ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.74
Committed: 2007-12-30T09:18:40Z (16 years, 10 months ago) by gbeauche
Branch: MAIN
Changes since 1.73: +7 -7 lines
Log Message:
Sync with new SIGSEGV API.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92 gbeauche 1.68 extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h);
93 gbeauche 1.26
94 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
95     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
96    
97 gbeauche 1.1 // Enable Execute68k() safety checks?
98     #define SAFE_EXEC_68K 1
99    
100     // Save FP state in Execute68k()?
101     #define SAVE_FP_EXEC_68K 1
102    
103     // Interrupts in EMUL_OP mode?
104     #define INTERRUPTS_IN_EMUL_OP_MODE 1
105    
106     // Interrupts in native mode?
107     #define INTERRUPTS_IN_NATIVE_MODE 1
108    
109     // Pointer to Kernel Data
110 gbeauche 1.52 static KernelData * kernel_data;
111 gbeauche 1.1
112 gbeauche 1.17 // SIGSEGV handler
113 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
114 gbeauche 1.17
115 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
116     // Special trampolines for EmulOp and NativeOp
117     static uint8 *emul_op_trampoline;
118     static uint8 *native_op_trampoline;
119     #endif
120    
121 gbeauche 1.1
122     /**
123     * PowerPC emulator glue with special 'sheep' opcodes
124     **/
125    
126 gbeauche 1.18 enum {
127     PPC_I(SHEEP) = PPC_I(MAX),
128     PPC_I(SHEEP_MAX)
129     };
130    
131 gbeauche 1.1 class sheepshaver_cpu
132     : public powerpc_cpu
133     {
134     void init_decoder();
135     void execute_sheep(uint32 opcode);
136    
137     public:
138    
139 gbeauche 1.10 // Constructor
140     sheepshaver_cpu();
141 gbeauche 1.1
142 gbeauche 1.24 // CR & XER accessors
143 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
144     void set_cr(uint32 v) { cr().set(v); }
145 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
146     void set_xer(uint32 v) { xer().set(v); }
147 gbeauche 1.1
148 gbeauche 1.38 // Execute NATIVE_OP routine
149     void execute_native_op(uint32 native_op);
150    
151 gbeauche 1.26 // Execute EMUL_OP routine
152     void execute_emul_op(uint32 emul_op);
153    
154 gbeauche 1.1 // Execute 68k routine
155     void execute_68k(uint32 entry, M68kRegisters *r);
156    
157 gbeauche 1.2 // Execute ppc routine
158     void execute_ppc(uint32 entry);
159    
160 gbeauche 1.1 // Execute MacOS/PPC code
161     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
162    
163 gbeauche 1.53 #if PPC_ENABLE_JIT
164 gbeauche 1.26 // Compile one instruction
165 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
166 gbeauche 1.53 #endif
167 gbeauche 1.1 // Resource manager thunk
168     void get_resource(uint32 old_get_resource);
169    
170     // Handle MacOS interrupt
171 gbeauche 1.4 void interrupt(uint32 entry);
172 gbeauche 1.2
173 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
174 gbeauche 1.74 friend sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip);
175 gbeauche 1.1 };
176    
177 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
178     {
179     init_decoder();
180 gbeauche 1.73
181     #if PPC_ENABLE_JIT
182     if (PrefsFindBool("jit"))
183     enable_jit();
184     #endif
185 gbeauche 1.10 }
186    
187 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
188     {
189     static const instr_info_t sheep_ii_table[] = {
190     { "sheep",
191 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
192 gbeauche 1.18 PPC_I(SHEEP),
193 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
194 gbeauche 1.1 }
195     };
196    
197     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
198     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
199    
200     for (int i = 0; i < ii_count; i++) {
201     const instr_info_t * ii = &sheep_ii_table[i];
202     init_decoder_entry(ii);
203     }
204     }
205    
206 gbeauche 1.2 /* NativeOp instruction format:
207 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
208     | 6 | |FN| OP | 2 |
209     +------------+-------------------------+--+-----------+------------+
210     0 5 |6 18 19 20 25 26 31
211 gbeauche 1.2 */
212    
213 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
214     typedef bit_field< 20, 25 > NATIVE_OP_field;
215 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
216    
217 gbeauche 1.26 // Execute EMUL_OP routine
218     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
219     {
220     M68kRegisters r68;
221     WriteMacInt32(XLM_68K_R25, gpr(25));
222     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
223     for (int i = 0; i < 8; i++)
224     r68.d[i] = gpr(8 + i);
225     for (int i = 0; i < 7; i++)
226     r68.a[i] = gpr(16 + i);
227     r68.a[7] = gpr(1);
228 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
229 gbeauche 1.26 uint32 saved_xer = get_xer();
230     EmulOp(&r68, gpr(24), emul_op);
231     set_cr(saved_cr);
232     set_xer(saved_xer);
233     for (int i = 0; i < 8; i++)
234     gpr(8 + i) = r68.d[i];
235     for (int i = 0; i < 7; i++)
236     gpr(16 + i) = r68.a[i];
237     gpr(1) = r68.a[7];
238     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
239     }
240    
241 gbeauche 1.1 // Execute SheepShaver instruction
242     void sheepshaver_cpu::execute_sheep(uint32 opcode)
243     {
244     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
245     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
246    
247     switch (opcode & 0x3f) {
248     case 0: // EMUL_RETURN
249     QuitEmulator();
250     break;
251 gbeauche 1.8
252 gbeauche 1.1 case 1: // EXEC_RETURN
253 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
254 gbeauche 1.1 break;
255    
256     case 2: // EXEC_NATIVE
257 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
258 gbeauche 1.2 if (FN_field::test(opcode))
259     pc() = lr();
260     else
261     pc() += 4;
262 gbeauche 1.1 break;
263    
264 gbeauche 1.26 default: // EMUL_OP
265     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
266     pc() += 4;
267     break;
268     }
269     }
270    
271     // Compile one instruction
272 gbeauche 1.53 #if PPC_ENABLE_JIT
273 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
274 gbeauche 1.26 {
275     const instr_info_t *ii = cg_context.instr_info;
276     if (ii->mnemo != PPC_I(SHEEP))
277 gbeauche 1.38 return COMPILE_FAILURE;
278 gbeauche 1.26
279 gbeauche 1.38 int status = COMPILE_FAILURE;
280 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
281     uint32 opcode = cg_context.opcode;
282    
283     switch (opcode & 0x3f) {
284     case 0: // EMUL_RETURN
285     dg.gen_invoke(QuitEmulator);
286 gbeauche 1.38 status = COMPILE_CODE_OK;
287 gbeauche 1.26 break;
288    
289     case 1: // EXEC_RETURN
290     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
291 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
292     // get out of this block ASAP
293     dg.gen_exec_return();
294     status = COMPILE_EPILOGUE_OK;
295 gbeauche 1.26 break;
296    
297     case 2: { // EXEC_NATIVE
298     uint32 selector = NATIVE_OP_field::extract(opcode);
299     switch (selector) {
300 gbeauche 1.38 #if !PPC_REENTRANT_JIT
301     // Filter out functions that may invoke Execute68k() or
302     // CallMacOS(), this would break reentrancy as they could
303     // invalidate the translation cache and even overwrite
304     // continuation code when we are done with them.
305 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
306     dg.gen_invoke(DoPatchNameRegistry);
307 gbeauche 1.38 status = COMPILE_CODE_OK;
308 gbeauche 1.26 break;
309     case NATIVE_VIDEO_INSTALL_ACCEL:
310     dg.gen_invoke(VideoInstallAccel);
311 gbeauche 1.38 status = COMPILE_CODE_OK;
312 gbeauche 1.26 break;
313     case NATIVE_VIDEO_VBL:
314     dg.gen_invoke(VideoVBL);
315 gbeauche 1.38 status = COMPILE_CODE_OK;
316 gbeauche 1.26 break;
317     case NATIVE_GET_RESOURCE:
318     case NATIVE_GET_1_RESOURCE:
319     case NATIVE_GET_IND_RESOURCE:
320     case NATIVE_GET_1_IND_RESOURCE:
321     case NATIVE_R_GET_RESOURCE: {
322     static const uint32 get_resource_ptr[] = {
323     XLM_GET_RESOURCE,
324     XLM_GET_1_RESOURCE,
325     XLM_GET_IND_RESOURCE,
326     XLM_GET_1_IND_RESOURCE,
327     XLM_R_GET_RESOURCE
328     };
329     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
330     typedef void (*func_t)(dyngen_cpu_base, uint32);
331     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
332     dg.gen_invoke_CPU_im(func, old_get_resource);
333 gbeauche 1.38 status = COMPILE_CODE_OK;
334 gbeauche 1.26 break;
335     }
336 gbeauche 1.70 #endif
337 gbeauche 1.26 case NATIVE_CHECK_LOAD_INVOC:
338     dg.gen_load_T0_GPR(3);
339     dg.gen_load_T1_GPR(4);
340     dg.gen_se_16_32_T1();
341     dg.gen_load_T2_GPR(5);
342     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
343 gbeauche 1.38 status = COMPILE_CODE_OK;
344     break;
345 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
346     dg.gen_load_T0_GPR(3);
347     dg.gen_load_T1_GPR(4);
348     dg.gen_load_T2_GPR(5);
349     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc);
350     status = COMPILE_CODE_OK;
351     break;
352 gbeauche 1.70 case NATIVE_NQD_SYNC_HOOK:
353     dg.gen_load_T0_GPR(3);
354     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook);
355     dg.gen_store_T0_GPR(3);
356     status = COMPILE_CODE_OK;
357     break;
358     case NATIVE_NQD_BITBLT_HOOK:
359     dg.gen_load_T0_GPR(3);
360     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook);
361     dg.gen_store_T0_GPR(3);
362     status = COMPILE_CODE_OK;
363     break;
364     case NATIVE_NQD_FILLRECT_HOOK:
365     dg.gen_load_T0_GPR(3);
366     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook);
367     dg.gen_store_T0_GPR(3);
368     status = COMPILE_CODE_OK;
369     break;
370     case NATIVE_NQD_UNKNOWN_HOOK:
371     dg.gen_load_T0_GPR(3);
372     dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook);
373     dg.gen_store_T0_GPR(3);
374     status = COMPILE_CODE_OK;
375     break;
376 gbeauche 1.69 case NATIVE_NQD_BITBLT:
377 gbeauche 1.35 dg.gen_load_T0_GPR(3);
378     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
379 gbeauche 1.38 status = COMPILE_CODE_OK;
380 gbeauche 1.35 break;
381 gbeauche 1.69 case NATIVE_NQD_INVRECT:
382 gbeauche 1.35 dg.gen_load_T0_GPR(3);
383     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
384 gbeauche 1.38 status = COMPILE_CODE_OK;
385 gbeauche 1.35 break;
386 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
387 gbeauche 1.35 dg.gen_load_T0_GPR(3);
388     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
389 gbeauche 1.38 status = COMPILE_CODE_OK;
390 gbeauche 1.26 break;
391     }
392 gbeauche 1.38 // Could we fully translate this NativeOp?
393 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
394     if (!FN_field::test(opcode))
395     cg_context.done_compile = false;
396     else {
397 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
398     dg.gen_set_PC_T0();
399 gbeauche 1.42 cg_context.done_compile = true;
400 gbeauche 1.26 }
401 gbeauche 1.38 break;
402     }
403     #if PPC_REENTRANT_JIT
404     // Try to execute NativeOp trampoline
405 gbeauche 1.42 if (!FN_field::test(opcode))
406     dg.gen_set_PC_im(cg_context.pc + 4);
407     else {
408 gbeauche 1.71 dg.gen_load_T0_LR_aligned();
409     dg.gen_set_PC_T0();
410 gbeauche 1.42 }
411 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
412     dg.gen_jmp(native_op_trampoline);
413     cg_context.done_compile = true;
414     status = COMPILE_EPILOGUE_OK;
415     break;
416     #endif
417     // Invoke NativeOp handler
418 gbeauche 1.42 if (!FN_field::test(opcode)) {
419     typedef void (*func_t)(dyngen_cpu_base, uint32);
420     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
421     dg.gen_invoke_CPU_im(func, selector);
422     cg_context.done_compile = false;
423     status = COMPILE_CODE_OK;
424     }
425     // Otherwise, let it generate a call to execute_sheep() which
426     // will cause necessary updates to the program counter
427 gbeauche 1.26 break;
428     }
429    
430 gbeauche 1.1 default: { // EMUL_OP
431 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
432 gbeauche 1.38 #if PPC_REENTRANT_JIT
433     // Try to execute EmulOp trampoline
434     dg.gen_set_PC_im(cg_context.pc + 4);
435     dg.gen_mov_32_T0_im(emul_op);
436     dg.gen_jmp(emul_op_trampoline);
437     cg_context.done_compile = true;
438     status = COMPILE_EPILOGUE_OK;
439     break;
440     #endif
441     // Invoke EmulOp handler
442 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
443     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
444 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
445 gbeauche 1.26 cg_context.done_compile = false;
446 gbeauche 1.38 status = COMPILE_CODE_OK;
447 gbeauche 1.1 break;
448     }
449     }
450 gbeauche 1.38 return status;
451 gbeauche 1.53 }
452 gbeauche 1.26 #endif
453 gbeauche 1.1
454     // Handle MacOS interrupt
455 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
456 gbeauche 1.1 {
457 gbeauche 1.15 #if EMUL_TIME_STATS
458 gbeauche 1.44 ppc_interrupt_count++;
459 gbeauche 1.15 const clock_t interrupt_start = clock();
460     #endif
461    
462 gbeauche 1.2 // Save program counters and branch registers
463     uint32 saved_pc = pc();
464     uint32 saved_lr = lr();
465     uint32 saved_ctr= ctr();
466 gbeauche 1.4 uint32 saved_sp = gpr(1);
467 gbeauche 1.2
468 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
469 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
470 gbeauche 1.1
471     // Build trampoline to return from interrupt
472 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
473 gbeauche 1.1
474     // Prepare registers for nanokernel interrupt routine
475 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
476     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
477 gbeauche 1.1
478 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
479 gbeauche 1.2 assert(gpr(6) != 0);
480 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
481     WriteMacInt32(gpr(6) + 0x144, gpr(8));
482     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
483     WriteMacInt32(gpr(6) + 0x154, gpr(10));
484     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
485     WriteMacInt32(gpr(6) + 0x164, gpr(12));
486     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
487    
488     gpr(1) = KernelDataAddr;
489 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
490 gbeauche 1.1 gpr(8) = 0;
491 gbeauche 1.21 gpr(10) = trampoline.addr();
492     gpr(12) = trampoline.addr();
493 gbeauche 1.8 gpr(13) = get_cr();
494 gbeauche 1.1
495     // rlwimi. r7,r7,8,0,0
496     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
497     record_cr0(result);
498     gpr(7) = result;
499    
500     gpr(11) = 0xf072; // MSR (SRR1)
501 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
502 gbeauche 1.1
503     // Enter nanokernel
504     execute(entry);
505    
506 gbeauche 1.2 // Restore program counters and branch registers
507     pc() = saved_pc;
508     lr() = saved_lr;
509     ctr()= saved_ctr;
510 gbeauche 1.4 gpr(1) = saved_sp;
511 gbeauche 1.15
512     #if EMUL_TIME_STATS
513     interrupt_time += (clock() - interrupt_start);
514     #endif
515 gbeauche 1.1 }
516    
517     // Execute 68k routine
518     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
519     {
520 gbeauche 1.15 #if EMUL_TIME_STATS
521     exec68k_count++;
522     const clock_t exec68k_start = clock();
523     #endif
524    
525 gbeauche 1.1 #if SAFE_EXEC_68K
526     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
527     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
528     #endif
529    
530     // Save program counters and branch registers
531     uint32 saved_pc = pc();
532     uint32 saved_lr = lr();
533     uint32 saved_ctr= ctr();
534 gbeauche 1.8 uint32 saved_cr = get_cr();
535 gbeauche 1.1
536     // Create MacOS stack frame
537 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
538 gbeauche 1.1 uint32 sp = gpr(1);
539 gbeauche 1.6 gpr(1) -= 56;
540 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
541    
542     // Save PowerPC registers
543 gbeauche 1.6 uint32 saved_GPRs[19];
544     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
545 gbeauche 1.1 #if SAVE_FP_EXEC_68K
546 gbeauche 1.6 double saved_FPRs[18];
547     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
548 gbeauche 1.1 #endif
549    
550     // Setup registers for 68k emulator
551 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
552 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
553     gpr(8 + i) = r->d[i];
554     for (int i = 0; i < 7; i++) // a[0]..a[6]
555     gpr(16 + i) = r->a[i];
556     gpr(23) = 0;
557     gpr(24) = entry;
558     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
559     gpr(26) = 0;
560     gpr(28) = 0; // VBR
561 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
562     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
563 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
564    
565     // Push return address (points to EXEC_RETURN opcode) on stack
566     gpr(1) -= 4;
567     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
568    
569     // Rentering 68k emulator
570     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
571    
572     // Set r0 to 0 for 68k emulator
573     gpr(0) = 0;
574    
575     // Execute 68k opcode
576     uint32 opcode = ReadMacInt16(gpr(24));
577     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
578     gpr(29) += opcode * 8;
579     execute(gpr(29));
580    
581     // Save r25 (contains current 68k interrupt level)
582     WriteMacInt32(XLM_68K_R25, gpr(25));
583    
584     // Reentering EMUL_OP mode
585     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
586    
587     // Save 68k registers
588     for (int i = 0; i < 8; i++) // d[0]..d[7]
589     r->d[i] = gpr(8 + i);
590     for (int i = 0; i < 7; i++) // a[0]..a[6]
591     r->a[i] = gpr(16 + i);
592    
593     // Restore PowerPC registers
594 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
595 gbeauche 1.1 #if SAVE_FP_EXEC_68K
596 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
597 gbeauche 1.1 #endif
598    
599     // Cleanup stack
600 gbeauche 1.6 gpr(1) += 56;
601 gbeauche 1.1
602     // Restore program counters and branch registers
603     pc() = saved_pc;
604     lr() = saved_lr;
605     ctr()= saved_ctr;
606 gbeauche 1.8 set_cr(saved_cr);
607 gbeauche 1.15
608     #if EMUL_TIME_STATS
609     exec68k_time += (clock() - exec68k_start);
610     #endif
611 gbeauche 1.1 }
612    
613     // Call MacOS PPC code
614     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
615     {
616 gbeauche 1.15 #if EMUL_TIME_STATS
617     macos_exec_count++;
618     const clock_t macos_exec_start = clock();
619     #endif
620    
621 gbeauche 1.1 // Save program counters and branch registers
622     uint32 saved_pc = pc();
623     uint32 saved_lr = lr();
624     uint32 saved_ctr= ctr();
625    
626     // Build trampoline with EXEC_RETURN
627 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
628     lr() = trampoline.addr();
629 gbeauche 1.1
630     gpr(1) -= 64; // Create stack frame
631     uint32 proc = ReadMacInt32(tvect); // Get routine address
632     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
633    
634     // Save PowerPC registers
635     uint32 regs[8];
636     regs[0] = gpr(2);
637     for (int i = 0; i < nargs; i++)
638     regs[i + 1] = gpr(i + 3);
639    
640     // Prepare and call MacOS routine
641     gpr(2) = toc;
642     for (int i = 0; i < nargs; i++)
643     gpr(i + 3) = args[i];
644     execute(proc);
645     uint32 retval = gpr(3);
646    
647     // Restore PowerPC registers
648     for (int i = 0; i <= nargs; i++)
649     gpr(i + 2) = regs[i];
650    
651     // Cleanup stack
652     gpr(1) += 64;
653    
654     // Restore program counters and branch registers
655     pc() = saved_pc;
656     lr() = saved_lr;
657     ctr()= saved_ctr;
658    
659 gbeauche 1.15 #if EMUL_TIME_STATS
660     macos_exec_time += (clock() - macos_exec_start);
661     #endif
662    
663 gbeauche 1.1 return retval;
664     }
665    
666 gbeauche 1.2 // Execute ppc routine
667     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
668     {
669     // Save branch registers
670     uint32 saved_lr = lr();
671    
672 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
673     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
674     lr() = trampoline.addr();
675 gbeauche 1.2
676     execute(entry);
677    
678     // Restore branch registers
679     lr() = saved_lr;
680     }
681    
682 gbeauche 1.1 // Resource Manager thunk
683     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
684     {
685 gbeauche 1.2 uint32 type = gpr(3);
686     int16 id = gpr(4);
687    
688     // Create stack frame
689     gpr(1) -= 56;
690    
691     // Call old routine
692     execute_ppc(old_get_resource);
693    
694     // Call CheckLoad()
695 gbeauche 1.5 uint32 handle = gpr(3);
696 gbeauche 1.2 check_load_invoc(type, id, handle);
697 gbeauche 1.5 gpr(3) = handle;
698 gbeauche 1.2
699     // Cleanup stack
700     gpr(1) += 56;
701 gbeauche 1.1 }
702    
703    
704     /**
705     * SheepShaver CPU engine interface
706     **/
707    
708 gbeauche 1.41 // PowerPC CPU emulator
709     static sheepshaver_cpu *ppc_cpu = NULL;
710 gbeauche 1.1
711 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
712     {
713     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
714 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
715 gbeauche 1.2 }
716    
717 gbeauche 1.1 // Dump PPC registers
718     static void dump_registers(void)
719     {
720 gbeauche 1.41 ppc_cpu->dump_registers();
721 gbeauche 1.1 }
722    
723     // Dump log
724     static void dump_log(void)
725     {
726 gbeauche 1.41 ppc_cpu->dump_log();
727 gbeauche 1.1 }
728    
729     /*
730     * Initialize CPU emulation
731     */
732    
733 gbeauche 1.74 sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip)
734 gbeauche 1.1 {
735     #if ENABLE_VOSF
736 gbeauche 1.3 // Handle screen fault
737 gbeauche 1.74 extern bool Screen_fault_handler(sigsegv_info_t *sip);
738     if (Screen_fault_handler(sip))
739 gbeauche 1.3 return SIGSEGV_RETURN_SUCCESS;
740 gbeauche 1.1 #endif
741 gbeauche 1.3
742 gbeauche 1.74 const uintptr addr = (uintptr)sigsegv_get_fault_address(sip);
743 gbeauche 1.3 #if HAVE_SIGSEGV_SKIP_INSTRUCTION
744     // Ignore writes to ROM
745 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
746 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
747    
748 gbeauche 1.17 // Get program counter of target CPU
749 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
750 gbeauche 1.17 const uint32 pc = cpu->pc();
751    
752     // Fault in Mac ROM or RAM?
753 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
754 gbeauche 1.17 if (mac_fault) {
755    
756     // "VM settings" during MacOS 8 installation
757     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
758     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
759    
760     // MacOS 8.5 installation
761     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
762     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
763    
764     // MacOS 8 serial drivers on startup
765     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
766     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
767    
768     // MacOS 8.1 serial drivers on startup
769     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
770     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
771     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
772     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
773 gbeauche 1.43
774     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
775     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
776     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
777     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
778     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
779 gbeauche 1.17
780 gbeauche 1.30 // Ignore writes to the zero page
781     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
782     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
783    
784 gbeauche 1.17 // Ignore all other faults, if requested
785     if (PrefsFindBool("ignoresegv"))
786     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
787     }
788 gbeauche 1.3 #else
789     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
790 gbeauche 1.1 #endif
791 gbeauche 1.3
792 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
793 gbeauche 1.74 fprintf(stderr, " pc %p\n", sigsegv_get_fault_instruction_address(sip));
794     fprintf(stderr, " ea %p\n", sigsegv_get_fault_address(sip));
795 gbeauche 1.1 dump_registers();
796 gbeauche 1.41 ppc_cpu->dump_log();
797 gbeauche 1.1 enter_mon();
798     QuitEmulator();
799 gbeauche 1.3
800     return SIGSEGV_RETURN_FAILURE;
801 gbeauche 1.1 }
802    
803     void init_emul_ppc(void)
804     {
805 gbeauche 1.52 // Get pointer to KernelData in host address space
806     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
807    
808 gbeauche 1.1 // Initialize main CPU emulator
809 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
810     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
811     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
812 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
813    
814     #if ENABLE_MON
815     // Install "regs" command in cxmon
816     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
817     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
818     #endif
819 gbeauche 1.15
820     #if EMUL_TIME_STATS
821     emul_start_time = clock();
822     #endif
823 gbeauche 1.1 }
824    
825     /*
826 gbeauche 1.14 * Deinitialize emulation
827     */
828    
829     void exit_emul_ppc(void)
830     {
831 gbeauche 1.15 #if EMUL_TIME_STATS
832     clock_t emul_end_time = clock();
833    
834     printf("### Statistics for SheepShaver emulation parts\n");
835     const clock_t emul_time = emul_end_time - emul_start_time;
836     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
837     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
838     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
839 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
840     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
841 gbeauche 1.15
842     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
843     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
844     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
845     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
846     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
847     } while (0)
848    
849     PRINT_STATS("Execute68k[Trap] execution", exec68k);
850     PRINT_STATS("NativeOp execution", native_exec);
851     PRINT_STATS("MacOS routine execution", macos_exec);
852    
853     #undef PRINT_STATS
854     printf("\n");
855     #endif
856    
857 gbeauche 1.41 delete ppc_cpu;
858 gbeauche 1.67 ppc_cpu = NULL;
859 gbeauche 1.14 }
860    
861 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
862     // Initialize EmulOp trampolines
863     void init_emul_op_trampolines(basic_dyngen & dg)
864     {
865     typedef void (*func_t)(dyngen_cpu_base, uint32);
866     func_t func;
867    
868     // EmulOp
869     emul_op_trampoline = dg.gen_start();
870     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
871     dg.gen_invoke_CPU_T0(func);
872     dg.gen_exec_return();
873     dg.gen_end();
874    
875     // NativeOp
876     native_op_trampoline = dg.gen_start();
877     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
878     dg.gen_invoke_CPU_T0(func);
879     dg.gen_exec_return();
880     dg.gen_end();
881    
882     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
883     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
884     }
885     #endif
886    
887 gbeauche 1.14 /*
888 gbeauche 1.1 * Emulation loop
889     */
890    
891     void emul_ppc(uint32 entry)
892     {
893 gbeauche 1.24 #if 0
894 gbeauche 1.41 ppc_cpu->start_log();
895 gbeauche 1.10 #endif
896     // start emulation loop and enable code translation or caching
897 gbeauche 1.41 ppc_cpu->execute(entry);
898 gbeauche 1.1 }
899    
900     /*
901     * Handle PowerPC interrupt
902     */
903    
904 gbeauche 1.2 void TriggerInterrupt(void)
905     {
906 gbeauche 1.64 idle_resume();
907 gbeauche 1.2 #if 0
908     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
909     #else
910 gbeauche 1.10 // Trigger interrupt to main cpu only
911 gbeauche 1.41 if (ppc_cpu)
912     ppc_cpu->trigger_interrupt();
913 gbeauche 1.2 #endif
914     }
915    
916 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
917 gbeauche 1.1 {
918 gbeauche 1.47 #ifdef USE_SDL_VIDEO
919     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
920     SDL_PumpEvents();
921     #endif
922    
923 gbeauche 1.1 // Do nothing if interrupts are disabled
924 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
925 gbeauche 1.1 return;
926    
927 gbeauche 1.63 // Update interrupt count
928 gbeauche 1.44 #if EMUL_TIME_STATS
929     interrupt_count++;
930     #endif
931 gbeauche 1.40
932 gbeauche 1.1 // Interrupt action depends on current run mode
933     switch (ReadMacInt32(XLM_RUN_MODE)) {
934     case MODE_68K:
935     // 68k emulator active, trigger 68k interrupt level 1
936     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
937 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
938 gbeauche 1.1 break;
939    
940     #if INTERRUPTS_IN_NATIVE_MODE
941     case MODE_NATIVE:
942     // 68k emulator inactive, in nanokernel?
943 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
944 gbeauche 1.39
945 gbeauche 1.1 // Prepare for 68k interrupt level 1
946     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
947     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
948     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
949     | tswap32(kernel_data->v[0x674 >> 2]));
950    
951     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
952 gbeauche 1.2 DisableInterrupt();
953 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
954 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
955 gbeauche 1.1 else
956 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
957 gbeauche 1.1 }
958     break;
959     #endif
960    
961     #if INTERRUPTS_IN_EMUL_OP_MODE
962     case MODE_EMUL_OP:
963     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
964     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
965 gbeauche 1.44 #if EMUL_TIME_STATS
966     const clock_t interrupt_start = clock();
967     #endif
968 gbeauche 1.1 #if 1
969     // Execute full 68k interrupt routine
970     M68kRegisters r;
971     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
972     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
973 gbeauche 1.53 static const uint8 proc_template[] = {
974 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
975     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
976     0x40, 0xe7, // move sr,-(sp) (saved SR)
977     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
978     0x4e, 0xd0, // jmp (a0)
979     M68K_RTS >> 8, M68K_RTS & 0xff // @1
980 gbeauche 1.1 };
981 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
982     Execute68k(proc, &r);
983 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
984     #else
985     // Only update cursor
986     if (HasMacStarted()) {
987     if (InterruptFlags & INTFLAG_VIA) {
988     ClearInterruptFlag(INTFLAG_VIA);
989     ADBInterrupt();
990 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
991 gbeauche 1.1 }
992     }
993     #endif
994 gbeauche 1.44 #if EMUL_TIME_STATS
995     interrupt_time += (clock() - interrupt_start);
996     #endif
997 gbeauche 1.1 }
998     break;
999     #endif
1000     }
1001     }
1002    
1003 gbeauche 1.38 // Execute NATIVE_OP routine
1004     void sheepshaver_cpu::execute_native_op(uint32 selector)
1005 gbeauche 1.1 {
1006 gbeauche 1.15 #if EMUL_TIME_STATS
1007     native_exec_count++;
1008     const clock_t native_exec_start = clock();
1009     #endif
1010    
1011 gbeauche 1.1 switch (selector) {
1012     case NATIVE_PATCH_NAME_REGISTRY:
1013     DoPatchNameRegistry();
1014     break;
1015     case NATIVE_VIDEO_INSTALL_ACCEL:
1016     VideoInstallAccel();
1017     break;
1018     case NATIVE_VIDEO_VBL:
1019     VideoVBL();
1020     break;
1021     case NATIVE_VIDEO_DO_DRIVER_IO:
1022 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1023 gbeauche 1.1 break;
1024 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1025     AO_get_ethernet_address(gpr(3));
1026     break;
1027     case NATIVE_ETHER_AO_ADD_MULTI:
1028     AO_enable_multicast(gpr(3));
1029     break;
1030     case NATIVE_ETHER_AO_DEL_MULTI:
1031     AO_disable_multicast(gpr(3));
1032     break;
1033     case NATIVE_ETHER_AO_SEND_PACKET:
1034     AO_transmit_packet(gpr(3));
1035     break;
1036 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1037     EtherIRQ();
1038     break;
1039     case NATIVE_ETHER_INIT:
1040 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1041 gbeauche 1.16 break;
1042     case NATIVE_ETHER_TERM:
1043     TerminateStreamModule();
1044     break;
1045     case NATIVE_ETHER_OPEN:
1046 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1047 gbeauche 1.1 break;
1048 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1049 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1050 gbeauche 1.1 break;
1051 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1052 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1053 gbeauche 1.1 break;
1054 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1055 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1056 gbeauche 1.1 break;
1057 gbeauche 1.69 case NATIVE_NQD_SYNC_HOOK:
1058 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1059 gbeauche 1.32 break;
1060 gbeauche 1.70 case NATIVE_NQD_UNKNOWN_HOOK:
1061     gpr(3) = NQD_unknown_hook(gpr(3));
1062     break;
1063 gbeauche 1.69 case NATIVE_NQD_BITBLT_HOOK:
1064 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1065 gbeauche 1.32 break;
1066 gbeauche 1.69 case NATIVE_NQD_BITBLT:
1067 gbeauche 1.38 NQD_bitblt(gpr(3));
1068 gbeauche 1.32 break;
1069 gbeauche 1.69 case NATIVE_NQD_FILLRECT_HOOK:
1070 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1071 gbeauche 1.32 break;
1072 gbeauche 1.69 case NATIVE_NQD_INVRECT:
1073 gbeauche 1.38 NQD_invrect(gpr(3));
1074 gbeauche 1.32 break;
1075 gbeauche 1.69 case NATIVE_NQD_FILLRECT:
1076 gbeauche 1.38 NQD_fillrect(gpr(3));
1077 gbeauche 1.32 break;
1078 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1079     case NATIVE_SERIAL_OPEN:
1080     case NATIVE_SERIAL_PRIME_IN:
1081     case NATIVE_SERIAL_PRIME_OUT:
1082     case NATIVE_SERIAL_CONTROL:
1083     case NATIVE_SERIAL_STATUS:
1084     case NATIVE_SERIAL_CLOSE: {
1085     typedef int16 (*SerialCallback)(uint32, uint32);
1086     static const SerialCallback serial_callbacks[] = {
1087     SerialNothing,
1088     SerialOpen,
1089     SerialPrimeIn,
1090     SerialPrimeOut,
1091     SerialControl,
1092     SerialStatus,
1093     SerialClose
1094     };
1095 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1096 gbeauche 1.16 break;
1097     }
1098     case NATIVE_GET_RESOURCE:
1099 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1100     break;
1101 gbeauche 1.16 case NATIVE_GET_1_RESOURCE:
1102 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1103     break;
1104 gbeauche 1.16 case NATIVE_GET_IND_RESOURCE:
1105 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1106     break;
1107 gbeauche 1.16 case NATIVE_GET_1_IND_RESOURCE:
1108 gbeauche 1.68 get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1109     break;
1110     case NATIVE_R_GET_RESOURCE:
1111     get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1112 gbeauche 1.1 break;
1113 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1114 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1115 gbeauche 1.26 break;
1116     case NATIVE_CHECK_LOAD_INVOC:
1117 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1118 gbeauche 1.2 break;
1119 gbeauche 1.68 case NATIVE_NAMED_CHECK_LOAD_INVOC:
1120     named_check_load_invoc(gpr(3), gpr(4), gpr(5));
1121     break;
1122 gbeauche 1.1 default:
1123     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1124     QuitEmulator();
1125     break;
1126     }
1127 gbeauche 1.15
1128     #if EMUL_TIME_STATS
1129     native_exec_time += (clock() - native_exec_start);
1130     #endif
1131 gbeauche 1.1 }
1132    
1133     /*
1134     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1135     * This must only be called by the emul_thread when in EMUL_OP mode
1136     * r->a[7] is unused, the routine runs on the caller's stack
1137     */
1138    
1139     void Execute68k(uint32 pc, M68kRegisters *r)
1140     {
1141 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1142 gbeauche 1.1 }
1143    
1144     /*
1145     * Execute 68k A-Trap from EMUL_OP routine
1146     * r->a[7] is unused, the routine runs on the caller's stack
1147     */
1148    
1149     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1150     {
1151 gbeauche 1.21 SheepVar proc_var(4);
1152     uint32 proc = proc_var.addr();
1153     WriteMacInt16(proc, trap);
1154     WriteMacInt16(proc + 2, M68K_RTS);
1155     Execute68k(proc, r);
1156 gbeauche 1.1 }
1157    
1158     /*
1159     * Call MacOS PPC code
1160     */
1161    
1162     uint32 call_macos(uint32 tvect)
1163     {
1164 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1165 gbeauche 1.1 }
1166    
1167     uint32 call_macos1(uint32 tvect, uint32 arg1)
1168     {
1169     const uint32 args[] = { arg1 };
1170 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171 gbeauche 1.1 }
1172    
1173     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1174     {
1175     const uint32 args[] = { arg1, arg2 };
1176 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177 gbeauche 1.1 }
1178    
1179     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1180     {
1181     const uint32 args[] = { arg1, arg2, arg3 };
1182 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183 gbeauche 1.1 }
1184    
1185     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1186     {
1187     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1188 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1189 gbeauche 1.1 }
1190    
1191     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1192     {
1193     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1194 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1195 gbeauche 1.1 }
1196    
1197     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1198     {
1199     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1200 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1201 gbeauche 1.1 }
1202    
1203     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1204     {
1205     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1206 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1207 gbeauche 1.1 }