ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
(Generate patch)

Comparing SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp (file contents):
Revision 1.1 by gbeauche, 2003-09-07T14:25:01Z vs.
Revision 1.10 by gbeauche, 2003-10-26T13:59:03Z

# Line 21 | Line 21
21   #include "sysdeps.h"
22   #include "cpu_emulation.h"
23   #include "main.h"
24 + #include "prefs.h"
25   #include "xlowmem.h"
26   #include "emul_op.h"
27   #include "rom_patches.h"
28   #include "macos_util.h"
29   #include "block-alloc.hpp"
30   #include "sigsegv.h"
31 + #include "spcflags.h"
32   #include "cpu/ppc/ppc-cpu.hpp"
33   #include "cpu/ppc/ppc-operations.hpp"
34  
# Line 42 | Line 44
44   #include "mon_disass.h"
45   #endif
46  
47 < #define DEBUG 1
47 > #define DEBUG 0
48   #include "debug.h"
49  
50   static void enter_mon(void)
# Line 54 | Line 56 | static void enter_mon(void)
56   #endif
57   }
58  
59 + // Enable multicore (main/interrupts) cpu emulation?
60 + #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
61 +
62   // Enable Execute68k() safety checks?
63   #define SAFE_EXEC_68K 1
64  
# Line 66 | Line 71 | static void enter_mon(void)
71   // Interrupts in native mode?
72   #define INTERRUPTS_IN_NATIVE_MODE 1
73  
69 // 68k Emulator Data
70 struct EmulatorData {
71        uint32  v[0x400];      
72 };
73
74 // Kernel Data
75 struct KernelData {
76        uint32  v[0x400];
77        EmulatorData ed;
78 };
79
74   // Pointer to Kernel Data
75 < static KernelData * const kernel_data = (KernelData *)0x68ffe000;
75 > static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
76  
77  
78   /**
# Line 95 | Line 89 | class sheepshaver_cpu
89  
90   public:
91  
92 <        sheepshaver_cpu()
93 <                : powerpc_cpu()
100 <                { init_decoder(); }
101 <
102 <        // Stack pointer accessors
103 <        uint32 get_sp() const           { return gpr(1); }
104 <        void set_sp(uint32 v)           { gpr(1) = v; }
92 >        // Constructor
93 >        sheepshaver_cpu();
94  
95          // Condition Register accessors
96          uint32 get_cr() const           { return cr().get(); }
97          void set_cr(uint32 v)           { cr().set(v); }
98  
99          // Execution loop
100 <        void execute(uint32 pc);
100 >        void execute(uint32 entry, bool enable_cache = false);
101  
102          // Execute 68k routine
103          void execute_68k(uint32 entry, M68kRegisters *r);
104  
105 +        // Execute ppc routine
106 +        void execute_ppc(uint32 entry);
107 +
108          // Execute MacOS/PPC code
109          uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
110  
# Line 120 | Line 112 | public:
112          void get_resource(uint32 old_get_resource);
113  
114          // Handle MacOS interrupt
115 <        void interrupt(uint32 entry, uint32 sp);
115 >        void interrupt(uint32 entry);
116 >        void handle_interrupt();
117 >
118 >        // spcflags for interrupts handling
119 >        static uint32 spcflags;
120  
121          // Lazy memory allocator (one item at a time)
122          void *operator new(size_t size)
# Line 132 | Line 128 | public:
128          void operator delete[](void *p);
129   };
130  
131 + uint32 sheepshaver_cpu::spcflags = 0;
132   lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
133  
134 + sheepshaver_cpu::sheepshaver_cpu()
135 +        : powerpc_cpu()
136 + {
137 +        init_decoder();
138 + }
139 +
140   void sheepshaver_cpu::init_decoder()
141   {
142   #ifndef PPC_NO_STATIC_II_INDEX_TABLE
# Line 147 | Line 150 | void sheepshaver_cpu::init_decoder()
150                  { "sheep",
151                    (execute_fn)&sheepshaver_cpu::execute_sheep,
152                    NULL,
153 <                  D_form, 6, 0, CFLOW_TRAP
153 >                  D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
154                  }
155          };
156  
# Line 163 | Line 166 | void sheepshaver_cpu::init_decoder()
166   // Forward declaration for native opcode handler
167   static void NativeOp(int selector);
168  
169 + /*              NativeOp instruction format:
170 +                +------------+--------------------------+--+----------+------------+
171 +                |      6     |                          |FN|    OP    |      2     |
172 +                +------------+--------------------------+--+----------+------------+
173 +                 0         5 |6                       19 20 21      25 26        31
174 + */
175 +
176 + typedef bit_field< 20, 20 > FN_field;
177 + typedef bit_field< 21, 25 > NATIVE_OP_field;
178 + typedef bit_field< 26, 31 > EMUL_OP_field;
179 +
180   // Execute SheepShaver instruction
181   void sheepshaver_cpu::execute_sheep(uint32 opcode)
182   {
# Line 173 | Line 187 | void sheepshaver_cpu::execute_sheep(uint
187          case 0:         // EMUL_RETURN
188                  QuitEmulator();
189                  break;
190 <                
190 >
191          case 1:         // EXEC_RETURN
192                  throw sheepshaver_exec_return();
193                  break;
194  
195          case 2:         // EXEC_NATIVE
196 <                NativeOp((opcode >> 6) & 0x1f);
197 <                pc() = lr();
196 >                NativeOp(NATIVE_OP_field::extract(opcode));
197 >                if (FN_field::test(opcode))
198 >                        pc() = lr();
199 >                else
200 >                        pc() += 4;
201                  break;
202  
203          default: {      // EMUL_OP
# Line 192 | Line 209 | void sheepshaver_cpu::execute_sheep(uint
209                  for (int i = 0; i < 7; i++)
210                          r68.a[i] = gpr(16 + i);
211                  r68.a[7] = gpr(1);
212 <                EmulOp(&r68, gpr(24), (opcode & 0x3f) - 3);
212 >                EmulOp(&r68, gpr(24), EMUL_OP_field::extract(opcode) - 3);
213                  for (int i = 0; i < 8; i++)
214                          gpr(8 + i) = r68.d[i];
215                  for (int i = 0; i < 7; i++)
# Line 206 | Line 223 | void sheepshaver_cpu::execute_sheep(uint
223   }
224  
225   // Execution loop
226 < void sheepshaver_cpu::execute(uint32 entry)
226 > void sheepshaver_cpu::execute(uint32 entry, bool enable_cache)
227   {
228          try {
229 <                pc() = entry;
213 <                powerpc_cpu::execute();
229 >                powerpc_cpu::execute(entry, enable_cache);
230          }
231          catch (sheepshaver_exec_return const &) {
232                  // Nothing, simply return
# Line 222 | Line 238 | void sheepshaver_cpu::execute(uint32 ent
238   }
239  
240   // Handle MacOS interrupt
241 < void sheepshaver_cpu::interrupt(uint32 entry, uint32 sp)
241 > void sheepshaver_cpu::interrupt(uint32 entry)
242   {
243 <        // Create stack frame
244 <        gpr(1) = sp - 64;
243 > #if !MULTICORE_CPU
244 >        // Save program counters and branch registers
245 >        uint32 saved_pc = pc();
246 >        uint32 saved_lr = lr();
247 >        uint32 saved_ctr= ctr();
248 >        uint32 saved_sp = gpr(1);
249 > #endif
250 >
251 >        // Initialize stack pointer to SheepShaver alternate stack base
252 >        gpr(1) = SheepStack1Base - 64;
253  
254          // Build trampoline to return from interrupt
255 <        uint32 trampoline[] = { POWERPC_EMUL_OP | 1 };
255 >        uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
256  
257          // Prepare registers for nanokernel interrupt routine
258 <        kernel_data->v[0x004 >> 2] = gpr(1);
259 <        kernel_data->v[0x018 >> 2] = gpr(6);
258 >        kernel_data->v[0x004 >> 2] = htonl(gpr(1));
259 >        kernel_data->v[0x018 >> 2] = htonl(gpr(6));
260  
261 <        gpr(6) = kernel_data->v[0x65c >> 2];
261 >        gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
262 >        assert(gpr(6) != 0);
263          WriteMacInt32(gpr(6) + 0x13c, gpr(7));
264          WriteMacInt32(gpr(6) + 0x144, gpr(8));
265          WriteMacInt32(gpr(6) + 0x14c, gpr(9));
# Line 244 | Line 269 | void sheepshaver_cpu::interrupt(uint32 e
269          WriteMacInt32(gpr(6) + 0x16c, gpr(13));
270  
271          gpr(1)  = KernelDataAddr;
272 <        gpr(7)  = kernel_data->v[0x660 >> 2];
272 >        gpr(7)  = ntohl(kernel_data->v[0x660 >> 2]);
273          gpr(8)  = 0;
274          gpr(10) = (uint32)trampoline;
275          gpr(12) = (uint32)trampoline;
276 <        gpr(13) = cr().get();
276 >        gpr(13) = get_cr();
277  
278          // rlwimi. r7,r7,8,0,0
279          uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
# Line 256 | Line 281 | void sheepshaver_cpu::interrupt(uint32 e
281          gpr(7) = result;
282  
283          gpr(11) = 0xf072; // MSR (SRR1)
284 <        cr().set((gpr(11) & 0x0fff0000) | (cr().get() & ~0x0fff0000));
284 >        cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
285  
286          // Enter nanokernel
287          execute(entry);
288  
289 <        // Cleanup stack
290 <        gpr(1) += 64;
289 > #if !MULTICORE_CPU
290 >        // Restore program counters and branch registers
291 >        pc() = saved_pc;
292 >        lr() = saved_lr;
293 >        ctr()= saved_ctr;
294 >        gpr(1) = saved_sp;
295 > #endif
296   }
297  
298   // Execute 68k routine
# Line 277 | Line 307 | void sheepshaver_cpu::execute_68k(uint32
307          uint32 saved_pc = pc();
308          uint32 saved_lr = lr();
309          uint32 saved_ctr= ctr();
310 +        uint32 saved_cr = get_cr();
311  
312          // Create MacOS stack frame
313 +        // FIXME: make sure MacOS doesn't expect PPC registers to live on top
314          uint32 sp = gpr(1);
315 <        gpr(1) -= 56 + 19*4 + 18*8;
315 >        gpr(1) -= 56;
316          WriteMacInt32(gpr(1), sp);
317  
318          // Save PowerPC registers
319 <        memcpy(Mac2HostAddr(gpr(1)+56), &gpr(13), sizeof(uint32)*(32-13));
319 >        uint32 saved_GPRs[19];
320 >        memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
321   #if SAVE_FP_EXEC_68K
322 <        memcpy(Mac2HostAddr(gpr(1)+56+19*4), &fpr(14), sizeof(double)*(32-14));
322 >        double saved_FPRs[18];
323 >        memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
324   #endif
325  
326          // Setup registers for 68k emulator
327 <        cr().set(0);
294 <        cr().set(2, 1);                                                         // Supervisor mode
327 >        cr().set(CR_SO_field<2>::mask());                       // Supervisor mode
328          for (int i = 0; i < 8; i++)                                     // d[0]..d[7]
329            gpr(8 + i) = r->d[i];
330          for (int i = 0; i < 7; i++)                                     // a[0]..a[6]
# Line 301 | Line 334 | void sheepshaver_cpu::execute_68k(uint32
334          gpr(25) = ReadMacInt32(XLM_68K_R25);            // MSB of SR
335          gpr(26) = 0;
336          gpr(28) = 0;                                                            // VBR
337 <        gpr(29) = kernel_data->ed.v[0x74 >> 2];         // Pointer to opcode table
338 <        gpr(30) = kernel_data->ed.v[0x78 >> 2];         // Address of emulator
337 >        gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]);          // Pointer to opcode table
338 >        gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]);          // Address of emulator
339          gpr(31) = KernelDataAddr + 0x1000;
340  
341          // Push return address (points to EXEC_RETURN opcode) on stack
# Line 334 | Line 367 | void sheepshaver_cpu::execute_68k(uint32
367            r->a[i] = gpr(16 + i);
368  
369          // Restore PowerPC registers
370 <        memcpy(&gpr(13), Mac2HostAddr(gpr(1)+56), sizeof(uint32)*(32-13));
370 >        memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
371   #if SAVE_FP_EXEC_68K
372 <        memcpy(&fpr(14), Mac2HostAddr(gpr(1)+56+19*4), sizeof(double)*(32-14));
372 >        memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
373   #endif
374  
375          // Cleanup stack
376 <        gpr(1) += 56 + 19*4 + 18*8;
376 >        gpr(1) += 56;
377  
378          // Restore program counters and branch registers
379          pc() = saved_pc;
380          lr() = saved_lr;
381          ctr()= saved_ctr;
382 +        set_cr(saved_cr);
383   }
384  
385   // Call MacOS PPC code
# Line 357 | Line 391 | uint32 sheepshaver_cpu::execute_macos_co
391          uint32 saved_ctr= ctr();
392  
393          // Build trampoline with EXEC_RETURN
394 <        uint32 trampoline[] = { POWERPC_EMUL_OP | 1 };
394 >        uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
395          lr() = (uint32)trampoline;
396  
397          gpr(1) -= 64;                                                           // Create stack frame
# Line 392 | Line 426 | uint32 sheepshaver_cpu::execute_macos_co
426          return retval;
427   }
428  
429 + // Execute ppc routine
430 + inline void sheepshaver_cpu::execute_ppc(uint32 entry)
431 + {
432 +        // Save branch registers
433 +        uint32 saved_lr = lr();
434 +
435 +        const uint32 trampoline[] = { htonl(POWERPC_EMUL_OP | 1) };
436 +        lr() = (uint32)trampoline;
437 +
438 +        execute(entry);
439 +
440 +        // Restore branch registers
441 +        lr() = saved_lr;
442 + }
443 +
444   // Resource Manager thunk
445 + extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
446 +
447   inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
448   {
449 <        printf("ERROR: get_resource() unimplemented\n");
450 <        QuitEmulator();
449 >        uint32 type = gpr(3);
450 >        int16 id = gpr(4);
451 >
452 >        // Create stack frame
453 >        gpr(1) -= 56;
454 >
455 >        // Call old routine
456 >        execute_ppc(old_get_resource);
457 >
458 >        // Call CheckLoad()
459 >        uint32 handle = gpr(3);
460 >        check_load_invoc(type, id, handle);
461 >        gpr(3) = handle;
462 >
463 >        // Cleanup stack
464 >        gpr(1) += 56;
465   }
466  
467  
# Line 408 | Line 473 | static sheepshaver_cpu *main_cpu = NULL;
473   static sheepshaver_cpu *interrupt_cpu = NULL;   // CPU emulator to handle interrupts
474   static sheepshaver_cpu *current_cpu = NULL;             // Current CPU emulator context
475  
476 + void FlushCodeCache(uintptr start, uintptr end)
477 + {
478 +        D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
479 +        main_cpu->invalidate_cache_range(start, end);
480 + #if MULTICORE_CPU
481 +        interrupt_cpu->invalidate_cache_range(start, end);
482 + #endif
483 + }
484 +
485 + static inline void cpu_push(sheepshaver_cpu *new_cpu)
486 + {
487 + #if MULTICORE_CPU
488 +        current_cpu = new_cpu;
489 + #endif
490 + }
491 +
492 + static inline void cpu_pop()
493 + {
494 + #if MULTICORE_CPU
495 +        current_cpu = main_cpu;
496 + #endif
497 + }
498 +
499   // Dump PPC registers
500   static void dump_registers(void)
501   {
# Line 424 | Line 512 | static void dump_log(void)
512   *  Initialize CPU emulation
513   */
514  
515 < static struct sigaction sigsegv_action;
428 <
429 < #if defined(__powerpc__)
430 < #include <sys/ucontext.h>
431 < #endif
432 <
433 < static void sigsegv_handler(int sig, siginfo_t *sip, void *scp)
515 > static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
516   {
435        const uintptr addr = (uintptr)sip->si_addr;
517   #if ENABLE_VOSF
518 <        // Handle screen fault.
519 <        extern bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction);
520 <        if (Screen_fault_handler((sigsegv_address_t)addr, SIGSEGV_INVALID_PC))
521 <                return;
441 < #endif
442 < #if defined(__powerpc__)
443 <        if (addr >= ROM_BASE && addr < ROM_BASE + ROM_SIZE) {
444 <                printf("IGNORE write access to ROM at %08x\n", addr);
445 <                (((ucontext_t *)scp)->uc_mcontext.regs)->nip += 4;
446 <                return;
447 <        }
448 <        if (addr >= 0xf3012000 && addr < 0xf3014000 && 0) {
449 <                printf("IGNORE write access to ROM at %08x\n", addr);
450 <                (((ucontext_t *)scp)->uc_mcontext.regs)->nip += 4;
451 <                return;
452 <        }
518 >        // Handle screen fault
519 >        extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
520 >        if (Screen_fault_handler(fault_address, fault_instruction))
521 >                return SIGSEGV_RETURN_SUCCESS;
522   #endif
523 <        printf("Caught SIGSEGV at address %p\n", sip->si_addr);
524 <        printf("Native PC: %08x\n", (((ucontext_t *)scp)->uc_mcontext.regs)->nip);
525 <        printf("Current CPU: %s\n", current_cpu == main_cpu ? "main" : "interrupts");
526 < #if 1
527 <        dump_registers();
523 >
524 >        const uintptr addr = (uintptr)fault_address;
525 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
526 >        // Ignore writes to ROM
527 >        if ((addr - ROM_BASE) < ROM_SIZE)
528 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
529 >
530 >        // Ignore all other faults, if requested
531 >        if (PrefsFindBool("ignoresegv"))
532 >                return SIGSEGV_RETURN_FAILURE;
533   #else
534 <        printf("Main CPU context\n");
461 <        main_cpu->dump_registers();
462 <        printf("Interrupts CPU context\n");
463 <        interrupt_cpu->dump_registers();
534 > #error "FIXME: You don't have the capability to skip instruction within signal handlers"
535   #endif
536 +
537 +        printf("SIGSEGV\n");
538 +        printf("  pc %p\n", fault_instruction);
539 +        printf("  ea %p\n", fault_address);
540 +        printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
541 +        dump_registers();
542          current_cpu->dump_log();
466        WriteMacInt32(XLM_IRQ_NEST, 1);
543          enter_mon();
544          QuitEmulator();
545 +
546 +        return SIGSEGV_RETURN_FAILURE;
547   }
548  
549   void init_emul_ppc(void)
# Line 475 | Line 553 | void init_emul_ppc(void)
553          main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
554          WriteMacInt32(XLM_RUN_MODE, MODE_68K);
555  
556 + #if MULTICORE_CPU
557          // Initialize alternate CPU emulator to handle interrupts
558          interrupt_cpu = new sheepshaver_cpu();
559 + #endif
560  
561 <        // Install SIGSEGV handler
562 <        sigemptyset(&sigsegv_action.sa_mask);
483 <        sigsegv_action.sa_sigaction = sigsegv_handler;
484 <        sigsegv_action.sa_flags = SA_SIGINFO;
485 <        sigsegv_action.sa_restorer = NULL;
486 <        sigaction(SIGSEGV, &sigsegv_action, NULL);
561 >        // Install the handler for SIGSEGV
562 >        sigsegv_install_handler(sigsegv_handler);
563  
564   #if ENABLE_MON
565          // Install "regs" command in cxmon
# Line 499 | Line 575 | void init_emul_ppc(void)
575   void emul_ppc(uint32 entry)
576   {
577          current_cpu = main_cpu;
578 + #if DEBUG
579          current_cpu->start_log();
580 <        current_cpu->execute(entry);
580 > #endif
581 >        // start emulation loop and enable code translation or caching
582 >        current_cpu->execute(entry, true);
583   }
584  
585   /*
586   *  Handle PowerPC interrupt
587   */
588  
589 < // Atomic operations
590 < extern int atomic_add(int *var, int v);
591 < extern int atomic_and(int *var, int v);
592 < extern int atomic_or(int *var, int v);
589 > #if !ASYNC_IRQ
590 > void TriggerInterrupt(void)
591 > {
592 > #if 0
593 >  WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
594 > #else
595 >  // Trigger interrupt to main cpu only
596 >  if (main_cpu)
597 >          main_cpu->trigger_interrupt();
598 > #endif
599 > }
600 > #endif
601  
602 < void HandleInterrupt(void)
602 > void sheepshaver_cpu::handle_interrupt(void)
603   {
604          // Do nothing if interrupts are disabled
605 <        if (ReadMacInt32(XLM_IRQ_NEST) > 0 || InterruptFlags == 0)
605 >        if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
606                  return;
607  
608 <        // Do nothing if CPU objects are not initialized yet
609 <        if (current_cpu == NULL)
608 >        // Do nothing if there is no interrupt pending
609 >        if (InterruptFlags == 0)
610                  return;
611  
612          // Disable MacOS stack sniffer
# Line 531 | Line 618 | void HandleInterrupt(void)
618                  // 68k emulator active, trigger 68k interrupt level 1
619                  assert(current_cpu == main_cpu);
620                  WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
621 <                main_cpu->set_cr(main_cpu->get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
621 >                set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
622                  break;
623      
624   #if INTERRUPTS_IN_NATIVE_MODE
625          case MODE_NATIVE:
626                  // 68k emulator inactive, in nanokernel?
627                  assert(current_cpu == main_cpu);
628 <                if (main_cpu->gpr(1) != KernelDataAddr) {
628 >                if (gpr(1) != KernelDataAddr) {
629                          // Prepare for 68k interrupt level 1
630                          WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
631                          WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
# Line 546 | Line 633 | void HandleInterrupt(void)
633                                                    | tswap32(kernel_data->v[0x674 >> 2]));
634        
635                          // Execute nanokernel interrupt routine (this will activate the 68k emulator)
636 <                        atomic_add((int32 *)XLM_IRQ_NEST, htonl(1));
637 <                        current_cpu = interrupt_cpu;
636 >                        DisableInterrupt();
637 >                        cpu_push(interrupt_cpu);
638                          if (ROMType == ROMTYPE_NEWWORLD)
639 <                                current_cpu->interrupt(ROM_BASE + 0x312b1c, main_cpu->get_sp());
639 >                                current_cpu->interrupt(ROM_BASE + 0x312b1c);
640                          else
641 <                                current_cpu->interrupt(ROM_BASE + 0x312a3c, main_cpu->get_sp());
642 <                        current_cpu = main_cpu;
641 >                                current_cpu->interrupt(ROM_BASE + 0x312a3c);
642 >                        cpu_pop();
643                  }
644                  break;
645   #endif
# Line 566 | Line 653 | void HandleInterrupt(void)
653                          M68kRegisters r;
654                          uint32 old_r25 = ReadMacInt32(XLM_68K_R25);     // Save interrupt level
655                          WriteMacInt32(XLM_68K_R25, 0x21);                       // Execute with interrupt level 1
656 <                        static const uint16 proc[] = {
657 <                                0x3f3c, 0x0000,         // move.w       #$0000,-(sp)    (fake format word)
658 <                                0x487a, 0x000a,         // pea          @1(pc)                  (return address)
659 <                                0x40e7,                         // move         sr,-(sp)                (saved SR)
660 <                                0x2078, 0x0064,         // move.l       $64,a0
661 <                                0x4ed0,                         // jmp          (a0)
662 <                                M68K_RTS                        // @1
656 >                        static const uint8 proc[] = {
657 >                                0x3f, 0x3c, 0x00, 0x00,                 // move.w       #$0000,-(sp)    (fake format word)
658 >                                0x48, 0x7a, 0x00, 0x0a,                 // pea          @1(pc)                  (return address)
659 >                                0x40, 0xe7,                                             // move         sr,-(sp)                (saved SR)
660 >                                0x20, 0x78, 0x00, 0x064,                // move.l       $64,a0
661 >                                0x4e, 0xd0,                                             // jmp          (a0)
662 >                                M68K_RTS >> 8, M68K_RTS & 0xff  // @1
663                          };
664                          Execute68k((uint32)proc, &r);
665                          WriteMacInt32(XLM_68K_R25, old_r25);            // Restore interrupt level
# Line 596 | Line 683 | void HandleInterrupt(void)
683   *  Execute NATIVE_OP opcode (called by PowerPC emulator)
684   */
685  
686 < #define POWERPC_NATIVE_OP(selector) \
687 <                { tswap32(POWERPC_EMUL_OP | 2 | (((uint32)selector) << 6)) }
686 > #define POWERPC_NATIVE_OP_INIT(LR, OP) \
687 >                tswap32(POWERPC_EMUL_OP | ((LR) << 11) | (((uint32)OP) << 6) | 2)
688  
689   // FIXME: Make sure 32-bit relocations are used
690   const uint32 NativeOpTable[NATIVE_OP_MAX] = {
691 <        POWERPC_NATIVE_OP(NATIVE_PATCH_NAME_REGISTRY),
692 <        POWERPC_NATIVE_OP(NATIVE_VIDEO_INSTALL_ACCEL),
693 <        POWERPC_NATIVE_OP(NATIVE_VIDEO_VBL),
694 <        POWERPC_NATIVE_OP(NATIVE_VIDEO_DO_DRIVER_IO),
695 <        POWERPC_NATIVE_OP(NATIVE_ETHER_IRQ),
696 <        POWERPC_NATIVE_OP(NATIVE_ETHER_INIT),
697 <        POWERPC_NATIVE_OP(NATIVE_ETHER_TERM),
698 <        POWERPC_NATIVE_OP(NATIVE_ETHER_OPEN),
699 <        POWERPC_NATIVE_OP(NATIVE_ETHER_CLOSE),
700 <        POWERPC_NATIVE_OP(NATIVE_ETHER_WPUT),
701 <        POWERPC_NATIVE_OP(NATIVE_ETHER_RSRV),
702 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_NOTHING),
703 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_OPEN),
704 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_PRIME_IN),
705 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_PRIME_OUT),
706 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_CONTROL),
707 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_STATUS),
708 <        POWERPC_NATIVE_OP(NATIVE_SERIAL_CLOSE),
709 <        POWERPC_NATIVE_OP(NATIVE_GET_RESOURCE),
710 <        POWERPC_NATIVE_OP(NATIVE_GET_1_RESOURCE),
711 <        POWERPC_NATIVE_OP(NATIVE_GET_IND_RESOURCE),
712 <        POWERPC_NATIVE_OP(NATIVE_GET_1_IND_RESOURCE),
713 <        POWERPC_NATIVE_OP(NATIVE_R_GET_RESOURCE),
691 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_PATCH_NAME_REGISTRY),
692 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_INSTALL_ACCEL),
693 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_VBL),
694 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_VIDEO_DO_DRIVER_IO),
695 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_IRQ),
696 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_INIT),
697 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_TERM),
698 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_OPEN),
699 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_CLOSE),
700 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_WPUT),
701 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_ETHER_RSRV),
702 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_NOTHING),
703 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_OPEN),
704 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_IN),
705 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_PRIME_OUT),
706 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CONTROL),
707 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_STATUS),
708 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_SERIAL_CLOSE),
709 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_RESOURCE),
710 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_RESOURCE),
711 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_IND_RESOURCE),
712 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_GET_1_IND_RESOURCE),
713 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_R_GET_RESOURCE),
714 >        POWERPC_NATIVE_OP_INIT(0, NATIVE_DISABLE_INTERRUPT),
715 >        POWERPC_NATIVE_OP_INIT(0, NATIVE_ENABLE_INTERRUPT),
716 >        POWERPC_NATIVE_OP_INIT(1, NATIVE_MAKE_EXECUTABLE),
717   };
718  
719   static void get_resource(void);
# Line 685 | Line 775 | static void NativeOp(int selector)
775                  GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
776                  break;
777          }
778 +        case NATIVE_DISABLE_INTERRUPT:
779 +                DisableInterrupt();
780 +                break;
781 +        case NATIVE_ENABLE_INTERRUPT:
782 +                EnableInterrupt();
783 +                break;
784 +        case NATIVE_MAKE_EXECUTABLE:
785 +                MakeExecutable(0, (void *)GPR(4), GPR(5));
786 +                break;
787          default:
788                  printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
789                  QuitEmulator();
# Line 724 | Line 823 | void Execute68k(uint32 pc, M68kRegisters
823  
824   void Execute68kTrap(uint16 trap, M68kRegisters *r)
825   {
826 <        uint16 proc[2] = {trap, M68K_RTS};
826 >        uint16 proc[2];
827 >        proc[0] = htons(trap);
828 >        proc[1] = htons(M68K_RTS);
829          Execute68k((uint32)proc, r);
830   }
831  
# Line 780 | Line 881 | uint32 call_macos7(uint32 tvect, uint32
881   }
882  
883   /*
783 *  Atomic operations
784 */
785
786 int atomic_add(int *var, int v)
787 {
788        int ret = *var;
789        *var += v;
790        return ret;
791 }
792
793 int atomic_and(int *var, int v)
794 {
795        int ret = *var;
796        *var &= v;
797        return ret;
798 }
799
800 int atomic_or(int *var, int v)
801 {
802        int ret = *var;
803        *var |= v;
804        return ret;
805 }
806
807 /*
884   *  Resource Manager thunks
885   */
886  
811 extern "C" void check_load_invoc(uint32 type, int16 id, uint16 **h);
812
887   void get_resource(void)
888   {
889          current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines