ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.29 by gbeauche, 2004-02-20T17:20:15Z vs.
Revision 1.44 by gbeauche, 2004-06-05T07:09:38Z

# Line 38 | Line 38
38   #include "name_registry.h"
39   #include "serial.h"
40   #include "ether.h"
41 + #include "timer.h"
42  
43   #include <stdio.h>
44 + #include <stdlib.h>
45  
46   #if ENABLE_MON
47   #include "mon.h"
# Line 50 | Line 52
52   #include "debug.h"
53  
54   // Emulation time statistics
55 < #define EMUL_TIME_STATS 1
55 > #ifndef EMUL_TIME_STATS
56 > #define EMUL_TIME_STATS 0
57 > #endif
58  
59   #if EMUL_TIME_STATS
60   static clock_t emul_start_time;
61 < static uint32 interrupt_count = 0;
61 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
62   static clock_t interrupt_time = 0;
63   static uint32 exec68k_count = 0;
64   static clock_t exec68k_time = 0;
# Line 82 | Line 86 | extern "C" void check_load_invoc(uint32
86   // PowerPC EmulOp to exit from emulation looop
87   const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
88  
89 < // Enable multicore (main/interrupts) cpu emulation?
90 < #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
89 > // Enable interrupt routine safety checks?
90 > #define SAFE_INTERRUPT_PPC 1
91  
92   // Enable Execute68k() safety checks?
93   #define SAFE_EXEC_68K 1
# Line 97 | Line 101 | const uint32 POWERPC_EXEC_RETURN = POWER
101   // Interrupts in native mode?
102   #define INTERRUPTS_IN_NATIVE_MODE 1
103  
104 + // Enable native EMUL_OPs to be run without a mode switch
105 + #define ENABLE_NATIVE_EMUL_OP 1
106 +
107   // Pointer to Kernel Data
108   static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
109  
110   // SIGSEGV handler
111   static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112  
113 + #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
114 + // Special trampolines for EmulOp and NativeOp
115 + static uint8 *emul_op_trampoline;
116 + static uint8 *native_op_trampoline;
117 + #endif
118 +
119   // JIT Compiler enabled?
120   static inline bool enable_jit_p()
121   {
# Line 125 | Line 138 | class sheepshaver_cpu
138          void init_decoder();
139          void execute_sheep(uint32 opcode);
140  
141 +        // Filter out EMUL_OP routines that only call native code
142 +        bool filter_execute_emul_op(uint32 emul_op);
143 +
144 +        // "Native" EMUL_OP routines
145 +        void execute_emul_op_microseconds();
146 +        void execute_emul_op_idle_time_1();
147 +        void execute_emul_op_idle_time_2();
148 +
149 +        // CPU context to preserve on interrupt
150 +        class interrupt_context {
151 +                uint32 gpr[32];
152 +                uint32 pc;
153 +                uint32 lr;
154 +                uint32 ctr;
155 +                uint32 cr;
156 +                uint32 xer;
157 +                sheepshaver_cpu *cpu;
158 +                const char *where;
159 +        public:
160 +                interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
161 +                ~interrupt_context();
162 +        };
163 +
164   public:
165  
166          // Constructor
# Line 136 | Line 172 | public:
172          uint32 get_xer() const          { return xer().get(); }
173          void set_xer(uint32 v)          { xer().set(v); }
174  
175 +        // Execute NATIVE_OP routine
176 +        void execute_native_op(uint32 native_op);
177 +
178          // Execute EMUL_OP routine
179          void execute_emul_op(uint32 emul_op);
180  
# Line 149 | Line 188 | public:
188          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
189  
190          // Compile one instruction
191 <        virtual bool compile1(codegen_context_t & cg_context);
191 >        virtual int compile1(codegen_context_t & cg_context);
192  
193          // Resource manager thunk
194          void get_resource(uint32 old_get_resource);
# Line 167 | Line 206 | void *operator new(size_t size)
206   {
207          void *p;
208  
209 <        /* XXX: try different approaches */
209 > #if defined(HAVE_POSIX_MEMALIGN)
210          if (posix_memalign(&p, 16, size) != 0)
211                  throw std::bad_alloc();
212 + #elif defined(HAVE_MEMALIGN)
213 +        p = memalign(16, size);
214 + #elif defined(HAVE_VALLOC)
215 +        p = valloc(size); // page-aligned!
216 + #else
217 +        /* XXX: handle padding ourselves */
218 +        p = malloc(size);
219 + #endif
220  
221          return p;
222   }
223  
224   void operator delete(void *p)
225   {
226 + #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
227 + #if defined(__GLIBC__)
228 +        // this is known to work only with GNU libc
229 +        free(p);
230 + #endif
231 + #else
232          free(p);
233 + #endif
234   }
235  
236   sheepshaver_cpu::sheepshaver_cpu()
# Line 205 | Line 259 | void sheepshaver_cpu::init_decoder()
259          }
260   }
261  
208 // Forward declaration for native opcode handler
209 static void NativeOp(int selector);
210
262   /*              NativeOp instruction format:
263 <                +------------+--------------------------+--+----------+------------+
264 <                |      6     |                          |FN|    OP    |      2     |
265 <                +------------+--------------------------+--+----------+------------+
266 <                 0         5 |6                       19 20 21      25 26        31
263 >                +------------+-------------------------+--+-----------+------------+
264 >                |      6     |                         |FN|    OP     |      2     |
265 >                +------------+-------------------------+--+-----------+------------+
266 >                 0         5 |6                      18 19 20      25 26        31
267   */
268  
269 < typedef bit_field< 20, 20 > FN_field;
270 < typedef bit_field< 21, 25 > NATIVE_OP_field;
269 > typedef bit_field< 19, 19 > FN_field;
270 > typedef bit_field< 20, 25 > NATIVE_OP_field;
271   typedef bit_field< 26, 31 > EMUL_OP_field;
272  
273 + // "Native" EMUL_OP routines
274 + #define GPR_A(REG) gpr(16 + (REG))
275 + #define GPR_D(REG) gpr( 8 + (REG))
276 +
277 + void sheepshaver_cpu::execute_emul_op_microseconds()
278 + {
279 +        Microseconds(GPR_A(0), GPR_D(0));
280 + }
281 +
282 + void sheepshaver_cpu::execute_emul_op_idle_time_1()
283 + {
284 +        // Sleep if no events pending
285 +        if (ReadMacInt32(0x14c) == 0)
286 +                Delay_usec(16667);
287 +        GPR_A(0) = ReadMacInt32(0x2b6);
288 + }
289 +
290 + void sheepshaver_cpu::execute_emul_op_idle_time_2()
291 + {
292 +        // Sleep if no events pending
293 +        if (ReadMacInt32(0x14c) == 0)
294 +                Delay_usec(16667);
295 +        GPR_D(0) = (uint32)-2;
296 + }
297 +
298 + // Filter out EMUL_OP routines that only call native code
299 + bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
300 + {
301 +        switch (emul_op) {
302 +        case OP_MICROSECONDS:
303 +                execute_emul_op_microseconds();
304 +                return true;
305 +        case OP_IDLE_TIME:
306 +                execute_emul_op_idle_time_1();
307 +                return true;
308 +        case OP_IDLE_TIME_2:
309 +                execute_emul_op_idle_time_2();
310 +                return true;
311 +        }
312 +        return false;
313 + }
314 +
315   // Execute EMUL_OP routine
316   void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
317   {
318 + #if ENABLE_NATIVE_EMUL_OP
319 +        // First, filter out EMUL_OPs that can be executed without a mode switch
320 +        if (filter_execute_emul_op(emul_op))
321 +                return;
322 + #endif
323 +
324          M68kRegisters r68;
325          WriteMacInt32(XLM_68K_R25, gpr(25));
326          WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
# Line 259 | Line 358 | void sheepshaver_cpu::execute_sheep(uint
358                  break;
359  
360          case 2:         // EXEC_NATIVE
361 <                NativeOp(NATIVE_OP_field::extract(opcode));
361 >                execute_native_op(NATIVE_OP_field::extract(opcode));
362                  if (FN_field::test(opcode))
363                          pc() = lr();
364                  else
# Line 274 | Line 373 | void sheepshaver_cpu::execute_sheep(uint
373   }
374  
375   // Compile one instruction
376 < bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
376 > int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
377   {
378   #if PPC_ENABLE_JIT
379          const instr_info_t *ii = cg_context.instr_info;
380          if (ii->mnemo != PPC_I(SHEEP))
381 <                return false;
381 >                return COMPILE_FAILURE;
382  
383 <        bool compiled = false;
383 >        int status = COMPILE_FAILURE;
384          powerpc_dyngen & dg = cg_context.codegen;
385          uint32 opcode = cg_context.opcode;
386  
387          switch (opcode & 0x3f) {
388          case 0:         // EMUL_RETURN
389                  dg.gen_invoke(QuitEmulator);
390 <                compiled = true;
390 >                status = COMPILE_CODE_OK;
391                  break;
392  
393          case 1:         // EXEC_RETURN
394                  dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
395 <                compiled = true;
395 >                // Don't check for pending interrupts, we do know we have to
396 >                // get out of this block ASAP
397 >                dg.gen_exec_return();
398 >                status = COMPILE_EPILOGUE_OK;
399                  break;
400  
401          case 2: {       // EXEC_NATIVE
402                  uint32 selector = NATIVE_OP_field::extract(opcode);
403                  switch (selector) {
404 + #if !PPC_REENTRANT_JIT
405 +                // Filter out functions that may invoke Execute68k() or
406 +                // CallMacOS(), this would break reentrancy as they could
407 +                // invalidate the translation cache and even overwrite
408 +                // continuation code when we are done with them.
409                  case NATIVE_PATCH_NAME_REGISTRY:
410                          dg.gen_invoke(DoPatchNameRegistry);
411 <                        compiled = true;
411 >                        status = COMPILE_CODE_OK;
412                          break;
413                  case NATIVE_VIDEO_INSTALL_ACCEL:
414                          dg.gen_invoke(VideoInstallAccel);
415 <                        compiled = true;
415 >                        status = COMPILE_CODE_OK;
416                          break;
417                  case NATIVE_VIDEO_VBL:
418                          dg.gen_invoke(VideoVBL);
419 <                        compiled = true;
419 >                        status = COMPILE_CODE_OK;
420                          break;
421                  case NATIVE_GET_RESOURCE:
422                  case NATIVE_GET_1_RESOURCE:
# Line 327 | Line 434 | bool sheepshaver_cpu::compile1(codegen_c
434                          typedef void (*func_t)(dyngen_cpu_base, uint32);
435                          func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
436                          dg.gen_invoke_CPU_im(func, old_get_resource);
437 <                        compiled = true;
437 >                        status = COMPILE_CODE_OK;
438                          break;
439                  }
440 +                case NATIVE_CHECK_LOAD_INVOC:
441 +                        dg.gen_load_T0_GPR(3);
442 +                        dg.gen_load_T1_GPR(4);
443 +                        dg.gen_se_16_32_T1();
444 +                        dg.gen_load_T2_GPR(5);
445 +                        dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
446 +                        status = COMPILE_CODE_OK;
447 +                        break;
448 + #endif
449                  case NATIVE_DISABLE_INTERRUPT:
450                          dg.gen_invoke(DisableInterrupt);
451 <                        compiled = true;
451 >                        status = COMPILE_CODE_OK;
452                          break;
453                  case NATIVE_ENABLE_INTERRUPT:
454                          dg.gen_invoke(EnableInterrupt);
455 <                        compiled = true;
455 >                        status = COMPILE_CODE_OK;
456                          break;
457 <                case NATIVE_CHECK_LOAD_INVOC:
457 >                case NATIVE_BITBLT:
458                          dg.gen_load_T0_GPR(3);
459 <                        dg.gen_load_T1_GPR(4);
460 <                        dg.gen_se_16_32_T1();
461 <                        dg.gen_load_T2_GPR(5);
462 <                        dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
463 <                        compiled = true;
459 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
460 >                        status = COMPILE_CODE_OK;
461 >                        break;
462 >                case NATIVE_INVRECT:
463 >                        dg.gen_load_T0_GPR(3);
464 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
465 >                        status = COMPILE_CODE_OK;
466 >                        break;
467 >                case NATIVE_FILLRECT:
468 >                        dg.gen_load_T0_GPR(3);
469 >                        dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
470 >                        status = COMPILE_CODE_OK;
471                          break;
472                  }
473 <                if (FN_field::test(opcode)) {
474 <                        if (compiled) {
473 >                // Could we fully translate this NativeOp?
474 >                if (status == COMPILE_CODE_OK) {
475 >                        if (!FN_field::test(opcode))
476 >                                cg_context.done_compile = false;
477 >                        else {
478                                  dg.gen_load_A0_LR();
479                                  dg.gen_set_PC_A0();
480 +                                cg_context.done_compile = true;
481                          }
482 <                        cg_context.done_compile = true;
482 >                        break;
483                  }
484 <                else
484 > #if PPC_REENTRANT_JIT
485 >                // Try to execute NativeOp trampoline
486 >                if (!FN_field::test(opcode))
487 >                        dg.gen_set_PC_im(cg_context.pc + 4);
488 >                else {
489 >                        dg.gen_load_A0_LR();
490 >                        dg.gen_set_PC_A0();
491 >                }
492 >                dg.gen_mov_32_T0_im(selector);
493 >                dg.gen_jmp(native_op_trampoline);
494 >                cg_context.done_compile = true;
495 >                status = COMPILE_EPILOGUE_OK;
496 >                break;
497 > #endif
498 >                // Invoke NativeOp handler
499 >                if (!FN_field::test(opcode)) {
500 >                        typedef void (*func_t)(dyngen_cpu_base, uint32);
501 >                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
502 >                        dg.gen_invoke_CPU_im(func, selector);
503                          cg_context.done_compile = false;
504 +                        status = COMPILE_CODE_OK;
505 +                }
506 +                // Otherwise, let it generate a call to execute_sheep() which
507 +                // will cause necessary updates to the program counter
508                  break;
509          }
510  
511          default: {      // EMUL_OP
512 +                uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
513 + #if ENABLE_NATIVE_EMUL_OP
514 +                typedef void (*emul_op_func_t)(dyngen_cpu_base);
515 +                emul_op_func_t emul_op_func = 0;
516 +                switch (emul_op) {
517 +                case OP_MICROSECONDS:
518 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
519 +                        break;
520 +                case OP_IDLE_TIME:
521 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
522 +                        break;
523 +                case OP_IDLE_TIME_2:
524 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
525 +                        break;
526 +                }
527 +                if (emul_op_func) {
528 +                        dg.gen_invoke_CPU(emul_op_func);
529 +                        cg_context.done_compile = false;
530 +                        status = COMPILE_CODE_OK;
531 +                        break;
532 +                }
533 + #endif
534 + #if PPC_REENTRANT_JIT
535 +                // Try to execute EmulOp trampoline
536 +                dg.gen_set_PC_im(cg_context.pc + 4);
537 +                dg.gen_mov_32_T0_im(emul_op);
538 +                dg.gen_jmp(emul_op_trampoline);
539 +                cg_context.done_compile = true;
540 +                status = COMPILE_EPILOGUE_OK;
541 +                break;
542 + #endif
543 +                // Invoke EmulOp handler
544                  typedef void (*func_t)(dyngen_cpu_base, uint32);
545                  func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
546 <                dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
546 >                dg.gen_invoke_CPU_im(func, emul_op);
547                  cg_context.done_compile = false;
548 <                compiled = true;
548 >                status = COMPILE_CODE_OK;
549                  break;
550          }
551          }
552 <        return compiled;
552 >        return status;
553 > #endif
554 >        return COMPILE_FAILURE;
555 > }
556 >
557 > // CPU context to preserve on interrupt
558 > sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
559 > {
560 > #if SAFE_INTERRUPT_PPC >= 2
561 >        cpu = _cpu;
562 >        where = _where;
563 >
564 >        // Save interrupt context
565 >        memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
566 >        pc = cpu->pc();
567 >        lr = cpu->lr();
568 >        ctr = cpu->ctr();
569 >        cr = cpu->get_cr();
570 >        xer = cpu->get_xer();
571 > #endif
572 > }
573 >
574 > sheepshaver_cpu::interrupt_context::~interrupt_context()
575 > {
576 > #if SAFE_INTERRUPT_PPC >= 2
577 >        // Check whether CPU context was preserved by interrupt
578 >        if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
579 >                printf("FATAL: %s: interrupt clobbers registers\n", where);
580 >                for (int i = 0; i < 32; i++)
581 >                        if (gpr[i] != cpu->gpr(i))
582 >                                printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
583 >        }
584 >        if (pc != cpu->pc())
585 >                printf("FATAL: %s: interrupt clobbers PC\n", where);
586 >        if (lr != cpu->lr())
587 >                printf("FATAL: %s: interrupt clobbers LR\n", where);
588 >        if (ctr != cpu->ctr())
589 >                printf("FATAL: %s: interrupt clobbers CTR\n", where);
590 >        if (cr != cpu->get_cr())
591 >                printf("FATAL: %s: interrupt clobbers CR\n", where);
592 >        if (xer != cpu->get_xer())
593 >                printf("FATAL: %s: interrupt clobbers XER\n", where);
594   #endif
373        return false;
595   }
596  
597   // Handle MacOS interrupt
598   void sheepshaver_cpu::interrupt(uint32 entry)
599   {
600   #if EMUL_TIME_STATS
601 <        interrupt_count++;
601 >        ppc_interrupt_count++;
602          const clock_t interrupt_start = clock();
603   #endif
604  
605 < #if !MULTICORE_CPU
605 > #if SAFE_INTERRUPT_PPC
606 >        static int depth = 0;
607 >        if (depth != 0)
608 >                printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
609 >        depth++;
610 > #endif
611 >
612          // Save program counters and branch registers
613          uint32 saved_pc = pc();
614          uint32 saved_lr = lr();
615          uint32 saved_ctr= ctr();
616          uint32 saved_sp = gpr(1);
390 #endif
617  
618          // Initialize stack pointer to SheepShaver alternate stack base
619          gpr(1) = SignalStackBase() - 64;
# Line 427 | Line 653 | void sheepshaver_cpu::interrupt(uint32 e
653          // Enter nanokernel
654          execute(entry);
655  
430 #if !MULTICORE_CPU
656          // Restore program counters and branch registers
657          pc() = saved_pc;
658          lr() = saved_lr;
659          ctr()= saved_ctr;
660          gpr(1) = saved_sp;
436 #endif
661  
662   #if EMUL_TIME_STATS
663          interrupt_time += (clock() - interrupt_start);
664   #endif
665 +
666 + #if SAFE_INTERRUPT_PPC
667 +        depth--;
668 + #endif
669   }
670  
671   // Execute 68k routine
# Line 631 | Line 859 | inline void sheepshaver_cpu::get_resourc
859   *              SheepShaver CPU engine interface
860   **/
861  
862 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
863 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
636 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
862 > // PowerPC CPU emulator
863 > static sheepshaver_cpu *ppc_cpu = NULL;
864  
865   void FlushCodeCache(uintptr start, uintptr end)
866   {
867          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
868 <        main_cpu->invalidate_cache_range(start, end);
642 < #if MULTICORE_CPU
643 <        interrupt_cpu->invalidate_cache_range(start, end);
644 < #endif
645 < }
646 <
647 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
648 < {
649 < #if MULTICORE_CPU
650 <        current_cpu = new_cpu;
651 < #endif
652 < }
653 <
654 < static inline void cpu_pop()
655 < {
656 < #if MULTICORE_CPU
657 <        current_cpu = main_cpu;
658 < #endif
868 >        ppc_cpu->invalidate_cache_range(start, end);
869   }
870  
871   // Dump PPC registers
872   static void dump_registers(void)
873   {
874 <        current_cpu->dump_registers();
874 >        ppc_cpu->dump_registers();
875   }
876  
877   // Dump log
878   static void dump_log(void)
879   {
880 <        current_cpu->dump_log();
880 >        ppc_cpu->dump_log();
881   }
882  
883   /*
# Line 690 | Line 900 | static sigsegv_return_t sigsegv_handler(
900                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
901  
902          // Get program counter of target CPU
903 <        sheepshaver_cpu * const cpu = current_cpu;
903 >        sheepshaver_cpu * const cpu = ppc_cpu;
904          const uint32 pc = cpu->pc();
905          
906          // Fault in Mac ROM or RAM?
907 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
907 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
908          if (mac_fault) {
909  
910                  // "VM settings" during MacOS 8 installation
# Line 714 | Line 924 | static sigsegv_return_t sigsegv_handler(
924                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
925                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
926                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
927 +        
928 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
929 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
930 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
931 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
932 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
933 +
934 +                // Ignore writes to the zero page
935 +                else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
936 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
937  
938                  // Ignore all other faults, if requested
939                  if (PrefsFindBool("ignoresegv"))
# Line 726 | Line 946 | static sigsegv_return_t sigsegv_handler(
946          printf("SIGSEGV\n");
947          printf("  pc %p\n", fault_instruction);
948          printf("  ea %p\n", fault_address);
729        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
949          dump_registers();
950 <        current_cpu->dump_log();
950 >        ppc_cpu->dump_log();
951          enter_mon();
952          QuitEmulator();
953  
# Line 738 | Line 957 | static sigsegv_return_t sigsegv_handler(
957   void init_emul_ppc(void)
958   {
959          // Initialize main CPU emulator
960 <        main_cpu = new sheepshaver_cpu();
961 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
962 <        main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
960 >        ppc_cpu = new sheepshaver_cpu();
961 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
962 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
963          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
964  
746 #if MULTICORE_CPU
747        // Initialize alternate CPU emulator to handle interrupts
748        interrupt_cpu = new sheepshaver_cpu();
749 #endif
750
965          // Install the handler for SIGSEGV
966          sigsegv_install_handler(sigsegv_handler);
967  
# Line 776 | Line 990 | void exit_emul_ppc(void)
990          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
991          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
992                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
993 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
994 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
995  
996   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
997                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 792 | Line 1008 | void exit_emul_ppc(void)
1008          printf("\n");
1009   #endif
1010  
1011 <        delete main_cpu;
1012 < #if MULTICORE_CPU
1013 <        delete interrupt_cpu;
1014 < #endif
1011 >        delete ppc_cpu;
1012 > }
1013 >
1014 > #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
1015 > // Initialize EmulOp trampolines
1016 > void init_emul_op_trampolines(basic_dyngen & dg)
1017 > {
1018 >        typedef void (*func_t)(dyngen_cpu_base, uint32);
1019 >        func_t func;
1020 >
1021 >        // EmulOp
1022 >        emul_op_trampoline = dg.gen_start();
1023 >        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
1024 >        dg.gen_invoke_CPU_T0(func);
1025 >        dg.gen_exec_return();
1026 >        dg.gen_end();
1027 >
1028 >        // NativeOp
1029 >        native_op_trampoline = dg.gen_start();
1030 >        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
1031 >        dg.gen_invoke_CPU_T0(func);    
1032 >        dg.gen_exec_return();
1033 >        dg.gen_end();
1034 >
1035 >        D(bug("EmulOp trampoline:   %p\n", emul_op_trampoline));
1036 >        D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
1037   }
1038 + #endif
1039  
1040   /*
1041   *  Emulation loop
# Line 804 | Line 1043 | void exit_emul_ppc(void)
1043  
1044   void emul_ppc(uint32 entry)
1045   {
807        current_cpu = main_cpu;
1046   #if 0
1047 <        current_cpu->start_log();
1047 >        ppc_cpu->start_log();
1048   #endif
1049          // start emulation loop and enable code translation or caching
1050 <        current_cpu->execute(entry);
1050 >        ppc_cpu->execute(entry);
1051   }
1052  
1053   /*
1054   *  Handle PowerPC interrupt
1055   */
1056  
819 #if ASYNC_IRQ
820 void HandleInterrupt(void)
821 {
822        main_cpu->handle_interrupt();
823 }
824 #else
1057   void TriggerInterrupt(void)
1058   {
1059   #if 0
1060    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
1061   #else
1062    // Trigger interrupt to main cpu only
1063 <  if (main_cpu)
1064 <          main_cpu->trigger_interrupt();
1063 >  if (ppc_cpu)
1064 >          ppc_cpu->trigger_interrupt();
1065   #endif
1066   }
835 #endif
1067  
1068   void sheepshaver_cpu::handle_interrupt(void)
1069   {
# Line 844 | Line 1075 | void sheepshaver_cpu::handle_interrupt(v
1075          if (InterruptFlags == 0)
1076                  return;
1077  
1078 +        // Current interrupt nest level
1079 +        static int interrupt_depth = 0;
1080 +        ++interrupt_depth;
1081 + #if EMUL_TIME_STATS
1082 +        interrupt_count++;
1083 + #endif
1084 +
1085          // Disable MacOS stack sniffer
1086          WriteMacInt32(0x110, 0);
1087  
# Line 851 | Line 1089 | void sheepshaver_cpu::handle_interrupt(v
1089          switch (ReadMacInt32(XLM_RUN_MODE)) {
1090          case MODE_68K:
1091                  // 68k emulator active, trigger 68k interrupt level 1
854                assert(current_cpu == main_cpu);
1092                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1093                  set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1094                  break;
# Line 859 | Line 1096 | void sheepshaver_cpu::handle_interrupt(v
1096   #if INTERRUPTS_IN_NATIVE_MODE
1097          case MODE_NATIVE:
1098                  // 68k emulator inactive, in nanokernel?
1099 <                assert(current_cpu == main_cpu);
1100 <                if (gpr(1) != KernelDataAddr) {
1099 >                if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1100 >                        interrupt_context ctx(this, "PowerPC mode");
1101 >
1102                          // Prepare for 68k interrupt level 1
1103                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1104                          WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
# Line 869 | Line 1107 | void sheepshaver_cpu::handle_interrupt(v
1107        
1108                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1109                          DisableInterrupt();
872                        cpu_push(interrupt_cpu);
1110                          if (ROMType == ROMTYPE_NEWWORLD)
1111 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
1111 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1112                          else
1113 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
877 <                        cpu_pop();
1113 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1114                  }
1115                  break;
1116   #endif
# Line 883 | Line 1119 | void sheepshaver_cpu::handle_interrupt(v
1119          case MODE_EMUL_OP:
1120                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1121                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1122 +                        interrupt_context ctx(this, "68k mode");
1123 + #if EMUL_TIME_STATS
1124 +                        const clock_t interrupt_start = clock();
1125 + #endif
1126   #if 1
1127                          // Execute full 68k interrupt routine
1128                          M68kRegisters r;
# Line 908 | Line 1148 | void sheepshaver_cpu::handle_interrupt(v
1148                                  }
1149                          }
1150   #endif
1151 + #if EMUL_TIME_STATS
1152 +                        interrupt_time += (clock() - interrupt_start);
1153 + #endif
1154                  }
1155                  break;
1156   #endif
1157          }
1158 +
1159 +        // We are done with this interrupt
1160 +        --interrupt_depth;
1161   }
1162  
1163   static void get_resource(void);
# Line 920 | Line 1166 | static void get_ind_resource(void);
1166   static void get_1_ind_resource(void);
1167   static void r_get_resource(void);
1168  
1169 < #define GPR(REG) current_cpu->gpr(REG)
1170 <
925 < static void NativeOp(int selector)
1169 > // Execute NATIVE_OP routine
1170 > void sheepshaver_cpu::execute_native_op(uint32 selector)
1171   {
1172   #if EMUL_TIME_STATS
1173          native_exec_count++;
# Line 940 | Line 1185 | static void NativeOp(int selector)
1185                  VideoVBL();
1186                  break;
1187          case NATIVE_VIDEO_DO_DRIVER_IO:
1188 <                GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1189 <                                                                                           (void *)GPR(5), GPR(6), GPR(7));
1188 >                gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1189 >                                                                                           (void *)gpr(5), gpr(6), gpr(7));
1190                  break;
1191   #ifdef WORDS_BIGENDIAN
1192          case NATIVE_ETHER_IRQ:
1193                  EtherIRQ();
1194                  break;
1195          case NATIVE_ETHER_INIT:
1196 <                GPR(3) = InitStreamModule((void *)GPR(3));
1196 >                gpr(3) = InitStreamModule((void *)gpr(3));
1197                  break;
1198          case NATIVE_ETHER_TERM:
1199                  TerminateStreamModule();
1200                  break;
1201          case NATIVE_ETHER_OPEN:
1202 <                GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1202 >                gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1203                  break;
1204          case NATIVE_ETHER_CLOSE:
1205 <                GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1205 >                gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1206                  break;
1207          case NATIVE_ETHER_WPUT:
1208 <                GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1208 >                gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1209                  break;
1210          case NATIVE_ETHER_RSRV:
1211 <                GPR(3) = ether_rsrv((queue_t *)GPR(3));
1211 >                gpr(3) = ether_rsrv((queue_t *)gpr(3));
1212                  break;
1213   #else
1214          case NATIVE_ETHER_INIT:
1215                  // FIXME: needs more complicated thunks
1216 <                GPR(3) = false;
1216 >                gpr(3) = false;
1217                  break;
1218   #endif
1219 +        case NATIVE_SYNC_HOOK:
1220 +                gpr(3) = NQD_sync_hook(gpr(3));
1221 +                break;
1222 +        case NATIVE_BITBLT_HOOK:
1223 +                gpr(3) = NQD_bitblt_hook(gpr(3));
1224 +                break;
1225 +        case NATIVE_BITBLT:
1226 +                NQD_bitblt(gpr(3));
1227 +                break;
1228 +        case NATIVE_FILLRECT_HOOK:
1229 +                gpr(3) = NQD_fillrect_hook(gpr(3));
1230 +                break;
1231 +        case NATIVE_INVRECT:
1232 +                NQD_invrect(gpr(3));
1233 +                break;
1234 +        case NATIVE_FILLRECT:
1235 +                NQD_fillrect(gpr(3));
1236 +                break;
1237          case NATIVE_SERIAL_NOTHING:
1238          case NATIVE_SERIAL_OPEN:
1239          case NATIVE_SERIAL_PRIME_IN:
# Line 988 | Line 1251 | static void NativeOp(int selector)
1251                          SerialStatus,
1252                          SerialClose
1253                  };
1254 <                GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1254 >                gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1255                  break;
1256          }
1257          case NATIVE_GET_RESOURCE:
# Line 998 | Line 1261 | static void NativeOp(int selector)
1261          case NATIVE_R_GET_RESOURCE: {
1262                  typedef void (*GetResourceCallback)(void);
1263                  static const GetResourceCallback get_resource_callbacks[] = {
1264 <                        get_resource,
1265 <                        get_1_resource,
1266 <                        get_ind_resource,
1267 <                        get_1_ind_resource,
1268 <                        r_get_resource
1264 >                        ::get_resource,
1265 >                        ::get_1_resource,
1266 >                        ::get_ind_resource,
1267 >                        ::get_1_ind_resource,
1268 >                        ::r_get_resource
1269                  };
1270                  get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1271                  break;
# Line 1014 | Line 1277 | static void NativeOp(int selector)
1277                  EnableInterrupt();
1278                  break;
1279          case NATIVE_MAKE_EXECUTABLE:
1280 <                MakeExecutable(0, (void *)GPR(4), GPR(5));
1280 >                MakeExecutable(0, (void *)gpr(4), gpr(5));
1281                  break;
1282          case NATIVE_CHECK_LOAD_INVOC:
1283 <                check_load_invoc(GPR(3), GPR(4), GPR(5));
1283 >                check_load_invoc(gpr(3), gpr(4), gpr(5));
1284                  break;
1285          default:
1286                  printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
# Line 1038 | Line 1301 | static void NativeOp(int selector)
1301  
1302   void Execute68k(uint32 pc, M68kRegisters *r)
1303   {
1304 <        current_cpu->execute_68k(pc, r);
1304 >        ppc_cpu->execute_68k(pc, r);
1305   }
1306  
1307   /*
# Line 1061 | Line 1324 | void Execute68kTrap(uint16 trap, M68kReg
1324  
1325   uint32 call_macos(uint32 tvect)
1326   {
1327 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1327 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1328   }
1329  
1330   uint32 call_macos1(uint32 tvect, uint32 arg1)
1331   {
1332          const uint32 args[] = { arg1 };
1333 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1333 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1334   }
1335  
1336   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1337   {
1338          const uint32 args[] = { arg1, arg2 };
1339 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1339 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1340   }
1341  
1342   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1343   {
1344          const uint32 args[] = { arg1, arg2, arg3 };
1345 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1345 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1346   }
1347  
1348   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1349   {
1350          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1351 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1351 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1352   }
1353  
1354   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1355   {
1356          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1357 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1357 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1358   }
1359  
1360   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1361   {
1362          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1363 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1363 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1364   }
1365  
1366   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1367   {
1368          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1369 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1369 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1370   }
1371  
1372   /*
# Line 1112 | Line 1375 | uint32 call_macos7(uint32 tvect, uint32
1375  
1376   void get_resource(void)
1377   {
1378 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1378 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1379   }
1380  
1381   void get_1_resource(void)
1382   {
1383 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1383 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1384   }
1385  
1386   void get_ind_resource(void)
1387   {
1388 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1388 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1389   }
1390  
1391   void get_1_ind_resource(void)
1392   {
1393 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1393 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1394   }
1395  
1396   void r_get_resource(void)
1397   {
1398 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1398 >        ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1399   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines