ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.17 by gbeauche, 2003-11-10T16:23:58Z vs.
Revision 1.44 by gbeauche, 2004-06-05T07:09:38Z

# Line 1 | Line 1
1   /*
2   *  sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3   *
4 < *  SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
4 > *  SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5   *
6   *  This program is free software; you can redistribute it and/or modify
7   *  it under the terms of the GNU General Public License as published by
# Line 30 | Line 30
30   #include "sigsegv.h"
31   #include "cpu/ppc/ppc-cpu.hpp"
32   #include "cpu/ppc/ppc-operations.hpp"
33 + #include "cpu/ppc/ppc-instructions.hpp"
34 + #include "thunks.h"
35  
36   // Used for NativeOp trampolines
37   #include "video.h"
38   #include "name_registry.h"
39   #include "serial.h"
40   #include "ether.h"
41 + #include "timer.h"
42  
43   #include <stdio.h>
44 + #include <stdlib.h>
45  
46   #if ENABLE_MON
47   #include "mon.h"
# Line 48 | Line 52
52   #include "debug.h"
53  
54   // Emulation time statistics
55 < #define EMUL_TIME_STATS 1
55 > #ifndef EMUL_TIME_STATS
56 > #define EMUL_TIME_STATS 0
57 > #endif
58  
59   #if EMUL_TIME_STATS
60   static clock_t emul_start_time;
61 < static uint32 interrupt_count = 0;
61 > static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
62   static clock_t interrupt_time = 0;
63   static uint32 exec68k_count = 0;
64   static clock_t exec68k_time = 0;
# Line 71 | Line 77 | static void enter_mon(void)
77   #endif
78   }
79  
80 < // Enable multicore (main/interrupts) cpu emulation?
81 < #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
80 > // From main_*.cpp
81 > extern uintptr SignalStackBase();
82 >
83 > // From rsrc_patches.cpp
84 > extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
85 >
86 > // PowerPC EmulOp to exit from emulation looop
87 > const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
88 >
89 > // Enable interrupt routine safety checks?
90 > #define SAFE_INTERRUPT_PPC 1
91  
92   // Enable Execute68k() safety checks?
93   #define SAFE_EXEC_68K 1
# Line 86 | Line 101 | static void enter_mon(void)
101   // Interrupts in native mode?
102   #define INTERRUPTS_IN_NATIVE_MODE 1
103  
104 + // Enable native EMUL_OPs to be run without a mode switch
105 + #define ENABLE_NATIVE_EMUL_OP 1
106 +
107   // Pointer to Kernel Data
108   static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
109  
110   // SIGSEGV handler
111   static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
112  
113 + #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
114 + // Special trampolines for EmulOp and NativeOp
115 + static uint8 *emul_op_trampoline;
116 + static uint8 *native_op_trampoline;
117 + #endif
118 +
119 + // JIT Compiler enabled?
120 + static inline bool enable_jit_p()
121 + {
122 +        return PrefsFindBool("jit");
123 + }
124 +
125  
126   /**
127   *              PowerPC emulator glue with special 'sheep' opcodes
128   **/
129  
130 + enum {
131 +        PPC_I(SHEEP) = PPC_I(MAX),
132 +        PPC_I(SHEEP_MAX)
133 + };
134 +
135   class sheepshaver_cpu
136          : public powerpc_cpu
137   {
138          void init_decoder();
139          void execute_sheep(uint32 opcode);
140  
141 +        // Filter out EMUL_OP routines that only call native code
142 +        bool filter_execute_emul_op(uint32 emul_op);
143 +
144 +        // "Native" EMUL_OP routines
145 +        void execute_emul_op_microseconds();
146 +        void execute_emul_op_idle_time_1();
147 +        void execute_emul_op_idle_time_2();
148 +
149 +        // CPU context to preserve on interrupt
150 +        class interrupt_context {
151 +                uint32 gpr[32];
152 +                uint32 pc;
153 +                uint32 lr;
154 +                uint32 ctr;
155 +                uint32 cr;
156 +                uint32 xer;
157 +                sheepshaver_cpu *cpu;
158 +                const char *where;
159 +        public:
160 +                interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
161 +                ~interrupt_context();
162 +        };
163 +
164   public:
165  
166          // Constructor
167          sheepshaver_cpu();
168  
169 <        // Condition Register accessors
169 >        // CR & XER accessors
170          uint32 get_cr() const           { return cr().get(); }
171          void set_cr(uint32 v)           { cr().set(v); }
172 +        uint32 get_xer() const          { return xer().get(); }
173 +        void set_xer(uint32 v)          { xer().set(v); }
174  
175 <        // Execution loop
176 <        void execute(uint32 entry, bool enable_cache = false);
175 >        // Execute NATIVE_OP routine
176 >        void execute_native_op(uint32 native_op);
177 >
178 >        // Execute EMUL_OP routine
179 >        void execute_emul_op(uint32 emul_op);
180  
181          // Execute 68k routine
182          void execute_68k(uint32 entry, M68kRegisters *r);
# Line 124 | Line 187 | public:
187          // Execute MacOS/PPC code
188          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
189  
190 +        // Compile one instruction
191 +        virtual int compile1(codegen_context_t & cg_context);
192 +
193          // Resource manager thunk
194          void get_resource(uint32 old_get_resource);
195  
# Line 131 | Line 197 | public:
197          void interrupt(uint32 entry);
198          void handle_interrupt();
199  
134        // Lazy memory allocator (one item at a time)
135        void *operator new(size_t size)
136                { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
137        void operator delete(void *p)
138                { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
139        // FIXME: really make surre array allocation fail at link time?
140        void *operator new[](size_t);
141        void operator delete[](void *p);
142
200          // Make sure the SIGSEGV handler can access CPU registers
201          friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
202   };
203  
204 < lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
204 > // Memory allocator returning areas aligned on 16-byte boundaries
205 > void *operator new(size_t size)
206 > {
207 >        void *p;
208 >
209 > #if defined(HAVE_POSIX_MEMALIGN)
210 >        if (posix_memalign(&p, 16, size) != 0)
211 >                throw std::bad_alloc();
212 > #elif defined(HAVE_MEMALIGN)
213 >        p = memalign(16, size);
214 > #elif defined(HAVE_VALLOC)
215 >        p = valloc(size); // page-aligned!
216 > #else
217 >        /* XXX: handle padding ourselves */
218 >        p = malloc(size);
219 > #endif
220 >
221 >        return p;
222 > }
223 >
224 > void operator delete(void *p)
225 > {
226 > #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
227 > #if defined(__GLIBC__)
228 >        // this is known to work only with GNU libc
229 >        free(p);
230 > #endif
231 > #else
232 >        free(p);
233 > #endif
234 > }
235  
236   sheepshaver_cpu::sheepshaver_cpu()
237 <        : powerpc_cpu()
237 >        : powerpc_cpu(enable_jit_p())
238   {
239          init_decoder();
240   }
241  
242   void sheepshaver_cpu::init_decoder()
243   {
157 #ifndef PPC_NO_STATIC_II_INDEX_TABLE
158        static bool initialized = false;
159        if (initialized)
160                return;
161        initialized = true;
162 #endif
163
244          static const instr_info_t sheep_ii_table[] = {
245                  { "sheep",
246                    (execute_pmf)&sheepshaver_cpu::execute_sheep,
247                    NULL,
248 +                  PPC_I(SHEEP),
249                    D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
250                  }
251          };
# Line 178 | Line 259 | void sheepshaver_cpu::init_decoder()
259          }
260   }
261  
181 // Forward declaration for native opcode handler
182 static void NativeOp(int selector);
183
262   /*              NativeOp instruction format:
263 <                +------------+--------------------------+--+----------+------------+
264 <                |      6     |                          |FN|    OP    |      2     |
265 <                +------------+--------------------------+--+----------+------------+
266 <                 0         5 |6                       19 20 21      25 26        31
263 >                +------------+-------------------------+--+-----------+------------+
264 >                |      6     |                         |FN|    OP     |      2     |
265 >                +------------+-------------------------+--+-----------+------------+
266 >                 0         5 |6                      18 19 20      25 26        31
267   */
268  
269 < typedef bit_field< 20, 20 > FN_field;
270 < typedef bit_field< 21, 25 > NATIVE_OP_field;
269 > typedef bit_field< 19, 19 > FN_field;
270 > typedef bit_field< 20, 25 > NATIVE_OP_field;
271   typedef bit_field< 26, 31 > EMUL_OP_field;
272  
273 + // "Native" EMUL_OP routines
274 + #define GPR_A(REG) gpr(16 + (REG))
275 + #define GPR_D(REG) gpr( 8 + (REG))
276 +
277 + void sheepshaver_cpu::execute_emul_op_microseconds()
278 + {
279 +        Microseconds(GPR_A(0), GPR_D(0));
280 + }
281 +
282 + void sheepshaver_cpu::execute_emul_op_idle_time_1()
283 + {
284 +        // Sleep if no events pending
285 +        if (ReadMacInt32(0x14c) == 0)
286 +                Delay_usec(16667);
287 +        GPR_A(0) = ReadMacInt32(0x2b6);
288 + }
289 +
290 + void sheepshaver_cpu::execute_emul_op_idle_time_2()
291 + {
292 +        // Sleep if no events pending
293 +        if (ReadMacInt32(0x14c) == 0)
294 +                Delay_usec(16667);
295 +        GPR_D(0) = (uint32)-2;
296 + }
297 +
298 + // Filter out EMUL_OP routines that only call native code
299 + bool sheepshaver_cpu::filter_execute_emul_op(uint32 emul_op)
300 + {
301 +        switch (emul_op) {
302 +        case OP_MICROSECONDS:
303 +                execute_emul_op_microseconds();
304 +                return true;
305 +        case OP_IDLE_TIME:
306 +                execute_emul_op_idle_time_1();
307 +                return true;
308 +        case OP_IDLE_TIME_2:
309 +                execute_emul_op_idle_time_2();
310 +                return true;
311 +        }
312 +        return false;
313 + }
314 +
315 + // Execute EMUL_OP routine
316 + void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
317 + {
318 + #if ENABLE_NATIVE_EMUL_OP
319 +        // First, filter out EMUL_OPs that can be executed without a mode switch
320 +        if (filter_execute_emul_op(emul_op))
321 +                return;
322 + #endif
323 +
324 +        M68kRegisters r68;
325 +        WriteMacInt32(XLM_68K_R25, gpr(25));
326 +        WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
327 +        for (int i = 0; i < 8; i++)
328 +                r68.d[i] = gpr(8 + i);
329 +        for (int i = 0; i < 7; i++)
330 +                r68.a[i] = gpr(16 + i);
331 +        r68.a[7] = gpr(1);
332 +        uint32 saved_cr = get_cr() & CR_field<2>::mask();
333 +        uint32 saved_xer = get_xer();
334 +        EmulOp(&r68, gpr(24), emul_op);
335 +        set_cr(saved_cr);
336 +        set_xer(saved_xer);
337 +        for (int i = 0; i < 8; i++)
338 +                gpr(8 + i) = r68.d[i];
339 +        for (int i = 0; i < 7; i++)
340 +                gpr(16 + i) = r68.a[i];
341 +        gpr(1) = r68.a[7];
342 +        WriteMacInt32(XLM_RUN_MODE, MODE_68K);
343 + }
344 +
345   // Execute SheepShaver instruction
346   void sheepshaver_cpu::execute_sheep(uint32 opcode)
347   {
# Line 208 | Line 358 | void sheepshaver_cpu::execute_sheep(uint
358                  break;
359  
360          case 2:         // EXEC_NATIVE
361 <                NativeOp(NATIVE_OP_field::extract(opcode));
361 >                execute_native_op(NATIVE_OP_field::extract(opcode));
362                  if (FN_field::test(opcode))
363                          pc() = lr();
364                  else
365                          pc() += 4;
366                  break;
367  
368 <        default: {      // EMUL_OP
369 <                M68kRegisters r68;
220 <                WriteMacInt32(XLM_68K_R25, gpr(25));
221 <                WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
222 <                for (int i = 0; i < 8; i++)
223 <                        r68.d[i] = gpr(8 + i);
224 <                for (int i = 0; i < 7; i++)
225 <                        r68.a[i] = gpr(16 + i);
226 <                r68.a[7] = gpr(1);
227 <                EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
228 <                for (int i = 0; i < 8; i++)
229 <                        gpr(8 + i) = r68.d[i];
230 <                for (int i = 0; i < 7; i++)
231 <                        gpr(16 + i) = r68.a[i];
232 <                gpr(1) = r68.a[7];
233 <                WriteMacInt32(XLM_RUN_MODE, MODE_68K);
368 >        default:        // EMUL_OP
369 >                execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
370                  pc() += 4;
371                  break;
372          }
373 + }
374 +
375 + // Compile one instruction
376 + int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
377 + {
378 + #if PPC_ENABLE_JIT
379 +        const instr_info_t *ii = cg_context.instr_info;
380 +        if (ii->mnemo != PPC_I(SHEEP))
381 +                return COMPILE_FAILURE;
382 +
383 +        int status = COMPILE_FAILURE;
384 +        powerpc_dyngen & dg = cg_context.codegen;
385 +        uint32 opcode = cg_context.opcode;
386 +
387 +        switch (opcode & 0x3f) {
388 +        case 0:         // EMUL_RETURN
389 +                dg.gen_invoke(QuitEmulator);
390 +                status = COMPILE_CODE_OK;
391 +                break;
392 +
393 +        case 1:         // EXEC_RETURN
394 +                dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
395 +                // Don't check for pending interrupts, we do know we have to
396 +                // get out of this block ASAP
397 +                dg.gen_exec_return();
398 +                status = COMPILE_EPILOGUE_OK;
399 +                break;
400 +
401 +        case 2: {       // EXEC_NATIVE
402 +                uint32 selector = NATIVE_OP_field::extract(opcode);
403 +                switch (selector) {
404 + #if !PPC_REENTRANT_JIT
405 +                // Filter out functions that may invoke Execute68k() or
406 +                // CallMacOS(), this would break reentrancy as they could
407 +                // invalidate the translation cache and even overwrite
408 +                // continuation code when we are done with them.
409 +                case NATIVE_PATCH_NAME_REGISTRY:
410 +                        dg.gen_invoke(DoPatchNameRegistry);
411 +                        status = COMPILE_CODE_OK;
412 +                        break;
413 +                case NATIVE_VIDEO_INSTALL_ACCEL:
414 +                        dg.gen_invoke(VideoInstallAccel);
415 +                        status = COMPILE_CODE_OK;
416 +                        break;
417 +                case NATIVE_VIDEO_VBL:
418 +                        dg.gen_invoke(VideoVBL);
419 +                        status = COMPILE_CODE_OK;
420 +                        break;
421 +                case NATIVE_GET_RESOURCE:
422 +                case NATIVE_GET_1_RESOURCE:
423 +                case NATIVE_GET_IND_RESOURCE:
424 +                case NATIVE_GET_1_IND_RESOURCE:
425 +                case NATIVE_R_GET_RESOURCE: {
426 +                        static const uint32 get_resource_ptr[] = {
427 +                                XLM_GET_RESOURCE,
428 +                                XLM_GET_1_RESOURCE,
429 +                                XLM_GET_IND_RESOURCE,
430 +                                XLM_GET_1_IND_RESOURCE,
431 +                                XLM_R_GET_RESOURCE
432 +                        };
433 +                        uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
434 +                        typedef void (*func_t)(dyngen_cpu_base, uint32);
435 +                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
436 +                        dg.gen_invoke_CPU_im(func, old_get_resource);
437 +                        status = COMPILE_CODE_OK;
438 +                        break;
439 +                }
440 +                case NATIVE_CHECK_LOAD_INVOC:
441 +                        dg.gen_load_T0_GPR(3);
442 +                        dg.gen_load_T1_GPR(4);
443 +                        dg.gen_se_16_32_T1();
444 +                        dg.gen_load_T2_GPR(5);
445 +                        dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
446 +                        status = COMPILE_CODE_OK;
447 +                        break;
448 + #endif
449 +                case NATIVE_DISABLE_INTERRUPT:
450 +                        dg.gen_invoke(DisableInterrupt);
451 +                        status = COMPILE_CODE_OK;
452 +                        break;
453 +                case NATIVE_ENABLE_INTERRUPT:
454 +                        dg.gen_invoke(EnableInterrupt);
455 +                        status = COMPILE_CODE_OK;
456 +                        break;
457 +                case NATIVE_BITBLT:
458 +                        dg.gen_load_T0_GPR(3);
459 +                        dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
460 +                        status = COMPILE_CODE_OK;
461 +                        break;
462 +                case NATIVE_INVRECT:
463 +                        dg.gen_load_T0_GPR(3);
464 +                        dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
465 +                        status = COMPILE_CODE_OK;
466 +                        break;
467 +                case NATIVE_FILLRECT:
468 +                        dg.gen_load_T0_GPR(3);
469 +                        dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
470 +                        status = COMPILE_CODE_OK;
471 +                        break;
472 +                }
473 +                // Could we fully translate this NativeOp?
474 +                if (status == COMPILE_CODE_OK) {
475 +                        if (!FN_field::test(opcode))
476 +                                cg_context.done_compile = false;
477 +                        else {
478 +                                dg.gen_load_A0_LR();
479 +                                dg.gen_set_PC_A0();
480 +                                cg_context.done_compile = true;
481 +                        }
482 +                        break;
483 +                }
484 + #if PPC_REENTRANT_JIT
485 +                // Try to execute NativeOp trampoline
486 +                if (!FN_field::test(opcode))
487 +                        dg.gen_set_PC_im(cg_context.pc + 4);
488 +                else {
489 +                        dg.gen_load_A0_LR();
490 +                        dg.gen_set_PC_A0();
491 +                }
492 +                dg.gen_mov_32_T0_im(selector);
493 +                dg.gen_jmp(native_op_trampoline);
494 +                cg_context.done_compile = true;
495 +                status = COMPILE_EPILOGUE_OK;
496 +                break;
497 + #endif
498 +                // Invoke NativeOp handler
499 +                if (!FN_field::test(opcode)) {
500 +                        typedef void (*func_t)(dyngen_cpu_base, uint32);
501 +                        func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
502 +                        dg.gen_invoke_CPU_im(func, selector);
503 +                        cg_context.done_compile = false;
504 +                        status = COMPILE_CODE_OK;
505 +                }
506 +                // Otherwise, let it generate a call to execute_sheep() which
507 +                // will cause necessary updates to the program counter
508 +                break;
509 +        }
510 +
511 +        default: {      // EMUL_OP
512 +                uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
513 + #if ENABLE_NATIVE_EMUL_OP
514 +                typedef void (*emul_op_func_t)(dyngen_cpu_base);
515 +                emul_op_func_t emul_op_func = 0;
516 +                switch (emul_op) {
517 +                case OP_MICROSECONDS:
518 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_microseconds).ptr();
519 +                        break;
520 +                case OP_IDLE_TIME:
521 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_1).ptr();
522 +                        break;
523 +                case OP_IDLE_TIME_2:
524 +                        emul_op_func = (emul_op_func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op_idle_time_2).ptr();
525 +                        break;
526 +                }
527 +                if (emul_op_func) {
528 +                        dg.gen_invoke_CPU(emul_op_func);
529 +                        cg_context.done_compile = false;
530 +                        status = COMPILE_CODE_OK;
531 +                        break;
532 +                }
533 + #endif
534 + #if PPC_REENTRANT_JIT
535 +                // Try to execute EmulOp trampoline
536 +                dg.gen_set_PC_im(cg_context.pc + 4);
537 +                dg.gen_mov_32_T0_im(emul_op);
538 +                dg.gen_jmp(emul_op_trampoline);
539 +                cg_context.done_compile = true;
540 +                status = COMPILE_EPILOGUE_OK;
541 +                break;
542 + #endif
543 +                // Invoke EmulOp handler
544 +                typedef void (*func_t)(dyngen_cpu_base, uint32);
545 +                func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
546 +                dg.gen_invoke_CPU_im(func, emul_op);
547 +                cg_context.done_compile = false;
548 +                status = COMPILE_CODE_OK;
549 +                break;
550 +        }
551          }
552 +        return status;
553 + #endif
554 +        return COMPILE_FAILURE;
555   }
556  
557 < // Execution loop
558 < void sheepshaver_cpu::execute(uint32 entry, bool enable_cache)
557 > // CPU context to preserve on interrupt
558 > sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
559   {
560 <        powerpc_cpu::execute(entry, enable_cache);
560 > #if SAFE_INTERRUPT_PPC >= 2
561 >        cpu = _cpu;
562 >        where = _where;
563 >
564 >        // Save interrupt context
565 >        memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
566 >        pc = cpu->pc();
567 >        lr = cpu->lr();
568 >        ctr = cpu->ctr();
569 >        cr = cpu->get_cr();
570 >        xer = cpu->get_xer();
571 > #endif
572 > }
573 >
574 > sheepshaver_cpu::interrupt_context::~interrupt_context()
575 > {
576 > #if SAFE_INTERRUPT_PPC >= 2
577 >        // Check whether CPU context was preserved by interrupt
578 >        if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
579 >                printf("FATAL: %s: interrupt clobbers registers\n", where);
580 >                for (int i = 0; i < 32; i++)
581 >                        if (gpr[i] != cpu->gpr(i))
582 >                                printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
583 >        }
584 >        if (pc != cpu->pc())
585 >                printf("FATAL: %s: interrupt clobbers PC\n", where);
586 >        if (lr != cpu->lr())
587 >                printf("FATAL: %s: interrupt clobbers LR\n", where);
588 >        if (ctr != cpu->ctr())
589 >                printf("FATAL: %s: interrupt clobbers CTR\n", where);
590 >        if (cr != cpu->get_cr())
591 >                printf("FATAL: %s: interrupt clobbers CR\n", where);
592 >        if (xer != cpu->get_xer())
593 >                printf("FATAL: %s: interrupt clobbers XER\n", where);
594 > #endif
595   }
596  
597   // Handle MacOS interrupt
598   void sheepshaver_cpu::interrupt(uint32 entry)
599   {
600   #if EMUL_TIME_STATS
601 <        interrupt_count++;
601 >        ppc_interrupt_count++;
602          const clock_t interrupt_start = clock();
603   #endif
604  
605 < #if !MULTICORE_CPU
605 > #if SAFE_INTERRUPT_PPC
606 >        static int depth = 0;
607 >        if (depth != 0)
608 >                printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
609 >        depth++;
610 > #endif
611 >
612          // Save program counters and branch registers
613          uint32 saved_pc = pc();
614          uint32 saved_lr = lr();
615          uint32 saved_ctr= ctr();
616          uint32 saved_sp = gpr(1);
260 #endif
617  
618          // Initialize stack pointer to SheepShaver alternate stack base
619 <        gpr(1) = SheepStack1Base - 64;
619 >        gpr(1) = SignalStackBase() - 64;
620  
621          // Build trampoline to return from interrupt
622 <        uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
622 >        SheepVar32 trampoline = POWERPC_EXEC_RETURN;
623  
624          // Prepare registers for nanokernel interrupt routine
625          kernel_data->v[0x004 >> 2] = htonl(gpr(1));
# Line 282 | Line 638 | void sheepshaver_cpu::interrupt(uint32 e
638          gpr(1)  = KernelDataAddr;
639          gpr(7)  = ntohl(kernel_data->v[0x660 >> 2]);
640          gpr(8)  = 0;
641 <        gpr(10) = (uint32)trampoline;
642 <        gpr(12) = (uint32)trampoline;
641 >        gpr(10) = trampoline.addr();
642 >        gpr(12) = trampoline.addr();
643          gpr(13) = get_cr();
644  
645          // rlwimi. r7,r7,8,0,0
# Line 297 | Line 653 | void sheepshaver_cpu::interrupt(uint32 e
653          // Enter nanokernel
654          execute(entry);
655  
300 #if !MULTICORE_CPU
656          // Restore program counters and branch registers
657          pc() = saved_pc;
658          lr() = saved_lr;
659          ctr()= saved_ctr;
660          gpr(1) = saved_sp;
306 #endif
661  
662   #if EMUL_TIME_STATS
663          interrupt_time += (clock() - interrupt_start);
664   #endif
665 +
666 + #if SAFE_INTERRUPT_PPC
667 +        depth--;
668 + #endif
669   }
670  
671   // Execute 68k routine
# Line 420 | Line 778 | uint32 sheepshaver_cpu::execute_macos_co
778          uint32 saved_ctr= ctr();
779  
780          // Build trampoline with EXEC_RETURN
781 <        uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
782 <        lr() = (uint32)trampoline;
781 >        SheepVar32 trampoline = POWERPC_EXEC_RETURN;
782 >        lr() = trampoline.addr();
783  
784          gpr(1) -= 64;                                                           // Create stack frame
785          uint32 proc = ReadMacInt32(tvect);                      // Get routine address
# Line 465 | Line 823 | inline void sheepshaver_cpu::execute_ppc
823          // Save branch registers
824          uint32 saved_lr = lr();
825  
826 <        const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
827 <        lr() = (uint32)trampoline;
826 >        SheepVar32 trampoline = POWERPC_EXEC_RETURN;
827 >        WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
828 >        lr() = trampoline.addr();
829  
830          execute(entry);
831  
# Line 475 | Line 834 | inline void sheepshaver_cpu::execute_ppc
834   }
835  
836   // Resource Manager thunk
478 extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
479
837   inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
838   {
839          uint32 type = gpr(3);
# Line 502 | Line 859 | inline void sheepshaver_cpu::get_resourc
859   *              SheepShaver CPU engine interface
860   **/
861  
862 < static sheepshaver_cpu *main_cpu = NULL;                // CPU emulator to handle usual control flow
863 < static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
507 < static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
862 > // PowerPC CPU emulator
863 > static sheepshaver_cpu *ppc_cpu = NULL;
864  
865   void FlushCodeCache(uintptr start, uintptr end)
866   {
867          D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
868 <        main_cpu->invalidate_cache_range(start, end);
513 < #if MULTICORE_CPU
514 <        interrupt_cpu->invalidate_cache_range(start, end);
515 < #endif
516 < }
517 <
518 < static inline void cpu_push(sheepshaver_cpu *new_cpu)
519 < {
520 < #if MULTICORE_CPU
521 <        current_cpu = new_cpu;
522 < #endif
523 < }
524 <
525 < static inline void cpu_pop()
526 < {
527 < #if MULTICORE_CPU
528 <        current_cpu = main_cpu;
529 < #endif
868 >        ppc_cpu->invalidate_cache_range(start, end);
869   }
870  
871   // Dump PPC registers
872   static void dump_registers(void)
873   {
874 <        current_cpu->dump_registers();
874 >        ppc_cpu->dump_registers();
875   }
876  
877   // Dump log
878   static void dump_log(void)
879   {
880 <        current_cpu->dump_log();
880 >        ppc_cpu->dump_log();
881   }
882  
883   /*
# Line 561 | Line 900 | static sigsegv_return_t sigsegv_handler(
900                  return SIGSEGV_RETURN_SKIP_INSTRUCTION;
901  
902          // Get program counter of target CPU
903 <        sheepshaver_cpu * const cpu = current_cpu;
903 >        sheepshaver_cpu * const cpu = ppc_cpu;
904          const uint32 pc = cpu->pc();
905          
906          // Fault in Mac ROM or RAM?
907 <        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
907 >        bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
908          if (mac_fault) {
909  
910                  // "VM settings" during MacOS 8 installation
# Line 585 | Line 924 | static sigsegv_return_t sigsegv_handler(
924                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
925                  else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
926                          return SIGSEGV_RETURN_SKIP_INSTRUCTION;
927 +        
928 +                // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
929 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
930 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
931 +                else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
932 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
933 +
934 +                // Ignore writes to the zero page
935 +                else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
936 +                        return SIGSEGV_RETURN_SKIP_INSTRUCTION;
937  
938                  // Ignore all other faults, if requested
939                  if (PrefsFindBool("ignoresegv"))
# Line 597 | Line 946 | static sigsegv_return_t sigsegv_handler(
946          printf("SIGSEGV\n");
947          printf("  pc %p\n", fault_instruction);
948          printf("  ea %p\n", fault_address);
600        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
949          dump_registers();
950 <        current_cpu->dump_log();
950 >        ppc_cpu->dump_log();
951          enter_mon();
952          QuitEmulator();
953  
# Line 609 | Line 957 | static sigsegv_return_t sigsegv_handler(
957   void init_emul_ppc(void)
958   {
959          // Initialize main CPU emulator
960 <        main_cpu = new sheepshaver_cpu();
961 <        main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
960 >        ppc_cpu = new sheepshaver_cpu();
961 >        ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
962 >        ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
963          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
964  
616 #if MULTICORE_CPU
617        // Initialize alternate CPU emulator to handle interrupts
618        interrupt_cpu = new sheepshaver_cpu();
619 #endif
620
965          // Install the handler for SIGSEGV
966          sigsegv_install_handler(sigsegv_handler);
967  
# Line 646 | Line 990 | void exit_emul_ppc(void)
990          printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
991          printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
992                     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
993 +        printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
994 +                   (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
995  
996   #define PRINT_STATS(LABEL, VAR_PREFIX) do {                                                             \
997                  printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count);             \
# Line 662 | Line 1008 | void exit_emul_ppc(void)
1008          printf("\n");
1009   #endif
1010  
1011 <        delete main_cpu;
666 < #if MULTICORE_CPU
667 <        delete interrupt_cpu;
668 < #endif
1011 >        delete ppc_cpu;
1012   }
1013  
1014 + #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
1015 + // Initialize EmulOp trampolines
1016 + void init_emul_op_trampolines(basic_dyngen & dg)
1017 + {
1018 +        typedef void (*func_t)(dyngen_cpu_base, uint32);
1019 +        func_t func;
1020 +
1021 +        // EmulOp
1022 +        emul_op_trampoline = dg.gen_start();
1023 +        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
1024 +        dg.gen_invoke_CPU_T0(func);
1025 +        dg.gen_exec_return();
1026 +        dg.gen_end();
1027 +
1028 +        // NativeOp
1029 +        native_op_trampoline = dg.gen_start();
1030 +        func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
1031 +        dg.gen_invoke_CPU_T0(func);    
1032 +        dg.gen_exec_return();
1033 +        dg.gen_end();
1034 +
1035 +        D(bug("EmulOp trampoline:   %p\n", emul_op_trampoline));
1036 +        D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
1037 + }
1038 + #endif
1039 +
1040   /*
1041   *  Emulation loop
1042   */
1043  
1044   void emul_ppc(uint32 entry)
1045   {
1046 <        current_cpu = main_cpu;
1047 < #if DEBUG
679 <        current_cpu->start_log();
1046 > #if 0
1047 >        ppc_cpu->start_log();
1048   #endif
1049          // start emulation loop and enable code translation or caching
1050 <        current_cpu->execute(entry, true);
1050 >        ppc_cpu->execute(entry);
1051   }
1052  
1053   /*
1054   *  Handle PowerPC interrupt
1055   */
1056  
689 #if ASYNC_IRQ
690 void HandleInterrupt(void)
691 {
692        main_cpu->handle_interrupt();
693 }
694 #else
1057   void TriggerInterrupt(void)
1058   {
1059   #if 0
1060    WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
1061   #else
1062    // Trigger interrupt to main cpu only
1063 <  if (main_cpu)
1064 <          main_cpu->trigger_interrupt();
1063 >  if (ppc_cpu)
1064 >          ppc_cpu->trigger_interrupt();
1065   #endif
1066   }
705 #endif
1067  
1068   void sheepshaver_cpu::handle_interrupt(void)
1069   {
# Line 714 | Line 1075 | void sheepshaver_cpu::handle_interrupt(v
1075          if (InterruptFlags == 0)
1076                  return;
1077  
1078 +        // Current interrupt nest level
1079 +        static int interrupt_depth = 0;
1080 +        ++interrupt_depth;
1081 + #if EMUL_TIME_STATS
1082 +        interrupt_count++;
1083 + #endif
1084 +
1085          // Disable MacOS stack sniffer
1086          WriteMacInt32(0x110, 0);
1087  
# Line 721 | Line 1089 | void sheepshaver_cpu::handle_interrupt(v
1089          switch (ReadMacInt32(XLM_RUN_MODE)) {
1090          case MODE_68K:
1091                  // 68k emulator active, trigger 68k interrupt level 1
724                assert(current_cpu == main_cpu);
1092                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1093                  set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1094                  break;
# Line 729 | Line 1096 | void sheepshaver_cpu::handle_interrupt(v
1096   #if INTERRUPTS_IN_NATIVE_MODE
1097          case MODE_NATIVE:
1098                  // 68k emulator inactive, in nanokernel?
1099 <                assert(current_cpu == main_cpu);
1100 <                if (gpr(1) != KernelDataAddr) {
1099 >                if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1100 >                        interrupt_context ctx(this, "PowerPC mode");
1101 >
1102                          // Prepare for 68k interrupt level 1
1103                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1104                          WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
# Line 739 | Line 1107 | void sheepshaver_cpu::handle_interrupt(v
1107        
1108                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1109                          DisableInterrupt();
742                        cpu_push(interrupt_cpu);
1110                          if (ROMType == ROMTYPE_NEWWORLD)
1111 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
1111 >                                ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1112                          else
1113 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
747 <                        cpu_pop();
1113 >                                ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1114                  }
1115                  break;
1116   #endif
# Line 753 | Line 1119 | void sheepshaver_cpu::handle_interrupt(v
1119          case MODE_EMUL_OP:
1120                  // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1121                  if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1122 +                        interrupt_context ctx(this, "68k mode");
1123 + #if EMUL_TIME_STATS
1124 +                        const clock_t interrupt_start = clock();
1125 + #endif
1126   #if 1
1127                          // Execute full 68k interrupt routine
1128                          M68kRegisters r;
# Line 774 | Line 1144 | void sheepshaver_cpu::handle_interrupt(v
1144                                  if (InterruptFlags & INTFLAG_VIA) {
1145                                          ClearInterruptFlag(INTFLAG_VIA);
1146                                          ADBInterrupt();
1147 <                                        ExecutePPC(VideoVBL);
1147 >                                        ExecuteNative(NATIVE_VIDEO_VBL);
1148                                  }
1149                          }
1150   #endif
1151 + #if EMUL_TIME_STATS
1152 +                        interrupt_time += (clock() - interrupt_start);
1153 + #endif
1154                  }
1155                  break;
1156   #endif
1157          }
785 }
1158  
1159 < /*
1160 < *  Execute NATIVE_OP opcode (called by PowerPC emulator)
1161 < */
790 <
791 < #define POWERPC_NATIVE_OP_INIT(LR, OP) \
792 <                tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
793 <
794 < // FIXME: Make sure 32-bit relocations are used
795 < const uint32 NativeOpTable[NATIVE_OP_MAX] = {
796 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
797 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
798 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
799 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
800 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
801 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
802 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
803 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
804 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
805 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
806 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
807 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
808 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
809 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
810 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
811 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
812 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
813 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
814 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
815 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
816 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
817 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
818 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
819 <        POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
820 <        POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
821 <        POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE),
822 < };
1159 >        // We are done with this interrupt
1160 >        --interrupt_depth;
1161 > }
1162  
1163   static void get_resource(void);
1164   static void get_1_resource(void);
# Line 827 | Line 1166 | static void get_ind_resource(void);
1166   static void get_1_ind_resource(void);
1167   static void r_get_resource(void);
1168  
1169 < #define GPR(REG) current_cpu->gpr(REG)
1170 <
832 < static void NativeOp(int selector)
1169 > // Execute NATIVE_OP routine
1170 > void sheepshaver_cpu::execute_native_op(uint32 selector)
1171   {
1172   #if EMUL_TIME_STATS
1173          native_exec_count++;
# Line 847 | Line 1185 | static void NativeOp(int selector)
1185                  VideoVBL();
1186                  break;
1187          case NATIVE_VIDEO_DO_DRIVER_IO:
1188 <                GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
1189 <                                                                                           (void *)GPR(5), GPR(6), GPR(7));
1188 >                gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1189 >                                                                                           (void *)gpr(5), gpr(6), gpr(7));
1190                  break;
1191   #ifdef WORDS_BIGENDIAN
1192          case NATIVE_ETHER_IRQ:
1193                  EtherIRQ();
1194                  break;
1195          case NATIVE_ETHER_INIT:
1196 <                GPR(3) = InitStreamModule((void *)GPR(3));
1196 >                gpr(3) = InitStreamModule((void *)gpr(3));
1197                  break;
1198          case NATIVE_ETHER_TERM:
1199                  TerminateStreamModule();
1200                  break;
1201          case NATIVE_ETHER_OPEN:
1202 <                GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
1202 >                gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1203                  break;
1204          case NATIVE_ETHER_CLOSE:
1205 <                GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
1205 >                gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1206                  break;
1207          case NATIVE_ETHER_WPUT:
1208 <                GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
1208 >                gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1209                  break;
1210          case NATIVE_ETHER_RSRV:
1211 <                GPR(3) = ether_rsrv((queue_t *)GPR(3));
1211 >                gpr(3) = ether_rsrv((queue_t *)gpr(3));
1212                  break;
1213   #else
1214          case NATIVE_ETHER_INIT:
1215                  // FIXME: needs more complicated thunks
1216 <                GPR(3) = false;
1216 >                gpr(3) = false;
1217                  break;
1218   #endif
1219 +        case NATIVE_SYNC_HOOK:
1220 +                gpr(3) = NQD_sync_hook(gpr(3));
1221 +                break;
1222 +        case NATIVE_BITBLT_HOOK:
1223 +                gpr(3) = NQD_bitblt_hook(gpr(3));
1224 +                break;
1225 +        case NATIVE_BITBLT:
1226 +                NQD_bitblt(gpr(3));
1227 +                break;
1228 +        case NATIVE_FILLRECT_HOOK:
1229 +                gpr(3) = NQD_fillrect_hook(gpr(3));
1230 +                break;
1231 +        case NATIVE_INVRECT:
1232 +                NQD_invrect(gpr(3));
1233 +                break;
1234 +        case NATIVE_FILLRECT:
1235 +                NQD_fillrect(gpr(3));
1236 +                break;
1237          case NATIVE_SERIAL_NOTHING:
1238          case NATIVE_SERIAL_OPEN:
1239          case NATIVE_SERIAL_PRIME_IN:
# Line 895 | Line 1251 | static void NativeOp(int selector)
1251                          SerialStatus,
1252                          SerialClose
1253                  };
1254 <                GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1254 >                gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1255                  break;
1256          }
1257          case NATIVE_GET_RESOURCE:
# Line 905 | Line 1261 | static void NativeOp(int selector)
1261          case NATIVE_R_GET_RESOURCE: {
1262                  typedef void (*GetResourceCallback)(void);
1263                  static const GetResourceCallback get_resource_callbacks[] = {
1264 <                        get_resource,
1265 <                        get_1_resource,
1266 <                        get_ind_resource,
1267 <                        get_1_ind_resource,
1268 <                        r_get_resource
1264 >                        ::get_resource,
1265 >                        ::get_1_resource,
1266 >                        ::get_ind_resource,
1267 >                        ::get_1_ind_resource,
1268 >                        ::r_get_resource
1269                  };
1270                  get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1271                  break;
# Line 921 | Line 1277 | static void NativeOp(int selector)
1277                  EnableInterrupt();
1278                  break;
1279          case NATIVE_MAKE_EXECUTABLE:
1280 <                MakeExecutable(0, (void *)GPR(4), GPR(5));
1280 >                MakeExecutable(0, (void *)gpr(4), gpr(5));
1281 >                break;
1282 >        case NATIVE_CHECK_LOAD_INVOC:
1283 >                check_load_invoc(gpr(3), gpr(4), gpr(5));
1284                  break;
1285          default:
1286                  printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
# Line 935 | Line 1294 | static void NativeOp(int selector)
1294   }
1295  
1296   /*
938 *  Execute native subroutine (LR must contain return address)
939 */
940
941 void ExecuteNative(int selector)
942 {
943        uint32 tvect[2];
944        tvect[0] = tswap32(POWERPC_NATIVE_OP_FUNC(selector));
945        tvect[1] = 0; // Fake TVECT
946        RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
947        M68kRegisters r;
948        Execute68k((uint32)&desc, &r);
949 }
950
951 /*
1297   *  Execute 68k subroutine (must be ended with EXEC_RETURN)
1298   *  This must only be called by the emul_thread when in EMUL_OP mode
1299   *  r->a[7] is unused, the routine runs on the caller's stack
# Line 956 | Line 1301 | void ExecuteNative(int selector)
1301  
1302   void Execute68k(uint32 pc, M68kRegisters *r)
1303   {
1304 <        current_cpu->execute_68k(pc, r);
1304 >        ppc_cpu->execute_68k(pc, r);
1305   }
1306  
1307   /*
# Line 966 | Line 1311 | void Execute68k(uint32 pc, M68kRegisters
1311  
1312   void Execute68kTrap(uint16 trap, M68kRegisters *r)
1313   {
1314 <        uint16 proc[2];
1315 <        proc[0] = htons(trap);
1316 <        proc[1] = htons(M68K_RTS);
1317 <        Execute68k((uint32)proc, r);
1314 >        SheepVar proc_var(4);
1315 >        uint32 proc = proc_var.addr();
1316 >        WriteMacInt16(proc, trap);
1317 >        WriteMacInt16(proc + 2, M68K_RTS);
1318 >        Execute68k(proc, r);
1319   }
1320  
1321   /*
# Line 978 | Line 1324 | void Execute68kTrap(uint16 trap, M68kReg
1324  
1325   uint32 call_macos(uint32 tvect)
1326   {
1327 <        return current_cpu->execute_macos_code(tvect, 0, NULL);
1327 >        return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1328   }
1329  
1330   uint32 call_macos1(uint32 tvect, uint32 arg1)
1331   {
1332          const uint32 args[] = { arg1 };
1333 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1333 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1334   }
1335  
1336   uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1337   {
1338          const uint32 args[] = { arg1, arg2 };
1339 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1339 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1340   }
1341  
1342   uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1343   {
1344          const uint32 args[] = { arg1, arg2, arg3 };
1345 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1345 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1346   }
1347  
1348   uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1349   {
1350          const uint32 args[] = { arg1, arg2, arg3, arg4 };
1351 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1351 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1352   }
1353  
1354   uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1355   {
1356          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1357 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1357 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1358   }
1359  
1360   uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1361   {
1362          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1363 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1363 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1364   }
1365  
1366   uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1367   {
1368          const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1369 <        return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1369 >        return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1370   }
1371  
1372   /*
# Line 1029 | Line 1375 | uint32 call_macos7(uint32 tvect, uint32
1375  
1376   void get_resource(void)
1377   {
1378 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1378 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1379   }
1380  
1381   void get_1_resource(void)
1382   {
1383 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1383 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1384   }
1385  
1386   void get_ind_resource(void)
1387   {
1388 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1388 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1389   }
1390  
1391   void get_1_ind_resource(void)
1392   {
1393 <        current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1393 >        ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1394   }
1395  
1396   void r_get_resource(void)
1397   {
1398 <        current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1398 >        ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1399   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines