ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.29 by gbeauche, 2004-02-20T17:20:15Z vs.
Revision 1.68 by gbeauche, 2006-05-03T21:45:14Z

# Line 1 | Line 1
1   /*
2   *  sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3   *
4 < *  SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
4 > *  SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5   *
6   *  This program is free software; you can redistribute it and/or modify
7   *  it under the terms of the GNU General Public License as published by
# Line 38 | Line 38
38   #include "name_registry.h"
39   #include "serial.h"
40   #include "ether.h"
41 + #include "timer.h"
42  
43   #include <stdio.h>
44 + #include <stdlib.h>
45 + #ifdef HAVE_MALLOC_H
46 + #include <malloc.h>
47 + #endif
48 +
49 + #ifdef USE_SDL_VIDEO
50 + #include <SDL_events.h>
51 + #endif
52  
53   #if ENABLE_MON
54   #include "mon.h"
# Line 50 | Line 59
59   #include "debug.h"
60  
61   // Emulation time statistics
62 < #define EMUL_TIME_STATS 1
62 > #ifndef EMUL_TIME_STATS
63 > #define EMUL_TIME_STATS 0
64 > #endif
65  
66   #if EMUL_TIME_STATS
67   static clock_t emul_start_time;
68 < static uint32 interrupt_count = 0;
68 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69   static clock_t interrupt_time = 0;
70   static uint32 exec68k_count = 0;
71   static clock_t exec68k_time = 0;
# Line 78 | Line 89 | extern uintptr SignalStackBase();
89  
90   // From rsrc_patches.cpp
91   extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 + extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93  
94   // PowerPC EmulOp to exit from emulation looop
95   const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96  
85 // Enable multicore (main/interrupts) cpu emulation?
86 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87
97   // Enable Execute68k() safety checks?
98   #define SAFE_EXEC_68K 1
99  
# Line 98 | Line 107 | const uint32 POWERPC_EXEC_RETURN = POWER
107   #define INTERRUPTS_IN_NATIVE_MODE 1
108  
109   // Pointer to Kernel Data
110 < static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
110 > static KernelData * kernel_data;
111  
112   // SIGSEGV handler
113 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 > sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114 >
115 > #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116 > // Special trampolines for EmulOp and NativeOp
117 > static uint8 *emul_op_trampoline;
118 > static uint8 *native_op_trampoline;
119 > #endif
120  
121   // JIT Compiler enabled?
122   static inline bool enable_jit_p()
# Line 136 | Line 151 | public:
151          uint32 get_xer() const          { return xer().get(); }
152          void set_xer(uint32 v)          { xer().set(v); }
153  
154 +        // Execute NATIVE_OP routine
155 +        void execute_native_op(uint32 native_op);
156 +
157          // Execute EMUL_OP routine
158          void execute_emul_op(uint32 emul_op);
159  
# Line 148 | Line 166 | public:
166          // Execute MacOS/PPC code
167          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
168  
169 + #if PPC_ENABLE_JIT
170          // Compile one instruction
171 <        virtual bool compile1(codegen_context_t & cg_context);
172 <
171 >        virtual int compile1(codegen_context_t & cg_context);
172 > #endif
173          // Resource manager thunk
174          void get_resource(uint32 old_get_resource);
175  
176          // Handle MacOS interrupt
177          void interrupt(uint32 entry);
159        void handle_interrupt();
178  
179          // Make sure the SIGSEGV handler can access CPU registers
180          friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
181   };
182  
165 // Memory allocator returning areas aligned on 16-byte boundaries
166 void *operator new(size_t size)
167 {
168        void *p;
169
170        /* XXX: try different approaches */
171        if (posix_memalign(&p, 16, size) != 0)
172                throw std::bad_alloc();
173
174        return p;
175 }
176
177 void operator delete(void *p)
178 {
179        free(p);
180 }
181
183   sheepshaver_cpu::sheepshaver_cpu()
184          : powerpc_cpu(enable_jit_p())
185   {
# Line 205 | Line 206 | void sheepshaver_cpu::init_decoder()
206          }
207   }
208  
208 // Forward declaration for native opcode handler
209 static void NativeOp(int selector);
210
209   /*              NativeOp instruction format:
210 <                +------------+--------------------------+--+----------+------------+
211 <                |      6     |                          |FN|    OP    |      2     |
212 <                +------------+--------------------------+--+----------+------------+
213 <                 0         5 |6                       19 20 21      25 26        31
210 >                +------------+-------------------------+--+-----------+------------+
211 >                |      6     |                         |FN|    OP     |      2     |
212 >                +------------+-------------------------+--+-----------+------------+
213 >                 0         5 |6                      18 19 20      25 26        31
214   */
215  
216 < typedef bit_field< 20, 20 > FN_field;
217 < typedef bit_field< 21, 25 > NATIVE_OP_field;
216 > typedef bit_field< 19, 19 > FN_field;
217 > typedef bit_field< 20, 25 > NATIVE_OP_field;
218   typedef bit_field< 26, 31 > EMUL_OP_field;
219  
220   // Execute EMUL_OP routine
# Line 230 | Line 228 | void sheepshaver_cpu::execute_emul_op(ui
228          for (int i = 0; i < 7; i++)
229                  r68.a[i] = gpr(16 + i);
230          r68.a[7] = gpr(1);
231 <        uint32 saved_cr = get_cr() & CR_field<2>::mask();
231 >        uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
232          uint32 saved_xer = get_xer();
233          EmulOp(&r68, gpr(24), emul_op);
234          set_cr(saved_cr);
# Line 259 | Line 257 | void sheepshaver_cpu::execute_sheep(uint
257                  break;
258  
259          case 2:         // EXEC_NATIVE
260 <                NativeOp(NATIVE_OP_field::extract(opcode));
260 >                execute_native_op(NATIVE_OP_field::extract(opcode));
261                  if (FN_field::test(opcode))
262                          pc() = lr();
263                  else
# Line 274 | Line 272 | void sheepshaver_cpu::execute_sheep(uint
272   }
273  
274   // Compile one instruction
277 bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
278 {
275   #if PPC_ENABLE_JIT
276 + int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
277 + {
278          const instr_info_t *ii = cg_context.instr_info;
279          if (ii->mnemo != PPC_I(SHEEP))
280 <                return false;
280 >                return COMPILE_FAILURE;
281  
282 <        bool compiled = false;
282 >        int status = COMPILE_FAILURE;
283          powerpc_dyngen & dg = cg_context.codegen;
284          uint32 opcode = cg_context.opcode;
285  
286          switch (opcode & 0x3f) {
287          case 0:         // EMUL_RETURN
288                  dg.gen_invoke(QuitEmulator);
289 <                compiled = true;
289 >                status = COMPILE_CODE_OK;
290                  break;
291  
292          case 1:         // EXEC_RETURN
293                  dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
294 <                compiled = true;
294 >                // Don't check for pending interrupts, we do know we have to
295 >                // get out of this block ASAP
296 >                dg.gen_exec_return();
297 >                status = COMPILE_EPILOGUE_OK;
298                  break;
299  
300          case 2: {       // EXEC_NATIVE
301                  uint32 selector = NATIVE_OP_field::extract(opcode);
302                  switch (selector) {
303 + #if !PPC_REENTRANT_JIT
304 +                // Filter out functions that may invoke Execute68k() or
305 +                // CallMacOS(), this would break reentrancy as they could
306 +                // invalidate the translation cache and even overwrite
307 +                // continuation code when we are done with them.
308                  case NATIVE_PATCH_NAME_REGISTRY:
309                          dg.gen_invoke(DoPatchNameRegistry);
310 <                        compiled = true;
310 >                        status = COMPILE_CODE_OK;
311                          break;
312                  case NATIVE_VIDEO_INSTALL_ACCEL:
313                          dg.gen_invoke(VideoInstallAccel);
314 <                        compiled = true;
314 >                        status = COMPILE_CODE_OK;
315                          break;
316                  case NATIVE_VIDEO_VBL:
317                          dg.gen_invoke(VideoVBL);
318 <                        compiled = true;
318 >                        status = COMPILE_CODE_OK;
319                          break;
320                  case NATIVE_GET_RESOURCE:
321                  case NATIVE_GET_1_RESOURCE:
# Line 327 | Line 333 | bool sheepshaver_cpu::compile1(codegen_c
333                          typedef void (*func_t)(dyngen_cpu_base, uint32);
334                          func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
335                          dg.gen_invoke_CPU_im(func, old_get_resource);
336 <                        compiled = true;
336 >                        status = COMPILE_CODE_OK;
337                          break;
338                  }
333                case NATIVE_DISABLE_INTERRUPT:
334                        dg.gen_invoke(DisableInterrupt);
335                        compiled = true;
336                        break;
337                case NATIVE_ENABLE_INTERRUPT:
338                        dg.gen_invoke(EnableInterrupt);
339                        compiled = true;
340                        break;
339                  case NATIVE_CHECK_LOAD_INVOC:
340                          dg.gen_load_T0_GPR(3);
341                          dg.gen_load_T1_GPR(4);
342                          dg.gen_se_16_32_T1();
343                          dg.gen_load_T2_GPR(5);
344                          dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
345 <                        compiled = true;
345 >                        status = COMPILE_CODE_OK;
346 >                        break;
347 >                case NATIVE_NAMED_CHECK_LOAD_INVOC:
348 >                        dg.gen_load_T0_GPR(3);
349 >                        dg.gen_load_T1_GPR(4);
350 >                        dg.gen_load_T2_GPR(5);
351 >                        dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
352 >                        status = COMPILE_CODE_OK;
353 >                        break;
354 > #endif
355 >                case NATIVE_BITBLT:
356 >                        dg.gen_load_T0_GPR(3);
357 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
358 >                        status = COMPILE_CODE_OK;
359 >                        break;
360 >                case NATIVE_INVRECT:
361 >                        dg.gen_load_T0_GPR(3);
362 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
363 >                        status = COMPILE_CODE_OK;
364 >                        break;
365 >                case NATIVE_FILLRECT:
366 >                        dg.gen_load_T0_GPR(3);
367 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
368 >                        status = COMPILE_CODE_OK;
369                          break;
370                  }
371 <                if (FN_field::test(opcode)) {
372 <                        if (compiled) {
371 >                // Could we fully translate this NativeOp?
372 >                if (status == COMPILE_CODE_OK) {
373 >                        if (!FN_field::test(opcode))
374 >                                cg_context.done_compile = false;
375 >                        else {
376                                  dg.gen_load_A0_LR();
377                                  dg.gen_set_PC_A0();
378 +                                cg_context.done_compile = true;
379                          }
380 <                        cg_context.done_compile = true;
380 >                        break;
381                  }
382 <                else
382 > #if PPC_REENTRANT_JIT
383 >                // Try to execute NativeOp trampoline
384 >                if (!FN_field::test(opcode))
385 >                        dg.gen_set_PC_im(cg_context.pc + 4);
386 >                else {
387 >                        dg.gen_load_A0_LR();
388 >                        dg.gen_set_PC_A0();
389 >                }
390 >                dg.gen_mov_32_T0_im(selector);
391 >                dg.gen_jmp(native_op_trampoline);
392 >                cg_context.done_compile = true;
393 >                status = COMPILE_EPILOGUE_OK;
394 >                break;
395 > #endif
396 >                // Invoke NativeOp handler
397 >                if (!FN_field::test(opcode)) {
398 >                        typedef void (*func_t)(dyngen_cpu_base, uint32);
399 >                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
400 >                        dg.gen_invoke_CPU_im(func, selector);
401                          cg_context.done_compile = false;
402 +                        status = COMPILE_CODE_OK;
403 +                }
404 +                // Otherwise, let it generate a call to execute_sheep() which
405 +                // will cause necessary updates to the program counter
406                  break;
407          }
408  
409          default: {      // EMUL_OP
410 +                uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
411 + #if PPC_REENTRANT_JIT
412 +                // Try to execute EmulOp trampoline
413 +                dg.gen_set_PC_im(cg_context.pc + 4);
414 +                dg.gen_mov_32_T0_im(emul_op);
415 +                dg.gen_jmp(emul_op_trampoline);
416 +                cg_context.done_compile = true;
417 +                status = COMPILE_EPILOGUE_OK;
418 +                break;
419 + #endif
420 +                // Invoke EmulOp handler
421                  typedef void (*func_t)(dyngen_cpu_base, uint32);
422                  func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
423 <                dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
423 >                dg.gen_invoke_CPU_im(func, emul_op);
424                  cg_context.done_compile = false;
425 <                compiled = true;
425 >                status = COMPILE_CODE_OK;
426                  break;
427          }
428          }
429 <        return compiled;
372 < #endif
373 <        return false;
429 >        return status;
430   }
431 + #endif
432  
433   // Handle MacOS interrupt
434   void sheepshaver_cpu::interrupt(uint32 entry)
435   {
436   #if EMUL_TIME_STATS
437 <        interrupt_count++;
437 >        ppc_interrupt_count++;
438          const clock_t interrupt_start = clock();
439   #endif
440  
384 #if !MULTICORE_CPU
441          // Save program counters and branch registers
442          uint32 saved_pc = pc();
443          uint32 saved_lr = lr();
444          uint32 saved_ctr= ctr();
445          uint32 saved_sp = gpr(1);
390 #endif
446  
447          // Initialize stack pointer to SheepShaver alternate stack base
448          gpr(1) = SignalStackBase() - 64;
# Line 427 | Line 482 | void sheepshaver_cpu::interrupt(uint32 e
482          // Enter nanokernel
483          execute(entry);
484  
430 #if !MULTICORE_CPU
485          // Restore program counters and branch registers
486          pc() = saved_pc;
487          lr() = saved_lr;
488          ctr()= saved_ctr;
489          gpr(1) = saved_sp;
436 #endif
490  
491   #if EMUL_TIME_STATS
492          interrupt_time += (clock() - interrupt_start);
# Line 631 | Line 684 | inline void sheepshaver_cpu::get_resourc
684   *              SheepShaver CPU engine interface
685   **/
686  
687 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
688 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
636 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
687 > // PowerPC CPU emulator
688 > static sheepshaver_cpu *ppc_cpu = NULL;
689  
690   void FlushCodeCache(uintptr start, uintptr end)
691   {
692          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
693 <        main_cpu->invalidate_cache_range(start, end);
642 < #if MULTICORE_CPU
643 <        interrupt_cpu->invalidate_cache_range(start, end);
644 < #endif
645 < }
646 <
647 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
648 < {
649 < #if MULTICORE_CPU
650 <        current_cpu = new_cpu;
651 < #endif
652 < }
653 <
654 < static inline void cpu_pop()
655 < {
656 < #if MULTICORE_CPU
657 <        current_cpu = main_cpu;
658 < #endif
693 >        ppc_cpu->invalidate_cache_range(start, end);
694   }
695  
696   // Dump PPC registers
697   static void dump_registers(void)
698   {
699 <        current_cpu->dump_registers();
699 >        ppc_cpu->dump_registers();
700   }
701  
702   // Dump log
703   static void dump_log(void)
704   {
705 <        current_cpu->dump_log();
705 >        ppc_cpu->dump_log();
706   }
707  
708   /*
709   *  Initialize CPU emulation
710   */
711  
712 < static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
712 > sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
713   {
714   #if ENABLE_VOSF
715          // Handle screen fault
# Line 686 | Line 721 | static sigsegv_return_t sigsegv_handler(
721          const uintptr addr = (uintptr)fault_address;
722   #if HAVE_SIGSEGV_SKIP_INSTRUCTION
723          // Ignore writes to ROM
724 <        if ((addr - ROM_BASE) < ROM_SIZE)
724 >        if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
725                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
726  
727          // Get program counter of target CPU
728 <        sheepshaver_cpu * const cpu = current_cpu;
728 >        sheepshaver_cpu * const cpu = ppc_cpu;
729          const uint32 pc = cpu->pc();
730          
731          // Fault in Mac ROM or RAM?
732 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
732 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
733          if (mac_fault) {
734  
735                  // "VM settings" during MacOS 8 installation
# Line 714 | Line 749 | static sigsegv_return_t sigsegv_handler(
749                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
751                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
752 +        
753 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
754 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
755 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
756 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
757 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
758 +
759 +                // Ignore writes to the zero page
760 +                else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
761 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
762  
763                  // Ignore all other faults, if requested
764                  if (PrefsFindBool("ignoresegv"))
# Line 723 | Line 768 | static sigsegv_return_t sigsegv_handler(
768   #error "FIXME: You don't have the capability to skip instruction within signal handlers"
769   #endif
770  
771 <        printf("SIGSEGV\n");
772 <        printf("  pc %p\n", fault_instruction);
773 <        printf("  ea %p\n", fault_address);
729 <        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
771 >        fprintf(stderr, "SIGSEGV\n");
772 >        fprintf(stderr, "  pc %p\n", fault_instruction);
773 >        fprintf(stderr, "  ea %p\n", fault_address);
774          dump_registers();
775 <        current_cpu->dump_log();
775 >        ppc_cpu->dump_log();
776          enter_mon();
777          QuitEmulator();
778  
# Line 737 | Line 781 | static sigsegv_return_t sigsegv_handler(
781  
782   void init_emul_ppc(void)
783   {
784 +        // Get pointer to KernelData in host address space
785 +        kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
786 +
787          // Initialize main CPU emulator
788 <        main_cpu = new sheepshaver_cpu();
789 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
790 <        main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
788 >        ppc_cpu = new sheepshaver_cpu();
789 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
790 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
791          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
792  
746 #if MULTICORE_CPU
747        // Initialize alternate CPU emulator to handle interrupts
748        interrupt_cpu = new sheepshaver_cpu();
749 #endif
750
751        // Install the handler for SIGSEGV
752        sigsegv_install_handler(sigsegv_handler);
753
793   #if ENABLE_MON
794          // Install "regs" command in cxmon
795          mon_add_command("regs", dump_registers, "regs                     Dump PowerPC registers\n");
# Line 776 | Line 815 | void exit_emul_ppc(void)
815          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
816          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
817                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
818 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
819 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
820  
821   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
822                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 792 | Line 833 | void exit_emul_ppc(void)
833          printf("\n");
834   #endif
835  
836 <        delete main_cpu;
837 < #if MULTICORE_CPU
797 <        delete interrupt_cpu;
798 < #endif
836 >        delete ppc_cpu;
837 >        ppc_cpu = NULL;
838   }
839  
840 + #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
841 + // Initialize EmulOp trampolines
842 + void init_emul_op_trampolines(basic_dyngen & dg)
843 + {
844 +        typedef void (*func_t)(dyngen_cpu_base, uint32);
845 +        func_t func;
846 +
847 +        // EmulOp
848 +        emul_op_trampoline = dg.gen_start();
849 +        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
850 +        dg.gen_invoke_CPU_T0(func);
851 +        dg.gen_exec_return();
852 +        dg.gen_end();
853 +
854 +        // NativeOp
855 +        native_op_trampoline = dg.gen_start();
856 +        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
857 +        dg.gen_invoke_CPU_T0(func);    
858 +        dg.gen_exec_return();
859 +        dg.gen_end();
860 +
861 +        D(bug("EmulOp trampoline:   %p\n", emul_op_trampoline));
862 +        D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
863 + }
864 + #endif
865 +
866   /*
867   *  Emulation loop
868   */
869  
870   void emul_ppc(uint32 entry)
871   {
807        current_cpu = main_cpu;
872   #if 0
873 <        current_cpu->start_log();
873 >        ppc_cpu->start_log();
874   #endif
875          // start emulation loop and enable code translation or caching
876 <        current_cpu->execute(entry);
876 >        ppc_cpu->execute(entry);
877   }
878  
879   /*
880   *  Handle PowerPC interrupt
881   */
882  
819 #if ASYNC_IRQ
820 void HandleInterrupt(void)
821 {
822        main_cpu->handle_interrupt();
823 }
824 #else
883   void TriggerInterrupt(void)
884   {
885 +        idle_resume();
886   #if 0
887    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
888   #else
889    // Trigger interrupt to main cpu only
890 <  if (main_cpu)
891 <          main_cpu->trigger_interrupt();
890 >  if (ppc_cpu)
891 >          ppc_cpu->trigger_interrupt();
892   #endif
893   }
835 #endif
894  
895 < void sheepshaver_cpu::handle_interrupt(void)
895 > void HandleInterrupt(powerpc_registers *r)
896   {
897 <        // Do nothing if interrupts are disabled
898 <        if (*(int32 *)XLM_IRQ_NEST > 0)
899 <                return;
897 > #ifdef USE_SDL_VIDEO
898 >        // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
899 >        SDL_PumpEvents();
900 > #endif
901  
902 <        // Do nothing if there is no interrupt pending
903 <        if (InterruptFlags == 0)
902 >        // Do nothing if interrupts are disabled
903 >        if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
904                  return;
905  
906 <        // Disable MacOS stack sniffer
907 <        WriteMacInt32(0x110, 0);
906 >        // Update interrupt count
907 > #if EMUL_TIME_STATS
908 >        interrupt_count++;
909 > #endif
910  
911          // Interrupt action depends on current run mode
912          switch (ReadMacInt32(XLM_RUN_MODE)) {
913          case MODE_68K:
914                  // 68k emulator active, trigger 68k interrupt level 1
854                assert(current_cpu == main_cpu);
915                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
916 <                set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
916 >                r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
917                  break;
918      
919   #if INTERRUPTS_IN_NATIVE_MODE
920          case MODE_NATIVE:
921                  // 68k emulator inactive, in nanokernel?
922 <                assert(current_cpu == main_cpu);
923 <                if (gpr(1) != KernelDataAddr) {
922 >                if (r->gpr[1] != KernelDataAddr) {
923 >
924                          // Prepare for 68k interrupt level 1
925                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
926                          WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
# Line 869 | Line 929 | void sheepshaver_cpu::handle_interrupt(v
929        
930                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
931                          DisableInterrupt();
872                        cpu_push(interrupt_cpu);
932                          if (ROMType == ROMTYPE_NEWWORLD)
933 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
933 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
934                          else
935 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
877 <                        cpu_pop();
935 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
936                  }
937                  break;
938   #endif
# Line 883 | Line 941 | void sheepshaver_cpu::handle_interrupt(v
941          case MODE_EMUL_OP:
942                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
943                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
944 + #if EMUL_TIME_STATS
945 +                        const clock_t interrupt_start = clock();
946 + #endif
947   #if 1
948                          // Execute full 68k interrupt routine
949                          M68kRegisters r;
950                          uint32 old_r25 = ReadMacInt32(XLM_68K_R25);     // Save interrupt level
951                          WriteMacInt32(XLM_68K_R25, 0x21);                       // Execute with interrupt level 1
952 <                        static const uint8 proc[] = {
952 >                        static const uint8 proc_template[] = {
953                                  0x3f, 0x3c, 0x00, 0x00,                 // move.w       #$0000,-(sp)    (fake format word)
954                                  0x48, 0x7a, 0x00, 0x0a,                 // pea          @1(pc)                  (return address)
955                                  0x40, 0xe7,                                             // move         sr,-(sp)                (saved SR)
# Line 896 | Line 957 | void sheepshaver_cpu::handle_interrupt(v
957                                  0x4e, 0xd0,                                             // jmp          (a0)
958                                  M68K_RTS >> 8, M68K_RTS & 0xff  // @1
959                          };
960 <                        Execute68k((uint32)proc, &r);
960 >                        BUILD_SHEEPSHAVER_PROCEDURE(proc);
961 >                        Execute68k(proc, &r);
962                          WriteMacInt32(XLM_68K_R25, old_r25);            // Restore interrupt level
963   #else
964                          // Only update cursor
# Line 908 | Line 970 | void sheepshaver_cpu::handle_interrupt(v
970                                  }
971                          }
972   #endif
973 + #if EMUL_TIME_STATS
974 +                        interrupt_time += (clock() - interrupt_start);
975 + #endif
976                  }
977                  break;
978   #endif
979          }
980   }
981  
982 < static void get_resource(void);
983 < static void get_1_resource(void);
919 < static void get_ind_resource(void);
920 < static void get_1_ind_resource(void);
921 < static void r_get_resource(void);
922 <
923 < #define GPR(REG) current_cpu->gpr(REG)
924 <
925 < static void NativeOp(int selector)
982 > // Execute NATIVE_OP routine
983 > void sheepshaver_cpu::execute_native_op(uint32 selector)
984   {
985   #if EMUL_TIME_STATS
986          native_exec_count++;
# Line 940 | Line 998 | static void NativeOp(int selector)
998                  VideoVBL();
999                  break;
1000          case NATIVE_VIDEO_DO_DRIVER_IO:
1001 <                GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1002 <                                                                                           (void *)GPR(5), GPR(6), GPR(7));
1001 >                gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1002 >                break;
1003 >        case NATIVE_ETHER_AO_GET_HWADDR:
1004 >                AO_get_ethernet_address(gpr(3));
1005 >                break;
1006 >        case NATIVE_ETHER_AO_ADD_MULTI:
1007 >                AO_enable_multicast(gpr(3));
1008 >                break;
1009 >        case NATIVE_ETHER_AO_DEL_MULTI:
1010 >                AO_disable_multicast(gpr(3));
1011 >                break;
1012 >        case NATIVE_ETHER_AO_SEND_PACKET:
1013 >                AO_transmit_packet(gpr(3));
1014                  break;
946 #ifdef WORDS_BIGENDIAN
1015          case NATIVE_ETHER_IRQ:
1016                  EtherIRQ();
1017                  break;
1018          case NATIVE_ETHER_INIT:
1019 <                GPR(3) = InitStreamModule((void *)GPR(3));
1019 >                gpr(3) = InitStreamModule((void *)gpr(3));
1020                  break;
1021          case NATIVE_ETHER_TERM:
1022                  TerminateStreamModule();
1023                  break;
1024          case NATIVE_ETHER_OPEN:
1025 <                GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1025 >                gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1026                  break;
1027          case NATIVE_ETHER_CLOSE:
1028 <                GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1028 >                gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1029                  break;
1030          case NATIVE_ETHER_WPUT:
1031 <                GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1031 >                gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1032                  break;
1033          case NATIVE_ETHER_RSRV:
1034 <                GPR(3) = ether_rsrv((queue_t *)GPR(3));
1034 >                gpr(3) = ether_rsrv((queue_t *)gpr(3));
1035                  break;
1036 < #else
1037 <        case NATIVE_ETHER_INIT:
1038 <                // FIXME: needs more complicated thunks
1039 <                GPR(3) = false;
1036 >        case NATIVE_SYNC_HOOK:
1037 >                gpr(3) = NQD_sync_hook(gpr(3));
1038 >                break;
1039 >        case NATIVE_BITBLT_HOOK:
1040 >                gpr(3) = NQD_bitblt_hook(gpr(3));
1041 >                break;
1042 >        case NATIVE_BITBLT:
1043 >                NQD_bitblt(gpr(3));
1044 >                break;
1045 >        case NATIVE_FILLRECT_HOOK:
1046 >                gpr(3) = NQD_fillrect_hook(gpr(3));
1047 >                break;
1048 >        case NATIVE_INVRECT:
1049 >                NQD_invrect(gpr(3));
1050 >                break;
1051 >        case NATIVE_FILLRECT:
1052 >                NQD_fillrect(gpr(3));
1053                  break;
973 #endif
1054          case NATIVE_SERIAL_NOTHING:
1055          case NATIVE_SERIAL_OPEN:
1056          case NATIVE_SERIAL_PRIME_IN:
# Line 988 | Line 1068 | static void NativeOp(int selector)
1068                          SerialStatus,
1069                          SerialClose
1070                  };
1071 <                GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1071 >                gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1072                  break;
1073          }
1074          case NATIVE_GET_RESOURCE:
1075 +                get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1076 +                break;
1077          case NATIVE_GET_1_RESOURCE:
1078 +                get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1079 +                break;
1080          case NATIVE_GET_IND_RESOURCE:
1081 <        case NATIVE_GET_1_IND_RESOURCE:
998 <        case NATIVE_R_GET_RESOURCE: {
999 <                typedef void (*GetResourceCallback)(void);
1000 <                static const GetResourceCallback get_resource_callbacks[] = {
1001 <                        get_resource,
1002 <                        get_1_resource,
1003 <                        get_ind_resource,
1004 <                        get_1_ind_resource,
1005 <                        r_get_resource
1006 <                };
1007 <                get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1081 >                get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1082                  break;
1083 <        }
1084 <        case NATIVE_DISABLE_INTERRUPT:
1011 <                DisableInterrupt();
1083 >        case NATIVE_GET_1_IND_RESOURCE:
1084 >                get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1085                  break;
1086 <        case NATIVE_ENABLE_INTERRUPT:
1087 <                EnableInterrupt();
1086 >        case NATIVE_R_GET_RESOURCE:
1087 >                get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1088                  break;
1089          case NATIVE_MAKE_EXECUTABLE:
1090 <                MakeExecutable(0, (void *)GPR(4), GPR(5));
1090 >                MakeExecutable(0, gpr(4), gpr(5));
1091                  break;
1092          case NATIVE_CHECK_LOAD_INVOC:
1093 <                check_load_invoc(GPR(3), GPR(4), GPR(5));
1093 >                check_load_invoc(gpr(3), gpr(4), gpr(5));
1094 >                break;
1095 >        case NATIVE_NAMED_CHECK_LOAD_INVOC:
1096 >                named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1097                  break;
1098          default:
1099                  printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
# Line 1038 | Line 1114 | static void NativeOp(int selector)
1114  
1115   void Execute68k(uint32 pc, M68kRegisters *r)
1116   {
1117 <        current_cpu->execute_68k(pc, r);
1117 >        ppc_cpu->execute_68k(pc, r);
1118   }
1119  
1120   /*
# Line 1061 | Line 1137 | void Execute68kTrap(uint16 trap, M68kReg
1137  
1138   uint32 call_macos(uint32 tvect)
1139   {
1140 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1140 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1141   }
1142  
1143   uint32 call_macos1(uint32 tvect, uint32 arg1)
1144   {
1145          const uint32 args[] = { arg1 };
1146 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1146 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1147   }
1148  
1149   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1150   {
1151          const uint32 args[] = { arg1, arg2 };
1152 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1152 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1153   }
1154  
1155   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1156   {
1157          const uint32 args[] = { arg1, arg2, arg3 };
1158 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1158 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1159   }
1160  
1161   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1162   {
1163          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1164 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1164 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1165   }
1166  
1167   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1168   {
1169          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1170 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1170 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171   }
1172  
1173   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1174   {
1175          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1176 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1176 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177   }
1178  
1179   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1180   {
1181          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1182 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1107 < }
1108 <
1109 < /*
1110 < *  Resource Manager thunks
1111 < */
1112 <
1113 < void get_resource(void)
1114 < {
1115 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1116 < }
1117 <
1118 < void get_1_resource(void)
1119 < {
1120 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1121 < }
1122 <
1123 < void get_ind_resource(void)
1124 < {
1125 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1126 < }
1127 <
1128 < void get_1_ind_resource(void)
1129 < {
1130 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1131 < }
1132 <
1133 < void r_get_resource(void)
1134 < {
1135 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1182 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines