ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.77
Committed: 2012-06-16T02:16:40Z (12 years, 4 months ago) by asvitkine
Branch: MAIN
CVS Tags: HEAD
Changes since 1.76: +31 -3 lines
Log Message:
Dump PPC disassembly on crash

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.75 * SheepShaver (C) 1997-2008 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 asvitkine 1.77 extern "C" {
62     #include "dis-asm.h"
63     }
64    
65 gbeauche 1.15 // Emulation time statistics
66 gbeauche 1.44 #ifndef EMUL_TIME_STATS
67     #define EMUL_TIME_STATS 0
68     #endif
69 gbeauche 1.15
70     #if EMUL_TIME_STATS
71     static clock_t emul_start_time;
72 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
73 gbeauche 1.15 static clock_t interrupt_time = 0;
74     static uint32 exec68k_count = 0;
75     static clock_t exec68k_time = 0;
76     static uint32 native_exec_count = 0;
77     static clock_t native_exec_time = 0;
78     static uint32 macos_exec_count = 0;
79     static clock_t macos_exec_time = 0;
80     #endif
81    
82 gbeauche 1.1 static void enter_mon(void)
83     {
84     // Start up mon in real-mode
85     #if ENABLE_MON
86     char *arg[4] = {"mon", "-m", "-r", NULL};
87     mon(3, arg);
88     #endif
89     }
90    
91 gbeauche 1.23 // From main_*.cpp
92     extern uintptr SignalStackBase();
93    
94 gbeauche 1.26 // From rsrc_patches.cpp
95     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
96 gbeauche 1.68 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
97 gbeauche 1.26
98 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
99     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
100    
101 gbeauche 1.1 // Enable Execute68k() safety checks?
102     #define SAFE_EXEC_68K 1
103    
104     // Save FP state in Execute68k()?
105     #define SAVE_FP_EXEC_68K 1
106    
107     // Interrupts in EMUL_OP mode?
108     #define INTERRUPTS_IN_EMUL_OP_MODE 1
109    
110     // Interrupts in native mode?
111     #define INTERRUPTS_IN_NATIVE_MODE 1
112    
113     // Pointer to Kernel Data
114 gbeauche 1.52 static KernelData * kernel_data;
115 gbeauche 1.1
116 gbeauche 1.17 // SIGSEGV handler
117 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
118 gbeauche 1.17
119 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
120     // Special trampolines for EmulOp and NativeOp
121     static uint8 *emul_op_trampoline;
122     static uint8 *native_op_trampoline;
123     #endif
124    
125 gbeauche 1.1
126     /**
127     * PowerPC emulator glue with special 'sheep' opcodes
128     **/
129    
130 gbeauche 1.18 enum {
131     PPC_I(SHEEP) = PPC_I(MAX),
132     PPC_I(SHEEP_MAX)
133     };
134    
135 gbeauche 1.1 class sheepshaver_cpu
136     : public powerpc_cpu
137     {
138     void init_decoder();
139     void execute_sheep(uint32 opcode);
140    
141     public:
142    
143 gbeauche 1.10 // Constructor
144     sheepshaver_cpu();
145 gbeauche 1.1
146 gbeauche 1.24 // CR & XER accessors
147 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
148     void set_cr(uint32 v) { cr().set(v); }
149 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
150     void set_xer(uint32 v) { xer().set(v); }
151 gbeauche 1.1
152 gbeauche 1.38 // Execute NATIVE_OP routine
153     void execute_native_op(uint32 native_op);
154    
155 gbeauche 1.26 // Execute EMUL_OP routine
156     void execute_emul_op(uint32 emul_op);
157    
158 gbeauche 1.1 // Execute 68k routine
159     void execute_68k(uint32 entry, M68kRegisters *r);
160    
161 gbeauche 1.2 // Execute ppc routine
162     void execute_ppc(uint32 entry);
163    
164 gbeauche 1.1 // Execute MacOS/PPC code
165     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
166    
167 gbeauche 1.53 #if PPC_ENABLE_JIT
168 gbeauche 1.26 // Compile one instruction
169 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
170 gbeauche 1.53 #endif
171 gbeauche 1.1 // Resource manager thunk
172     void get_resource(uint32 old_get_resource);
173    
174     // Handle MacOS interrupt
175 gbeauche 1.4 void interrupt(uint32 entry);
176 gbeauche 1.2
177 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
178 gbeauche 1.74 friend sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip);
179 gbeauche 1.1 };
180    
181 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
182     {
183     init_decoder();
184 gbeauche 1.73
185     #if PPC_ENABLE_JIT
186     if (PrefsFindBool("jit"))
187     enable_jit();
188     #endif
189 gbeauche 1.10 }
190    
191 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
192     {
193     static const instr_info_t sheep_ii_table[] = {
194     { "sheep",
195 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
196 gbeauche 1.18 PPC_I(SHEEP),
197 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
198 gbeauche 1.1 }
199     };
200    
201     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
202     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
203    
204     for (int i = 0; i < ii_count; i++) {
205     const instr_info_t * ii = &sheep_ii_table[i];
206     init_decoder_entry(ii);
207     }
208     }
209    
210 gbeauche 1.2 /* NativeOp instruction format:
211 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
212     | 6 | |FN| OP | 2 |
213     +------------+-------------------------+--+-----------+------------+
214     0 5 |6 18 19 20 25 26 31
215 gbeauche 1.2 */
216    
217 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
218     typedef bit_field< 20, 25 > NATIVE_OP_field;
219 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
220    
221 gbeauche 1.26 // Execute EMUL_OP routine
222     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
223     {
224     M68kRegisters r68;
225     WriteMacInt32(XLM_68K_R25, gpr(25));
226     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
227     for (int i = 0; i < 8; i++)
228     r68.d[i] = gpr(8 + i);
229     for (int i = 0; i < 7; i++)
230     r68.a[i] = gpr(16 + i);
231     r68.a[7] = gpr(1);
232 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
233 gbeauche 1.26 uint32 saved_xer = get_xer();
234     EmulOp(&r68, gpr(24), emul_op);
235     set_cr(saved_cr);
236     set_xer(saved_xer);
237     for (int i = 0; i < 8; i++)
238     gpr(8 + i) = r68.d[i];
239     for (int i = 0; i < 7; i++)
240     gpr(16 + i) = r68.a[i];
241     gpr(1) = r68.a[7];
242     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
243     }
244    
245 gbeauche 1.1 // Execute SheepShaver instruction
246     void sheepshaver_cpu::execute_sheep(uint32 opcode)
247     {
248     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
249     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
250    
251     switch (opcode & 0x3f) {
252     case 0: // EMUL_RETURN
253     QuitEmulator();
254     break;
255 gbeauche 1.8
256 gbeauche 1.1 case 1: // EXEC_RETURN
257 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
258 gbeauche 1.1 break;
259    
260     case 2: // EXEC_NATIVE
261 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
262 gbeauche 1.2 if (FN_field::test(opcode))
263     pc() = lr();
264     else
265     pc() += 4;
266 gbeauche 1.1 break;
267    
268 gbeauche 1.26 default: // EMUL_OP
269     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
270     pc() += 4;
271     break;
272     }
273     }
274    
275     // Compile one instruction
276 gbeauche 1.53 #if PPC_ENABLE_JIT
277 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
278 gbeauche 1.26 {
279     const instr_info_t *ii = cg_context.instr_info;
280     if (ii->mnemo != PPC_I(SHEEP))
281 gbeauche 1.38 return COMPILE_FAILURE;
282 gbeauche 1.26
283 gbeauche 1.38 int status = COMPILE_FAILURE;
284 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
285     uint32 opcode = cg_context.opcode;
286    
287     switch (opcode & 0x3f) {
288     case 0: // EMUL_RETURN
289     dg.gen_invoke(QuitEmulator);
290 gbeauche 1.38 status = COMPILE_CODE_OK;
291 gbeauche 1.26 break;
292    
293     case 1: // EXEC_RETURN
294     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
295 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
296     // get out of this block ASAP
297     dg.gen_exec_return();
298     status = COMPILE_EPILOGUE_OK;
299 gbeauche 1.26 break;
300    
301     case 2: { // EXEC_NATIVE
302     uint32 selector = NATIVE_OP_field::extract(opcode);
303     switch (selector) {
304 gbeauche 1.38 #if !PPC_REENTRANT_JIT
305     // Filter out functions that may invoke Execute68k() or
306     // CallMacOS(), this would break reentrancy as they could
307     // invalidate the translation cache and even overwrite
308     // continuation code when we are done with them.
309 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
310     dg.gen_invoke(DoPatchNameRegistry);
311 gbeauche 1.38 status = COMPILE_CODE_OK;
312 gbeauche 1.26 break;
313     case NATIVE_VIDEO_INSTALL_ACCEL:
314     dg.gen_invoke(VideoInstallAccel);
315 gbeauche 1.38 status = COMPILE_CODE_OK;
316 gbeauche 1.26 break;
317     case NATIVE_VIDEO_VBL:
318     dg.gen_invoke(VideoVBL);
319 gbeauche 1.38 status = COMPILE_CODE_OK;
320 gbeauche 1.26 break;
321     case NATIVE_GET_RESOURCE:
322     case NATIVE_GET_1_RESOURCE:
323     case NATIVE_GET_IND_RESOURCE:
324     case NATIVE_GET_1_IND_RESOURCE:
325     case NATIVE_R_GET_RESOURCE: {
326     static const uint32 get_resource_ptr[] = {
327     XLM_GET_RESOURCE,
328     XLM_GET_1_RESOURCE,
329     XLM_GET_IND_RESOURCE,
330     XLM_GET_1_IND_RESOURCE,
331     XLM_R_GET_RESOURCE
332     };
333     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
334     typedef void (*func_t)(dyngen_cpu_base, uint32);
335     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
336     dg.gen_invoke_CPU_im(func, old_get_resource);
337 gbeauche 1.38 status = COMPILE_CODE_OK;
338 gbeauche 1.26 break;
339     }
340 gbeauche 1.70 #endif
341 gbeauche 1.26 case NATIVE_CHECK_LOAD_INVOC:
342     dg.gen_load_T0_GPR(3);
343     dg.gen_load_T1_GPR(4);
344     dg.gen_se_16_32_T1();
345     dg.gen_load_T2_GPR(5);
346     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
347 gbeauche 1.38 status = COMPILE_CODE_OK;
348     break;
349 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
350     dg.gen_load_T0_GPR(3);
351     dg.gen_load_T1_GPR(4);
352     dg.gen_load_T2_GPR(5);
353     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
354     status = COMPILE_CODE_OK;
355     break;
356 gbeauche 1.70 case NATIVE_NQD_SYNC_HOOK:
357     dg.gen_load_T0_GPR(3);
358     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook);
359     dg.gen_store_T0_GPR(3);
360     status = COMPILE_CODE_OK;
361     break;
362     case NATIVE_NQD_BITBLT_HOOK:
363     dg.gen_load_T0_GPR(3);
364     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook);
365     dg.gen_store_T0_GPR(3);
366     status = COMPILE_CODE_OK;
367     break;
368     case NATIVE_NQD_FILLRECT_HOOK:
369     dg.gen_load_T0_GPR(3);
370     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook);
371     dg.gen_store_T0_GPR(3);
372     status = COMPILE_CODE_OK;
373     break;
374     case NATIVE_NQD_UNKNOWN_HOOK:
375     dg.gen_load_T0_GPR(3);
376     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook);
377     dg.gen_store_T0_GPR(3);
378     status = COMPILE_CODE_OK;
379     break;
380 gbeauche 1.69 case NATIVE_NQD_BITBLT:
381 gbeauche 1.35 dg.gen_load_T0_GPR(3);
382     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
383 gbeauche 1.38 status = COMPILE_CODE_OK;
384 gbeauche 1.35 break;
385 gbeauche 1.69 case NATIVE_NQD_INVRECT:
386 gbeauche 1.35 dg.gen_load_T0_GPR(3);
387     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
388 gbeauche 1.38 status = COMPILE_CODE_OK;
389 gbeauche 1.35 break;
390 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
391 gbeauche 1.35 dg.gen_load_T0_GPR(3);
392     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
393 gbeauche 1.38 status = COMPILE_CODE_OK;
394 gbeauche 1.26 break;
395     }
396 gbeauche 1.38 // Could we fully translate this NativeOp?
397 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
398     if (!FN_field::test(opcode))
399     cg_context.done_compile = false;
400     else {
401 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
402     dg.gen_set_PC_T0();
403 gbeauche 1.42 cg_context.done_compile = true;
404 gbeauche 1.26 }
405 gbeauche 1.38 break;
406     }
407     #if PPC_REENTRANT_JIT
408     // Try to execute NativeOp trampoline
409 gbeauche 1.42 if (!FN_field::test(opcode))
410     dg.gen_set_PC_im(cg_context.pc + 4);
411     else {
412 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
413     dg.gen_set_PC_T0();
414 gbeauche 1.42 }
415 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
416     dg.gen_jmp(native_op_trampoline);
417     cg_context.done_compile = true;
418     status = COMPILE_EPILOGUE_OK;
419     break;
420     #endif
421     // Invoke NativeOp handler
422 gbeauche 1.42 if (!FN_field::test(opcode)) {
423     typedef void (*func_t)(dyngen_cpu_base, uint32);
424     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
425     dg.gen_invoke_CPU_im(func, selector);
426     cg_context.done_compile = false;
427     status = COMPILE_CODE_OK;
428     }
429     // Otherwise, let it generate a call to execute_sheep() which
430     // will cause necessary updates to the program counter
431 gbeauche 1.26 break;
432     }
433    
434 gbeauche 1.1 default: { // EMUL_OP
435 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
436 gbeauche 1.38 #if PPC_REENTRANT_JIT
437     // Try to execute EmulOp trampoline
438     dg.gen_set_PC_im(cg_context.pc + 4);
439     dg.gen_mov_32_T0_im(emul_op);
440     dg.gen_jmp(emul_op_trampoline);
441     cg_context.done_compile = true;
442     status = COMPILE_EPILOGUE_OK;
443     break;
444     #endif
445     // Invoke EmulOp handler
446 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
447     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
448 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
449 gbeauche 1.26 cg_context.done_compile = false;
450 gbeauche 1.38 status = COMPILE_CODE_OK;
451 gbeauche 1.1 break;
452     }
453     }
454 gbeauche 1.38 return status;
455 gbeauche 1.53 }
456 gbeauche 1.26 #endif
457 gbeauche 1.1
458     // Handle MacOS interrupt
459 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
460 gbeauche 1.1 {
461 gbeauche 1.15 #if EMUL_TIME_STATS
462 gbeauche 1.44 ppc_interrupt_count++;
463 gbeauche 1.15 const clock_t interrupt_start = clock();
464     #endif
465    
466 gbeauche 1.2 // Save program counters and branch registers
467     uint32 saved_pc = pc();
468     uint32 saved_lr = lr();
469     uint32 saved_ctr= ctr();
470 gbeauche 1.4 uint32 saved_sp = gpr(1);
471 gbeauche 1.2
472 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
473 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
474 gbeauche 1.1
475     // Build trampoline to return from interrupt
476 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
477 gbeauche 1.1
478     // Prepare registers for nanokernel interrupt routine
479 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
480     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
481 gbeauche 1.1
482 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
483 gbeauche 1.2 assert(gpr(6) != 0);
484 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
485     WriteMacInt32(gpr(6) + 0x144, gpr(8));
486     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
487     WriteMacInt32(gpr(6) + 0x154, gpr(10));
488     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
489     WriteMacInt32(gpr(6) + 0x164, gpr(12));
490     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
491    
492     gpr(1) = KernelDataAddr;
493 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
494 gbeauche 1.1 gpr(8) = 0;
495 gbeauche 1.21 gpr(10) = trampoline.addr();
496     gpr(12) = trampoline.addr();
497 gbeauche 1.8 gpr(13) = get_cr();
498 gbeauche 1.1
499     // rlwimi. r7,r7,8,0,0
500     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
501     record_cr0(result);
502     gpr(7) = result;
503    
504     gpr(11) = 0xf072; // MSR (SRR1)
505 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
506 gbeauche 1.1
507     // Enter nanokernel
508     execute(entry);
509    
510 gbeauche 1.2 // Restore program counters and branch registers
511     pc() = saved_pc;
512     lr() = saved_lr;
513     ctr()= saved_ctr;
514 gbeauche 1.4 gpr(1) = saved_sp;
515 gbeauche 1.15
516     #if EMUL_TIME_STATS
517     interrupt_time += (clock() - interrupt_start);
518     #endif
519 gbeauche 1.1 }
520    
521     // Execute 68k routine
522     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
523     {
524 gbeauche 1.15 #if EMUL_TIME_STATS
525     exec68k_count++;
526     const clock_t exec68k_start = clock();
527     #endif
528    
529 gbeauche 1.1 #if SAFE_EXEC_68K
530     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
531     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
532     #endif
533    
534     // Save program counters and branch registers
535     uint32 saved_pc = pc();
536     uint32 saved_lr = lr();
537     uint32 saved_ctr= ctr();
538 gbeauche 1.8 uint32 saved_cr = get_cr();
539 gbeauche 1.1
540     // Create MacOS stack frame
541 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
542 gbeauche 1.1 uint32 sp = gpr(1);
543 gbeauche 1.6 gpr(1) -= 56;
544 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
545    
546     // Save PowerPC registers
547 gbeauche 1.6 uint32 saved_GPRs[19];
548     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
549 gbeauche 1.1 #if SAVE_FP_EXEC_68K
550 gbeauche 1.6 double saved_FPRs[18];
551     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
552 gbeauche 1.1 #endif
553    
554     // Setup registers for 68k emulator
555 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
556 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
557     gpr(8 + i) = r->d[i];
558     for (int i = 0; i < 7; i++) // a[0]..a[6]
559     gpr(16 + i) = r->a[i];
560     gpr(23) = 0;
561     gpr(24) = entry;
562     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
563     gpr(26) = 0;
564     gpr(28) = 0; // VBR
565 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
566     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
567 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
568    
569     // Push return address (points to EXEC_RETURN opcode) on stack
570     gpr(1) -= 4;
571     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
572    
573     // Rentering 68k emulator
574     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
575    
576     // Set r0 to 0 for 68k emulator
577     gpr(0) = 0;
578    
579     // Execute 68k opcode
580     uint32 opcode = ReadMacInt16(gpr(24));
581     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
582     gpr(29) += opcode * 8;
583     execute(gpr(29));
584    
585     // Save r25 (contains current 68k interrupt level)
586     WriteMacInt32(XLM_68K_R25, gpr(25));
587    
588     // Reentering EMUL_OP mode
589     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
590    
591     // Save 68k registers
592     for (int i = 0; i < 8; i++) // d[0]..d[7]
593     r->d[i] = gpr(8 + i);
594     for (int i = 0; i < 7; i++) // a[0]..a[6]
595     r->a[i] = gpr(16 + i);
596    
597     // Restore PowerPC registers
598 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
599 gbeauche 1.1 #if SAVE_FP_EXEC_68K
600 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
601 gbeauche 1.1 #endif
602    
603     // Cleanup stack
604 gbeauche 1.6 gpr(1) += 56;
605 gbeauche 1.1
606     // Restore program counters and branch registers
607     pc() = saved_pc;
608     lr() = saved_lr;
609     ctr()= saved_ctr;
610 gbeauche 1.8 set_cr(saved_cr);
611 gbeauche 1.15
612     #if EMUL_TIME_STATS
613     exec68k_time += (clock() - exec68k_start);
614     #endif
615 gbeauche 1.1 }
616    
617     // Call MacOS PPC code
618     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
619     {
620 gbeauche 1.15 #if EMUL_TIME_STATS
621     macos_exec_count++;
622     const clock_t macos_exec_start = clock();
623     #endif
624    
625 gbeauche 1.1 // Save program counters and branch registers
626     uint32 saved_pc = pc();
627     uint32 saved_lr = lr();
628     uint32 saved_ctr= ctr();
629    
630     // Build trampoline with EXEC_RETURN
631 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
632     lr() = trampoline.addr();
633 gbeauche 1.1
634     gpr(1) -= 64; // Create stack frame
635     uint32 proc = ReadMacInt32(tvect); // Get routine address
636     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
637    
638     // Save PowerPC registers
639     uint32 regs[8];
640     regs[0] = gpr(2);
641     for (int i = 0; i < nargs; i++)
642     regs[i + 1] = gpr(i + 3);
643    
644     // Prepare and call MacOS routine
645     gpr(2) = toc;
646     for (int i = 0; i < nargs; i++)
647     gpr(i + 3) = args[i];
648     execute(proc);
649     uint32 retval = gpr(3);
650    
651     // Restore PowerPC registers
652     for (int i = 0; i <= nargs; i++)
653     gpr(i + 2) = regs[i];
654    
655     // Cleanup stack
656     gpr(1) += 64;
657    
658     // Restore program counters and branch registers
659     pc() = saved_pc;
660     lr() = saved_lr;
661     ctr()= saved_ctr;
662    
663 gbeauche 1.15 #if EMUL_TIME_STATS
664     macos_exec_time += (clock() - macos_exec_start);
665     #endif
666    
667 gbeauche 1.1 return retval;
668     }
669    
670 gbeauche 1.2 // Execute ppc routine
671     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
672     {
673     // Save branch registers
674     uint32 saved_lr = lr();
675    
676 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
677     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
678     lr() = trampoline.addr();
679 gbeauche 1.2
680     execute(entry);
681    
682     // Restore branch registers
683     lr() = saved_lr;
684     }
685    
686 gbeauche 1.1 // Resource Manager thunk
687     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
688     {
689 gbeauche 1.2 uint32 type = gpr(3);
690     int16 id = gpr(4);
691    
692     // Create stack frame
693     gpr(1) -= 56;
694    
695     // Call old routine
696     execute_ppc(old_get_resource);
697    
698     // Call CheckLoad()
699 gbeauche 1.5 uint32 handle = gpr(3);
700 gbeauche 1.2 check_load_invoc(type, id, handle);
701 gbeauche 1.5 gpr(3) = handle;
702 gbeauche 1.2
703     // Cleanup stack
704     gpr(1) += 56;
705 gbeauche 1.1 }
706    
707    
708     /**
709     * SheepShaver CPU engine interface
710     **/
711    
712 gbeauche 1.41 // PowerPC CPU emulator
713     static sheepshaver_cpu *ppc_cpu = NULL;
714 gbeauche 1.1
715 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
716     {
717     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
718 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
719 gbeauche 1.2 }
720    
721 gbeauche 1.1 // Dump PPC registers
722     static void dump_registers(void)
723     {
724 gbeauche 1.41 ppc_cpu->dump_registers();
725 gbeauche 1.1 }
726    
727     // Dump log
728     static void dump_log(void)
729     {
730 gbeauche 1.41 ppc_cpu->dump_log();
731 gbeauche 1.1 }
732    
733 asvitkine 1.77 static int read_mem(bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info)
734     {
735     Mac2Host_memcpy(myaddr, memaddr, length);
736     return 0;
737     }
738    
739     static void dump_disassembly(const uint32 pc, const int prefix_count, const int suffix_count)
740     {
741     struct disassemble_info info;
742     INIT_DISASSEMBLE_INFO(info, stderr, fprintf);
743     info.read_memory_func = read_mem;
744    
745     const int count = prefix_count + suffix_count + 1;
746     const uint32 base_addr = pc - prefix_count * 4;
747     for (int i = 0; i < count; i++) {
748     const bfd_vma addr = base_addr + i * 4;
749     fprintf(stderr, "%s0x%8llx: ", addr == pc ? " >" : " ", addr);
750     print_insn_ppc(addr, &info);
751     fprintf(stderr, "\n");
752     }
753     }
754 gbeauche 1.1
755 gbeauche 1.74 sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip)
756 gbeauche 1.1 {
757     #if ENABLE_VOSF
758 gbeauche 1.3 // Handle screen fault
759 gbeauche 1.74 extern bool Screen_fault_handler(sigsegv_info_t *sip);
760     if (Screen_fault_handler(sip))
761 gbeauche 1.3 return SIGSEGV_RETURN_SUCCESS;
762 gbeauche 1.1 #endif
763 gbeauche 1.3
764 gbeauche 1.74 const uintptr addr = (uintptr)sigsegv_get_fault_address(sip);
765 gbeauche 1.3 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
766     // Ignore writes to ROM
767 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
768 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
769    
770 gbeauche 1.17 // Get program counter of target CPU
771 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
772 gbeauche 1.17 const uint32 pc = cpu->pc();
773    
774     // Fault in Mac ROM or RAM?
775 asvitkine 1.76 bool mac_fault = (pc >= ROMBase) && (pc < (ROMBase + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
776 gbeauche 1.17 if (mac_fault) {
777    
778     // "VM settings" during MacOS 8 installation
779 asvitkine 1.76 if (pc == ROMBase + 0x488160 && cpu->gpr(20) == 0xf8000000)
780 gbeauche 1.17 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
781    
782     // MacOS 8.5 installation
783 asvitkine 1.76 else if (pc == ROMBase + 0x488140 && cpu->gpr(16) == 0xf8000000)
784 gbeauche 1.17 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
785    
786     // MacOS 8 serial drivers on startup
787 asvitkine 1.76 else if (pc == ROMBase + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
788 gbeauche 1.17 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
789    
790     // MacOS 8.1 serial drivers on startup
791 asvitkine 1.76 else if (pc == ROMBase + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
792 gbeauche 1.17 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
793 asvitkine 1.76 else if (pc == ROMBase + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
794 gbeauche 1.17 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
795 gbeauche 1.43
796     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
797     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
798     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
799     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
800     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
801 gbeauche 1.17
802 gbeauche 1.30 // Ignore writes to the zero page
803     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
804     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
805    
806 gbeauche 1.17 // Ignore all other faults, if requested
807     if (PrefsFindBool("ignoresegv"))
808     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
809     }
810 gbeauche 1.3 #else
811     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
812 gbeauche 1.1 #endif
813 gbeauche 1.3
814 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
815 gbeauche 1.74 fprintf(stderr, " pc %p\n", sigsegv_get_fault_instruction_address(sip));
816     fprintf(stderr, " ea %p\n", sigsegv_get_fault_address(sip));
817 gbeauche 1.1 dump_registers();
818 gbeauche 1.41 ppc_cpu->dump_log();
819 asvitkine 1.77 dump_disassembly(pc, 8, 8);
820    
821 gbeauche 1.1 enter_mon();
822     QuitEmulator();
823 gbeauche 1.3
824     return SIGSEGV_RETURN_FAILURE;
825 gbeauche 1.1 }
826    
827 asvitkine 1.77 /*
828     * Initialize CPU emulation
829     */
830    
831 gbeauche 1.1 void init_emul_ppc(void)
832     {
833 gbeauche 1.52 // Get pointer to KernelData in host address space
834     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
835    
836 gbeauche 1.1 // Initialize main CPU emulator
837 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
838 asvitkine 1.76 ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROMBase + 0x30d000));
839 gbeauche 1.41 ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
840 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
841    
842     #if ENABLE_MON
843     // Install "regs" command in cxmon
844     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
845     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
846     #endif
847 gbeauche 1.15
848     #if EMUL_TIME_STATS
849     emul_start_time = clock();
850     #endif
851 gbeauche 1.1 }
852    
853     /*
854 gbeauche 1.14 * Deinitialize emulation
855     */
856    
857     void exit_emul_ppc(void)
858     {
859 gbeauche 1.15 #if EMUL_TIME_STATS
860     clock_t emul_end_time = clock();
861    
862     printf("### Statistics for SheepShaver emulation parts\n");
863     const clock_t emul_time = emul_end_time - emul_start_time;
864     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
865     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
866     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
867 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
868     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
869 gbeauche 1.15
870     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
871     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
872     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
873     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
874     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
875     } while (0)
876    
877     PRINT_STATS("Execute68k[Trap] execution", exec68k);
878     PRINT_STATS("NativeOp execution", native_exec);
879     PRINT_STATS("MacOS routine execution", macos_exec);
880    
881     #undef PRINT_STATS
882     printf("\n");
883     #endif
884    
885 gbeauche 1.41 delete ppc_cpu;
886 gbeauche 1.67 ppc_cpu = NULL;
887 gbeauche 1.14 }
888    
889 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
890     // Initialize EmulOp trampolines
891     void init_emul_op_trampolines(basic_dyngen & dg)
892     {
893     typedef void (*func_t)(dyngen_cpu_base, uint32);
894     func_t func;
895    
896     // EmulOp
897     emul_op_trampoline = dg.gen_start();
898     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
899     dg.gen_invoke_CPU_T0(func);
900     dg.gen_exec_return();
901     dg.gen_end();
902    
903     // NativeOp
904     native_op_trampoline = dg.gen_start();
905     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
906     dg.gen_invoke_CPU_T0(func);
907     dg.gen_exec_return();
908     dg.gen_end();
909    
910     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
911     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
912     }
913     #endif
914    
915 gbeauche 1.14 /*
916 gbeauche 1.1 * Emulation loop
917     */
918    
919     void emul_ppc(uint32 entry)
920     {
921 gbeauche 1.24 #if 0
922 gbeauche 1.41 ppc_cpu->start_log();
923 gbeauche 1.10 #endif
924     // start emulation loop and enable code translation or caching
925 gbeauche 1.41 ppc_cpu->execute(entry);
926 gbeauche 1.1 }
927    
928     /*
929     * Handle PowerPC interrupt
930     */
931    
932 gbeauche 1.2 void TriggerInterrupt(void)
933     {
934 gbeauche 1.64 idle_resume();
935 gbeauche 1.2 #if 0
936     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
937     #else
938 gbeauche 1.10 // Trigger interrupt to main cpu only
939 gbeauche 1.41 if (ppc_cpu)
940     ppc_cpu->trigger_interrupt();
941 gbeauche 1.2 #endif
942     }
943    
944 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
945 gbeauche 1.1 {
946 gbeauche 1.47 #ifdef USE_SDL_VIDEO
947     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
948     SDL_PumpEvents();
949     #endif
950    
951 gbeauche 1.1 // Do nothing if interrupts are disabled
952 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
953 gbeauche 1.1 return;
954    
955 gbeauche 1.63 // Update interrupt count
956 gbeauche 1.44 #if EMUL_TIME_STATS
957     interrupt_count++;
958     #endif
959 gbeauche 1.40
960 gbeauche 1.1 // Interrupt action depends on current run mode
961     switch (ReadMacInt32(XLM_RUN_MODE)) {
962     case MODE_68K:
963     // 68k emulator active, trigger 68k interrupt level 1
964     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
965 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
966 gbeauche 1.1 break;
967    
968     #if INTERRUPTS_IN_NATIVE_MODE
969     case MODE_NATIVE:
970     // 68k emulator inactive, in nanokernel?
971 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
972 gbeauche 1.39
973 gbeauche 1.1 // Prepare for 68k interrupt level 1
974     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
975     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
976     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
977     | tswap32(kernel_data->v[0x674 >> 2]));
978    
979     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
980 gbeauche 1.2 DisableInterrupt();
981 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
982 asvitkine 1.76 ppc_cpu->interrupt(ROMBase + 0x312b1c);
983 gbeauche 1.1 else
984 asvitkine 1.76 ppc_cpu->interrupt(ROMBase + 0x312a3c);
985 gbeauche 1.1 }
986     break;
987     #endif
988    
989     #if INTERRUPTS_IN_EMUL_OP_MODE
990     case MODE_EMUL_OP:
991     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
992     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
993 gbeauche 1.44 #if EMUL_TIME_STATS
994     const clock_t interrupt_start = clock();
995     #endif
996 gbeauche 1.1 #if 1
997     // Execute full 68k interrupt routine
998     M68kRegisters r;
999     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1000     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1001 gbeauche 1.53 static const uint8 proc_template[] = {
1002 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1003     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1004     0x40, 0xe7, // move sr,-(sp) (saved SR)
1005     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1006     0x4e, 0xd0, // jmp (a0)
1007     M68K_RTS >> 8, M68K_RTS & 0xff // @1
1008 gbeauche 1.1 };
1009 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
1010     Execute68k(proc, &r);
1011 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1012     #else
1013     // Only update cursor
1014     if (HasMacStarted()) {
1015     if (InterruptFlags & INTFLAG_VIA) {
1016     ClearInterruptFlag(INTFLAG_VIA);
1017     ADBInterrupt();
1018 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
1019 gbeauche 1.1 }
1020     }
1021     #endif
1022 gbeauche 1.44 #if EMUL_TIME_STATS
1023     interrupt_time += (clock() - interrupt_start);
1024     #endif
1025 gbeauche 1.1 }
1026     break;
1027     #endif
1028     }
1029     }
1030    
1031 gbeauche 1.38 // Execute NATIVE_OP routine
1032     void sheepshaver_cpu::execute_native_op(uint32 selector)
1033 gbeauche 1.1 {
1034 gbeauche 1.15 #if EMUL_TIME_STATS
1035     native_exec_count++;
1036     const clock_t native_exec_start = clock();
1037     #endif
1038    
1039 gbeauche 1.1 switch (selector) {
1040     case NATIVE_PATCH_NAME_REGISTRY:
1041     DoPatchNameRegistry();
1042     break;
1043     case NATIVE_VIDEO_INSTALL_ACCEL:
1044     VideoInstallAccel();
1045     break;
1046     case NATIVE_VIDEO_VBL:
1047     VideoVBL();
1048     break;
1049     case NATIVE_VIDEO_DO_DRIVER_IO:
1050 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1051 gbeauche 1.1 break;
1052 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1053     AO_get_ethernet_address(gpr(3));
1054     break;
1055     case NATIVE_ETHER_AO_ADD_MULTI:
1056     AO_enable_multicast(gpr(3));
1057     break;
1058     case NATIVE_ETHER_AO_DEL_MULTI:
1059     AO_disable_multicast(gpr(3));
1060     break;
1061     case NATIVE_ETHER_AO_SEND_PACKET:
1062     AO_transmit_packet(gpr(3));
1063     break;
1064 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1065     EtherIRQ();
1066     break;
1067     case NATIVE_ETHER_INIT:
1068 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1069 gbeauche 1.16 break;
1070     case NATIVE_ETHER_TERM:
1071     TerminateStreamModule();
1072     break;
1073     case NATIVE_ETHER_OPEN:
1074 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1075 gbeauche 1.1 break;
1076 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1077 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1078 gbeauche 1.1 break;
1079 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1080 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1081 gbeauche 1.1 break;
1082 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1083 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1084 gbeauche 1.1 break;
1085 gbeauche 1.69 case NATIVE_NQD_SYNC_HOOK:
1086 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1087 gbeauche 1.32 break;
1088 gbeauche 1.70 case NATIVE_NQD_UNKNOWN_HOOK:
1089     gpr(3) = NQD_unknown_hook(gpr(3));
1090     break;
1091 gbeauche 1.69 case NATIVE_NQD_BITBLT_HOOK:
1092 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1093 gbeauche 1.32 break;
1094 gbeauche 1.69 case NATIVE_NQD_BITBLT:
1095 gbeauche 1.38 NQD_bitblt(gpr(3));
1096 gbeauche 1.32 break;
1097 gbeauche 1.69 case NATIVE_NQD_FILLRECT_HOOK:
1098 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1099 gbeauche 1.32 break;
1100 gbeauche 1.69 case NATIVE_NQD_INVRECT:
1101 gbeauche 1.38 NQD_invrect(gpr(3));
1102 gbeauche 1.32 break;
1103 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
1104 gbeauche 1.38 NQD_fillrect(gpr(3));
1105 gbeauche 1.32 break;
1106 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1107     case NATIVE_SERIAL_OPEN:
1108     case NATIVE_SERIAL_PRIME_IN:
1109     case NATIVE_SERIAL_PRIME_OUT:
1110     case NATIVE_SERIAL_CONTROL:
1111     case NATIVE_SERIAL_STATUS:
1112     case NATIVE_SERIAL_CLOSE: {
1113     typedef int16 (*SerialCallback)(uint32, uint32);
1114     static const SerialCallback serial_callbacks[] = {
1115     SerialNothing,
1116     SerialOpen,
1117     SerialPrimeIn,
1118     SerialPrimeOut,
1119     SerialControl,
1120     SerialStatus,
1121     SerialClose
1122     };
1123 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1124 gbeauche 1.16 break;
1125     }
1126     case NATIVE_GET_RESOURCE:
1127 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1128     break;
1129 gbeauche 1.16 case NATIVE_GET_1_RESOURCE:
1130 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1131     break;
1132 gbeauche 1.16 case NATIVE_GET_IND_RESOURCE:
1133 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1134     break;
1135 gbeauche 1.16 case NATIVE_GET_1_IND_RESOURCE:
1136 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1137     break;
1138     case NATIVE_R_GET_RESOURCE:
1139     get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1140 gbeauche 1.1 break;
1141 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1142 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1143 gbeauche 1.26 break;
1144     case NATIVE_CHECK_LOAD_INVOC:
1145 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1146 gbeauche 1.2 break;
1147 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1148     named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1149     break;
1150 gbeauche 1.1 default:
1151     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1152     QuitEmulator();
1153     break;
1154     }
1155 gbeauche 1.15
1156     #if EMUL_TIME_STATS
1157     native_exec_time += (clock() - native_exec_start);
1158     #endif
1159 gbeauche 1.1 }
1160    
1161     /*
1162     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1163     * This must only be called by the emul_thread when in EMUL_OP mode
1164     * r->a[7] is unused, the routine runs on the caller's stack
1165     */
1166    
1167     void Execute68k(uint32 pc, M68kRegisters *r)
1168     {
1169 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1170 gbeauche 1.1 }
1171    
1172     /*
1173     * Execute 68k A-Trap from EMUL_OP routine
1174     * r->a[7] is unused, the routine runs on the caller's stack
1175     */
1176    
1177     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1178     {
1179 gbeauche 1.21 SheepVar proc_var(4);
1180     uint32 proc = proc_var.addr();
1181     WriteMacInt16(proc, trap);
1182     WriteMacInt16(proc + 2, M68K_RTS);
1183     Execute68k(proc, r);
1184 gbeauche 1.1 }
1185    
1186     /*
1187     * Call MacOS PPC code
1188     */
1189    
1190     uint32 call_macos(uint32 tvect)
1191     {
1192 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1193 gbeauche 1.1 }
1194    
1195     uint32 call_macos1(uint32 tvect, uint32 arg1)
1196     {
1197     const uint32 args[] = { arg1 };
1198 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1199 gbeauche 1.1 }
1200    
1201     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1202     {
1203     const uint32 args[] = { arg1, arg2 };
1204 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1205 gbeauche 1.1 }
1206    
1207     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1208     {
1209     const uint32 args[] = { arg1, arg2, arg3 };
1210 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1211 gbeauche 1.1 }
1212    
1213     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1214     {
1215     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1216 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1217 gbeauche 1.1 }
1218    
1219     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1220     {
1221     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1222 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1223 gbeauche 1.1 }
1224    
1225     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1226     {
1227     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1228 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1229 gbeauche 1.1 }
1230    
1231     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1232     {
1233     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1234 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1235 gbeauche 1.1 }