }
1014        case NATIVE_DISABLE_INTERRUPT:
1015                DisableInterrupt();
1016                break;
1017        case NATIVE_ENABLE_INTERRUPT:
1018                EnableInterrupt();
1019                break;
1088          case NATIVE_MAKE_EXECUTABLE:
1089 <                MakeExecutable(0, (void *)GPR(4), GPR(5));
1089 >                MakeExecutable(0, gpr(4), gpr(5));
1090                  break;
1091          case NATIVE_CHECK_LOAD_INVOC:
1092 <                check_load_invoc(GPR(3), GPR(4), GPR(5));
1092 >                check_load_invoc(gpr(3), gpr(4), gpr(5));
1093                  break;
1094          default:
1095                  printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
# Line 1042 | Line 1110 | static void NativeOp(int selector)
1110  
1111   void Execute68k(uint32 pc, M68kRegisters *r)
1112   {
1113 <        current_cpu->execute_68k(pc, r);
1113 >        ppc_cpu->execute_68k(pc, r);
1114   }
1115  
1116   /*
# Line 1065 | Line 1133 | void Execute68kTrap(uint16 trap, M68kReg
1133  
1134   uint32 call_macos(uint32 tvect)
1135   {
1136 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1136 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1137   }
1138  
1139   uint32 call_macos1(uint32 tvect, uint32 arg1)
1140   {
1141          const uint32 args[] = { arg1 };
1142 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1142 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1143   }
1144  
1145   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1146   {
1147          const uint32 args[] = { arg1, arg2 };
1148 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1148 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1149   }
1150  
1151   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1152   {
1153          const uint32 args[] = { arg1, arg2, arg3 };
1154 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1154 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1155   }
1156  
1157   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1158   {
1159          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1160 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1160 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1161   }
1162  
1163   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1164   {
1165          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1166 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1166 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1167   }
1168  
1169   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1170   {
1171          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1172 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1172 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1173   }
1174  
1175   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1176   {
1177          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1178 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1178 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1179   }
1180  
1181   /*
# Line 1116 | Line 1184 | uint32 call_macos7(uint32 tvect, uint32
1184  
1185   void get_resource(void)
1186   {
1187 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1187 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1188   }
1189  
1190   void get_1_resource(void)
1191   {
1192 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1192 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1193   }
1194  
1195   void get_ind_resource(void)
1196   {
1197 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1197 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1198   }
1199  
1200   void get_1_ind_resource(void)
1201   {
1202 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1202 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1203   }
1204  
1205   void r_get_resource(void)
1206   {
1207 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1207 >        ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1208   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines