ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.66
Committed: 2005-12-06T22:25:13Z (18 years, 11 months ago) by gbeauche
Branch: MAIN
Changes since 1.65: +0 -42 lines
Log Message:
Align PowerPC registers struct manually, i.e. don't depend on non-portable
compiler extensions (e.g. GCC __attribute__((aligned(N)))).

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92    
93 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
94     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95    
96 gbeauche 1.1 // Enable Execute68k() safety checks?
97     #define SAFE_EXEC_68K 1
98    
99     // Save FP state in Execute68k()?
100     #define SAVE_FP_EXEC_68K 1
101    
102     // Interrupts in EMUL_OP mode?
103     #define INTERRUPTS_IN_EMUL_OP_MODE 1
104    
105     // Interrupts in native mode?
106     #define INTERRUPTS_IN_NATIVE_MODE 1
107    
108     // Pointer to Kernel Data
109 gbeauche 1.52 static KernelData * kernel_data;
110 gbeauche 1.1
111 gbeauche 1.17 // SIGSEGV handler
112 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 gbeauche 1.17
114 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115     // Special trampolines for EmulOp and NativeOp
116     static uint8 *emul_op_trampoline;
117     static uint8 *native_op_trampoline;
118     #endif
119    
120 gbeauche 1.20 // JIT Compiler enabled?
121     static inline bool enable_jit_p()
122     {
123     return PrefsFindBool("jit");
124     }
125    
126 gbeauche 1.1
127     /**
128     * PowerPC emulator glue with special 'sheep' opcodes
129     **/
130    
131 gbeauche 1.18 enum {
132     PPC_I(SHEEP) = PPC_I(MAX),
133     PPC_I(SHEEP_MAX)
134     };
135    
136 gbeauche 1.1 class sheepshaver_cpu
137     : public powerpc_cpu
138     {
139     void init_decoder();
140     void execute_sheep(uint32 opcode);
141    
142     public:
143    
144 gbeauche 1.10 // Constructor
145     sheepshaver_cpu();
146 gbeauche 1.1
147 gbeauche 1.24 // CR & XER accessors
148 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
149     void set_cr(uint32 v) { cr().set(v); }
150 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
151     void set_xer(uint32 v) { xer().set(v); }
152 gbeauche 1.1
153 gbeauche 1.38 // Execute NATIVE_OP routine
154     void execute_native_op(uint32 native_op);
155    
156 gbeauche 1.26 // Execute EMUL_OP routine
157     void execute_emul_op(uint32 emul_op);
158    
159 gbeauche 1.1 // Execute 68k routine
160     void execute_68k(uint32 entry, M68kRegisters *r);
161    
162 gbeauche 1.2 // Execute ppc routine
163     void execute_ppc(uint32 entry);
164    
165 gbeauche 1.1 // Execute MacOS/PPC code
166     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167    
168 gbeauche 1.53 #if PPC_ENABLE_JIT
169 gbeauche 1.26 // Compile one instruction
170 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
171 gbeauche 1.53 #endif
172 gbeauche 1.1 // Resource manager thunk
173     void get_resource(uint32 old_get_resource);
174    
175     // Handle MacOS interrupt
176 gbeauche 1.4 void interrupt(uint32 entry);
177 gbeauche 1.2
178 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
179     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180 gbeauche 1.1 };
181    
182 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
183 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
184 gbeauche 1.10 {
185     init_decoder();
186     }
187    
188 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
189     {
190     static const instr_info_t sheep_ii_table[] = {
191     { "sheep",
192 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
193 gbeauche 1.1 NULL,
194 gbeauche 1.18 PPC_I(SHEEP),
195 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
196 gbeauche 1.1 }
197     };
198    
199     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
200     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
201    
202     for (int i = 0; i < ii_count; i++) {
203     const instr_info_t * ii = &sheep_ii_table[i];
204     init_decoder_entry(ii);
205     }
206     }
207    
208 gbeauche 1.2 /* NativeOp instruction format:
209 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
210     | 6 | |FN| OP | 2 |
211     +------------+-------------------------+--+-----------+------------+
212     0 5 |6 18 19 20 25 26 31
213 gbeauche 1.2 */
214    
215 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
216     typedef bit_field< 20, 25 > NATIVE_OP_field;
217 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
218    
219 gbeauche 1.26 // Execute EMUL_OP routine
220     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
221     {
222     M68kRegisters r68;
223     WriteMacInt32(XLM_68K_R25, gpr(25));
224     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
225     for (int i = 0; i < 8; i++)
226     r68.d[i] = gpr(8 + i);
227     for (int i = 0; i < 7; i++)
228     r68.a[i] = gpr(16 + i);
229     r68.a[7] = gpr(1);
230 gbeauche 1.62 uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8)
231 gbeauche 1.26 uint32 saved_xer = get_xer();
232     EmulOp(&r68, gpr(24), emul_op);
233     set_cr(saved_cr);
234     set_xer(saved_xer);
235     for (int i = 0; i < 8; i++)
236     gpr(8 + i) = r68.d[i];
237     for (int i = 0; i < 7; i++)
238     gpr(16 + i) = r68.a[i];
239     gpr(1) = r68.a[7];
240     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
241     }
242    
243 gbeauche 1.1 // Execute SheepShaver instruction
244     void sheepshaver_cpu::execute_sheep(uint32 opcode)
245     {
246     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
247     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
248    
249     switch (opcode & 0x3f) {
250     case 0: // EMUL_RETURN
251     QuitEmulator();
252     break;
253 gbeauche 1.8
254 gbeauche 1.1 case 1: // EXEC_RETURN
255 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
256 gbeauche 1.1 break;
257    
258     case 2: // EXEC_NATIVE
259 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
260 gbeauche 1.2 if (FN_field::test(opcode))
261     pc() = lr();
262     else
263     pc() += 4;
264 gbeauche 1.1 break;
265    
266 gbeauche 1.26 default: // EMUL_OP
267     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
268     pc() += 4;
269     break;
270     }
271     }
272    
273     // Compile one instruction
274 gbeauche 1.53 #if PPC_ENABLE_JIT
275 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
276 gbeauche 1.26 {
277     const instr_info_t *ii = cg_context.instr_info;
278     if (ii->mnemo != PPC_I(SHEEP))
279 gbeauche 1.38 return COMPILE_FAILURE;
280 gbeauche 1.26
281 gbeauche 1.38 int status = COMPILE_FAILURE;
282 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
283     uint32 opcode = cg_context.opcode;
284    
285     switch (opcode & 0x3f) {
286     case 0: // EMUL_RETURN
287     dg.gen_invoke(QuitEmulator);
288 gbeauche 1.38 status = COMPILE_CODE_OK;
289 gbeauche 1.26 break;
290    
291     case 1: // EXEC_RETURN
292     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
293 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
294     // get out of this block ASAP
295     dg.gen_exec_return();
296     status = COMPILE_EPILOGUE_OK;
297 gbeauche 1.26 break;
298    
299     case 2: { // EXEC_NATIVE
300     uint32 selector = NATIVE_OP_field::extract(opcode);
301     switch (selector) {
302 gbeauche 1.38 #if !PPC_REENTRANT_JIT
303     // Filter out functions that may invoke Execute68k() or
304     // CallMacOS(), this would break reentrancy as they could
305     // invalidate the translation cache and even overwrite
306     // continuation code when we are done with them.
307 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
308     dg.gen_invoke(DoPatchNameRegistry);
309 gbeauche 1.38 status = COMPILE_CODE_OK;
310 gbeauche 1.26 break;
311     case NATIVE_VIDEO_INSTALL_ACCEL:
312     dg.gen_invoke(VideoInstallAccel);
313 gbeauche 1.38 status = COMPILE_CODE_OK;
314 gbeauche 1.26 break;
315     case NATIVE_VIDEO_VBL:
316     dg.gen_invoke(VideoVBL);
317 gbeauche 1.38 status = COMPILE_CODE_OK;
318 gbeauche 1.26 break;
319     case NATIVE_GET_RESOURCE:
320     case NATIVE_GET_1_RESOURCE:
321     case NATIVE_GET_IND_RESOURCE:
322     case NATIVE_GET_1_IND_RESOURCE:
323     case NATIVE_R_GET_RESOURCE: {
324     static const uint32 get_resource_ptr[] = {
325     XLM_GET_RESOURCE,
326     XLM_GET_1_RESOURCE,
327     XLM_GET_IND_RESOURCE,
328     XLM_GET_1_IND_RESOURCE,
329     XLM_R_GET_RESOURCE
330     };
331     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
332     typedef void (*func_t)(dyngen_cpu_base, uint32);
333     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
334     dg.gen_invoke_CPU_im(func, old_get_resource);
335 gbeauche 1.38 status = COMPILE_CODE_OK;
336 gbeauche 1.26 break;
337     }
338     case NATIVE_CHECK_LOAD_INVOC:
339     dg.gen_load_T0_GPR(3);
340     dg.gen_load_T1_GPR(4);
341     dg.gen_se_16_32_T1();
342     dg.gen_load_T2_GPR(5);
343     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
344 gbeauche 1.38 status = COMPILE_CODE_OK;
345     break;
346     #endif
347 gbeauche 1.35 case NATIVE_BITBLT:
348     dg.gen_load_T0_GPR(3);
349     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
350 gbeauche 1.38 status = COMPILE_CODE_OK;
351 gbeauche 1.35 break;
352     case NATIVE_INVRECT:
353     dg.gen_load_T0_GPR(3);
354     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
355 gbeauche 1.38 status = COMPILE_CODE_OK;
356 gbeauche 1.35 break;
357     case NATIVE_FILLRECT:
358     dg.gen_load_T0_GPR(3);
359     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
360 gbeauche 1.38 status = COMPILE_CODE_OK;
361 gbeauche 1.26 break;
362     }
363 gbeauche 1.38 // Could we fully translate this NativeOp?
364 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
365     if (!FN_field::test(opcode))
366     cg_context.done_compile = false;
367     else {
368 gbeauche 1.26 dg.gen_load_A0_LR();
369     dg.gen_set_PC_A0();
370 gbeauche 1.42 cg_context.done_compile = true;
371 gbeauche 1.26 }
372 gbeauche 1.38 break;
373     }
374     #if PPC_REENTRANT_JIT
375     // Try to execute NativeOp trampoline
376 gbeauche 1.42 if (!FN_field::test(opcode))
377     dg.gen_set_PC_im(cg_context.pc + 4);
378     else {
379     dg.gen_load_A0_LR();
380     dg.gen_set_PC_A0();
381     }
382 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
383     dg.gen_jmp(native_op_trampoline);
384     cg_context.done_compile = true;
385     status = COMPILE_EPILOGUE_OK;
386     break;
387     #endif
388     // Invoke NativeOp handler
389 gbeauche 1.42 if (!FN_field::test(opcode)) {
390     typedef void (*func_t)(dyngen_cpu_base, uint32);
391     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
392     dg.gen_invoke_CPU_im(func, selector);
393     cg_context.done_compile = false;
394     status = COMPILE_CODE_OK;
395     }
396     // Otherwise, let it generate a call to execute_sheep() which
397     // will cause necessary updates to the program counter
398 gbeauche 1.26 break;
399     }
400    
401 gbeauche 1.1 default: { // EMUL_OP
402 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
403 gbeauche 1.38 #if PPC_REENTRANT_JIT
404     // Try to execute EmulOp trampoline
405     dg.gen_set_PC_im(cg_context.pc + 4);
406     dg.gen_mov_32_T0_im(emul_op);
407     dg.gen_jmp(emul_op_trampoline);
408     cg_context.done_compile = true;
409     status = COMPILE_EPILOGUE_OK;
410     break;
411     #endif
412     // Invoke EmulOp handler
413 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
414     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
415 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
416 gbeauche 1.26 cg_context.done_compile = false;
417 gbeauche 1.38 status = COMPILE_CODE_OK;
418 gbeauche 1.1 break;
419     }
420     }
421 gbeauche 1.38 return status;
422 gbeauche 1.53 }
423 gbeauche 1.26 #endif
424 gbeauche 1.1
425     // Handle MacOS interrupt
426 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
427 gbeauche 1.1 {
428 gbeauche 1.15 #if EMUL_TIME_STATS
429 gbeauche 1.44 ppc_interrupt_count++;
430 gbeauche 1.15 const clock_t interrupt_start = clock();
431     #endif
432    
433 gbeauche 1.2 // Save program counters and branch registers
434     uint32 saved_pc = pc();
435     uint32 saved_lr = lr();
436     uint32 saved_ctr= ctr();
437 gbeauche 1.4 uint32 saved_sp = gpr(1);
438 gbeauche 1.2
439 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
440 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
441 gbeauche 1.1
442     // Build trampoline to return from interrupt
443 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
444 gbeauche 1.1
445     // Prepare registers for nanokernel interrupt routine
446 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
447     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
448 gbeauche 1.1
449 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
450 gbeauche 1.2 assert(gpr(6) != 0);
451 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
452     WriteMacInt32(gpr(6) + 0x144, gpr(8));
453     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
454     WriteMacInt32(gpr(6) + 0x154, gpr(10));
455     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
456     WriteMacInt32(gpr(6) + 0x164, gpr(12));
457     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
458    
459     gpr(1) = KernelDataAddr;
460 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
461 gbeauche 1.1 gpr(8) = 0;
462 gbeauche 1.21 gpr(10) = trampoline.addr();
463     gpr(12) = trampoline.addr();
464 gbeauche 1.8 gpr(13) = get_cr();
465 gbeauche 1.1
466     // rlwimi. r7,r7,8,0,0
467     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
468     record_cr0(result);
469     gpr(7) = result;
470    
471     gpr(11) = 0xf072; // MSR (SRR1)
472 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
473 gbeauche 1.1
474     // Enter nanokernel
475     execute(entry);
476    
477 gbeauche 1.2 // Restore program counters and branch registers
478     pc() = saved_pc;
479     lr() = saved_lr;
480     ctr()= saved_ctr;
481 gbeauche 1.4 gpr(1) = saved_sp;
482 gbeauche 1.15
483     #if EMUL_TIME_STATS
484     interrupt_time += (clock() - interrupt_start);
485     #endif
486 gbeauche 1.1 }
487    
488     // Execute 68k routine
489     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
490     {
491 gbeauche 1.15 #if EMUL_TIME_STATS
492     exec68k_count++;
493     const clock_t exec68k_start = clock();
494     #endif
495    
496 gbeauche 1.1 #if SAFE_EXEC_68K
497     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
498     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
499     #endif
500    
501     // Save program counters and branch registers
502     uint32 saved_pc = pc();
503     uint32 saved_lr = lr();
504     uint32 saved_ctr= ctr();
505 gbeauche 1.8 uint32 saved_cr = get_cr();
506 gbeauche 1.1
507     // Create MacOS stack frame
508 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
509 gbeauche 1.1 uint32 sp = gpr(1);
510 gbeauche 1.6 gpr(1) -= 56;
511 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
512    
513     // Save PowerPC registers
514 gbeauche 1.6 uint32 saved_GPRs[19];
515     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
516 gbeauche 1.1 #if SAVE_FP_EXEC_68K
517 gbeauche 1.6 double saved_FPRs[18];
518     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
519 gbeauche 1.1 #endif
520    
521     // Setup registers for 68k emulator
522 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
523 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
524     gpr(8 + i) = r->d[i];
525     for (int i = 0; i < 7; i++) // a[0]..a[6]
526     gpr(16 + i) = r->a[i];
527     gpr(23) = 0;
528     gpr(24) = entry;
529     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
530     gpr(26) = 0;
531     gpr(28) = 0; // VBR
532 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
533     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
534 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
535    
536     // Push return address (points to EXEC_RETURN opcode) on stack
537     gpr(1) -= 4;
538     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
539    
540     // Rentering 68k emulator
541     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
542    
543     // Set r0 to 0 for 68k emulator
544     gpr(0) = 0;
545    
546     // Execute 68k opcode
547     uint32 opcode = ReadMacInt16(gpr(24));
548     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
549     gpr(29) += opcode * 8;
550     execute(gpr(29));
551    
552     // Save r25 (contains current 68k interrupt level)
553     WriteMacInt32(XLM_68K_R25, gpr(25));
554    
555     // Reentering EMUL_OP mode
556     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
557    
558     // Save 68k registers
559     for (int i = 0; i < 8; i++) // d[0]..d[7]
560     r->d[i] = gpr(8 + i);
561     for (int i = 0; i < 7; i++) // a[0]..a[6]
562     r->a[i] = gpr(16 + i);
563    
564     // Restore PowerPC registers
565 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
566 gbeauche 1.1 #if SAVE_FP_EXEC_68K
567 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
568 gbeauche 1.1 #endif
569    
570     // Cleanup stack
571 gbeauche 1.6 gpr(1) += 56;
572 gbeauche 1.1
573     // Restore program counters and branch registers
574     pc() = saved_pc;
575     lr() = saved_lr;
576     ctr()= saved_ctr;
577 gbeauche 1.8 set_cr(saved_cr);
578 gbeauche 1.15
579     #if EMUL_TIME_STATS
580     exec68k_time += (clock() - exec68k_start);
581     #endif
582 gbeauche 1.1 }
583    
584     // Call MacOS PPC code
585     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
586     {
587 gbeauche 1.15 #if EMUL_TIME_STATS
588     macos_exec_count++;
589     const clock_t macos_exec_start = clock();
590     #endif
591    
592 gbeauche 1.1 // Save program counters and branch registers
593     uint32 saved_pc = pc();
594     uint32 saved_lr = lr();
595     uint32 saved_ctr= ctr();
596    
597     // Build trampoline with EXEC_RETURN
598 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
599     lr() = trampoline.addr();
600 gbeauche 1.1
601     gpr(1) -= 64; // Create stack frame
602     uint32 proc = ReadMacInt32(tvect); // Get routine address
603     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
604    
605     // Save PowerPC registers
606     uint32 regs[8];
607     regs[0] = gpr(2);
608     for (int i = 0; i < nargs; i++)
609     regs[i + 1] = gpr(i + 3);
610    
611     // Prepare and call MacOS routine
612     gpr(2) = toc;
613     for (int i = 0; i < nargs; i++)
614     gpr(i + 3) = args[i];
615     execute(proc);
616     uint32 retval = gpr(3);
617    
618     // Restore PowerPC registers
619     for (int i = 0; i <= nargs; i++)
620     gpr(i + 2) = regs[i];
621    
622     // Cleanup stack
623     gpr(1) += 64;
624    
625     // Restore program counters and branch registers
626     pc() = saved_pc;
627     lr() = saved_lr;
628     ctr()= saved_ctr;
629    
630 gbeauche 1.15 #if EMUL_TIME_STATS
631     macos_exec_time += (clock() - macos_exec_start);
632     #endif
633    
634 gbeauche 1.1 return retval;
635     }
636    
637 gbeauche 1.2 // Execute ppc routine
638     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
639     {
640     // Save branch registers
641     uint32 saved_lr = lr();
642    
643 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
644     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
645     lr() = trampoline.addr();
646 gbeauche 1.2
647     execute(entry);
648    
649     // Restore branch registers
650     lr() = saved_lr;
651     }
652    
653 gbeauche 1.1 // Resource Manager thunk
654     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
655     {
656 gbeauche 1.2 uint32 type = gpr(3);
657     int16 id = gpr(4);
658    
659     // Create stack frame
660     gpr(1) -= 56;
661    
662     // Call old routine
663     execute_ppc(old_get_resource);
664    
665     // Call CheckLoad()
666 gbeauche 1.5 uint32 handle = gpr(3);
667 gbeauche 1.2 check_load_invoc(type, id, handle);
668 gbeauche 1.5 gpr(3) = handle;
669 gbeauche 1.2
670     // Cleanup stack
671     gpr(1) += 56;
672 gbeauche 1.1 }
673    
674    
675     /**
676     * SheepShaver CPU engine interface
677     **/
678    
679 gbeauche 1.41 // PowerPC CPU emulator
680     static sheepshaver_cpu *ppc_cpu = NULL;
681 gbeauche 1.1
682 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
683     {
684     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
685 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
686 gbeauche 1.2 }
687    
688 gbeauche 1.1 // Dump PPC registers
689     static void dump_registers(void)
690     {
691 gbeauche 1.41 ppc_cpu->dump_registers();
692 gbeauche 1.1 }
693    
694     // Dump log
695     static void dump_log(void)
696     {
697 gbeauche 1.41 ppc_cpu->dump_log();
698 gbeauche 1.1 }
699    
700     /*
701     * Initialize CPU emulation
702     */
703    
704 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
705 gbeauche 1.1 {
706     #if ENABLE_VOSF
707 gbeauche 1.3 // Handle screen fault
708     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
709     if (Screen_fault_handler(fault_address, fault_instruction))
710     return SIGSEGV_RETURN_SUCCESS;
711 gbeauche 1.1 #endif
712 gbeauche 1.3
713     const uintptr addr = (uintptr)fault_address;
714     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
715     // Ignore writes to ROM
716 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
717 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718    
719 gbeauche 1.17 // Get program counter of target CPU
720 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
721 gbeauche 1.17 const uint32 pc = cpu->pc();
722    
723     // Fault in Mac ROM or RAM?
724 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
725 gbeauche 1.17 if (mac_fault) {
726    
727     // "VM settings" during MacOS 8 installation
728     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
729     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
730    
731     // MacOS 8.5 installation
732     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
733     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
734    
735     // MacOS 8 serial drivers on startup
736     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
737     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
738    
739     // MacOS 8.1 serial drivers on startup
740     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
741     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
742     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
743     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
744 gbeauche 1.43
745     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
746     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
747     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
748     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
749     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
750 gbeauche 1.17
751 gbeauche 1.30 // Ignore writes to the zero page
752     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
753     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
754    
755 gbeauche 1.17 // Ignore all other faults, if requested
756     if (PrefsFindBool("ignoresegv"))
757     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
758     }
759 gbeauche 1.3 #else
760     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
761 gbeauche 1.1 #endif
762 gbeauche 1.3
763 gbeauche 1.60 fprintf(stderr, "SIGSEGV\n");
764     fprintf(stderr, " pc %p\n", fault_instruction);
765     fprintf(stderr, " ea %p\n", fault_address);
766 gbeauche 1.1 dump_registers();
767 gbeauche 1.41 ppc_cpu->dump_log();
768 gbeauche 1.1 enter_mon();
769     QuitEmulator();
770 gbeauche 1.3
771     return SIGSEGV_RETURN_FAILURE;
772 gbeauche 1.1 }
773    
774     void init_emul_ppc(void)
775     {
776 gbeauche 1.52 // Get pointer to KernelData in host address space
777     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
778    
779 gbeauche 1.1 // Initialize main CPU emulator
780 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
781     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
782     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
783 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
784    
785     #if ENABLE_MON
786     // Install "regs" command in cxmon
787     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
788     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
789     #endif
790 gbeauche 1.15
791     #if EMUL_TIME_STATS
792     emul_start_time = clock();
793     #endif
794 gbeauche 1.1 }
795    
796     /*
797 gbeauche 1.14 * Deinitialize emulation
798     */
799    
800     void exit_emul_ppc(void)
801     {
802 gbeauche 1.15 #if EMUL_TIME_STATS
803     clock_t emul_end_time = clock();
804    
805     printf("### Statistics for SheepShaver emulation parts\n");
806     const clock_t emul_time = emul_end_time - emul_start_time;
807     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
808     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
809     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
810 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
811     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
812 gbeauche 1.15
813     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
814     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
815     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
816     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
817     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
818     } while (0)
819    
820     PRINT_STATS("Execute68k[Trap] execution", exec68k);
821     PRINT_STATS("NativeOp execution", native_exec);
822     PRINT_STATS("MacOS routine execution", macos_exec);
823    
824     #undef PRINT_STATS
825     printf("\n");
826     #endif
827    
828 gbeauche 1.41 delete ppc_cpu;
829 gbeauche 1.14 }
830    
831 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
832     // Initialize EmulOp trampolines
833     void init_emul_op_trampolines(basic_dyngen & dg)
834     {
835     typedef void (*func_t)(dyngen_cpu_base, uint32);
836     func_t func;
837    
838     // EmulOp
839     emul_op_trampoline = dg.gen_start();
840     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
841     dg.gen_invoke_CPU_T0(func);
842     dg.gen_exec_return();
843     dg.gen_end();
844    
845     // NativeOp
846     native_op_trampoline = dg.gen_start();
847     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
848     dg.gen_invoke_CPU_T0(func);
849     dg.gen_exec_return();
850     dg.gen_end();
851    
852     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
853     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
854     }
855     #endif
856    
857 gbeauche 1.14 /*
858 gbeauche 1.1 * Emulation loop
859     */
860    
861     void emul_ppc(uint32 entry)
862     {
863 gbeauche 1.24 #if 0
864 gbeauche 1.41 ppc_cpu->start_log();
865 gbeauche 1.10 #endif
866     // start emulation loop and enable code translation or caching
867 gbeauche 1.41 ppc_cpu->execute(entry);
868 gbeauche 1.1 }
869    
870     /*
871     * Handle PowerPC interrupt
872     */
873    
874 gbeauche 1.2 void TriggerInterrupt(void)
875     {
876 gbeauche 1.64 idle_resume();
877 gbeauche 1.2 #if 0
878     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
879     #else
880 gbeauche 1.10 // Trigger interrupt to main cpu only
881 gbeauche 1.41 if (ppc_cpu)
882     ppc_cpu->trigger_interrupt();
883 gbeauche 1.2 #endif
884     }
885    
886 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
887 gbeauche 1.1 {
888 gbeauche 1.47 #ifdef USE_SDL_VIDEO
889     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
890     SDL_PumpEvents();
891     #endif
892    
893 gbeauche 1.1 // Do nothing if interrupts are disabled
894 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
895 gbeauche 1.1 return;
896    
897 gbeauche 1.63 // Update interrupt count
898 gbeauche 1.44 #if EMUL_TIME_STATS
899     interrupt_count++;
900     #endif
901 gbeauche 1.40
902 gbeauche 1.1 // Interrupt action depends on current run mode
903     switch (ReadMacInt32(XLM_RUN_MODE)) {
904     case MODE_68K:
905     // 68k emulator active, trigger 68k interrupt level 1
906     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
907 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
908 gbeauche 1.1 break;
909    
910     #if INTERRUPTS_IN_NATIVE_MODE
911     case MODE_NATIVE:
912     // 68k emulator inactive, in nanokernel?
913 gbeauche 1.63 if (r->gpr[1] != KernelDataAddr) {
914 gbeauche 1.39
915 gbeauche 1.1 // Prepare for 68k interrupt level 1
916     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
917     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
918     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
919     | tswap32(kernel_data->v[0x674 >> 2]));
920    
921     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
922 gbeauche 1.2 DisableInterrupt();
923 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
924 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
925 gbeauche 1.1 else
926 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
927 gbeauche 1.1 }
928     break;
929     #endif
930    
931     #if INTERRUPTS_IN_EMUL_OP_MODE
932     case MODE_EMUL_OP:
933     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
934     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
935 gbeauche 1.44 #if EMUL_TIME_STATS
936     const clock_t interrupt_start = clock();
937     #endif
938 gbeauche 1.1 #if 1
939     // Execute full 68k interrupt routine
940     M68kRegisters r;
941     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
942     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
943 gbeauche 1.53 static const uint8 proc_template[] = {
944 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
945     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
946     0x40, 0xe7, // move sr,-(sp) (saved SR)
947     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
948     0x4e, 0xd0, // jmp (a0)
949     M68K_RTS >> 8, M68K_RTS & 0xff // @1
950 gbeauche 1.1 };
951 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
952     Execute68k(proc, &r);
953 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
954     #else
955     // Only update cursor
956     if (HasMacStarted()) {
957     if (InterruptFlags & INTFLAG_VIA) {
958     ClearInterruptFlag(INTFLAG_VIA);
959     ADBInterrupt();
960 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
961 gbeauche 1.1 }
962     }
963     #endif
964 gbeauche 1.44 #if EMUL_TIME_STATS
965     interrupt_time += (clock() - interrupt_start);
966     #endif
967 gbeauche 1.1 }
968     break;
969     #endif
970     }
971     }
972    
973     static void get_resource(void);
974     static void get_1_resource(void);
975     static void get_ind_resource(void);
976     static void get_1_ind_resource(void);
977     static void r_get_resource(void);
978    
979 gbeauche 1.38 // Execute NATIVE_OP routine
980     void sheepshaver_cpu::execute_native_op(uint32 selector)
981 gbeauche 1.1 {
982 gbeauche 1.15 #if EMUL_TIME_STATS
983     native_exec_count++;
984     const clock_t native_exec_start = clock();
985     #endif
986    
987 gbeauche 1.1 switch (selector) {
988     case NATIVE_PATCH_NAME_REGISTRY:
989     DoPatchNameRegistry();
990     break;
991     case NATIVE_VIDEO_INSTALL_ACCEL:
992     VideoInstallAccel();
993     break;
994     case NATIVE_VIDEO_VBL:
995     VideoVBL();
996     break;
997     case NATIVE_VIDEO_DO_DRIVER_IO:
998 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
999 gbeauche 1.1 break;
1000 gbeauche 1.65 case NATIVE_ETHER_AO_GET_HWADDR:
1001     AO_get_ethernet_address(gpr(3));
1002     break;
1003     case NATIVE_ETHER_AO_ADD_MULTI:
1004     AO_enable_multicast(gpr(3));
1005     break;
1006     case NATIVE_ETHER_AO_DEL_MULTI:
1007     AO_disable_multicast(gpr(3));
1008     break;
1009     case NATIVE_ETHER_AO_SEND_PACKET:
1010     AO_transmit_packet(gpr(3));
1011     break;
1012 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1013     EtherIRQ();
1014     break;
1015     case NATIVE_ETHER_INIT:
1016 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1017 gbeauche 1.16 break;
1018     case NATIVE_ETHER_TERM:
1019     TerminateStreamModule();
1020     break;
1021     case NATIVE_ETHER_OPEN:
1022 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1023 gbeauche 1.1 break;
1024 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1025 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1026 gbeauche 1.1 break;
1027 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1028 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1029 gbeauche 1.1 break;
1030 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1031 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1032 gbeauche 1.1 break;
1033 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1034 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1035 gbeauche 1.32 break;
1036     case NATIVE_BITBLT_HOOK:
1037 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1038 gbeauche 1.32 break;
1039     case NATIVE_BITBLT:
1040 gbeauche 1.38 NQD_bitblt(gpr(3));
1041 gbeauche 1.32 break;
1042     case NATIVE_FILLRECT_HOOK:
1043 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1044 gbeauche 1.32 break;
1045     case NATIVE_INVRECT:
1046 gbeauche 1.38 NQD_invrect(gpr(3));
1047 gbeauche 1.32 break;
1048 gbeauche 1.33 case NATIVE_FILLRECT:
1049 gbeauche 1.38 NQD_fillrect(gpr(3));
1050 gbeauche 1.32 break;
1051 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1052     case NATIVE_SERIAL_OPEN:
1053     case NATIVE_SERIAL_PRIME_IN:
1054     case NATIVE_SERIAL_PRIME_OUT:
1055     case NATIVE_SERIAL_CONTROL:
1056     case NATIVE_SERIAL_STATUS:
1057     case NATIVE_SERIAL_CLOSE: {
1058     typedef int16 (*SerialCallback)(uint32, uint32);
1059     static const SerialCallback serial_callbacks[] = {
1060     SerialNothing,
1061     SerialOpen,
1062     SerialPrimeIn,
1063     SerialPrimeOut,
1064     SerialControl,
1065     SerialStatus,
1066     SerialClose
1067     };
1068 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1069 gbeauche 1.16 break;
1070     }
1071     case NATIVE_GET_RESOURCE:
1072     case NATIVE_GET_1_RESOURCE:
1073     case NATIVE_GET_IND_RESOURCE:
1074     case NATIVE_GET_1_IND_RESOURCE:
1075     case NATIVE_R_GET_RESOURCE: {
1076     typedef void (*GetResourceCallback)(void);
1077     static const GetResourceCallback get_resource_callbacks[] = {
1078 gbeauche 1.38 ::get_resource,
1079     ::get_1_resource,
1080     ::get_ind_resource,
1081     ::get_1_ind_resource,
1082     ::r_get_resource
1083 gbeauche 1.16 };
1084     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1085 gbeauche 1.1 break;
1086     }
1087 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1088 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1089 gbeauche 1.26 break;
1090     case NATIVE_CHECK_LOAD_INVOC:
1091 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1092 gbeauche 1.2 break;
1093 gbeauche 1.1 default:
1094     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1095     QuitEmulator();
1096     break;
1097     }
1098 gbeauche 1.15
1099     #if EMUL_TIME_STATS
1100     native_exec_time += (clock() - native_exec_start);
1101     #endif
1102 gbeauche 1.1 }
1103    
1104     /*
1105     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1106     * This must only be called by the emul_thread when in EMUL_OP mode
1107     * r->a[7] is unused, the routine runs on the caller's stack
1108     */
1109    
1110     void Execute68k(uint32 pc, M68kRegisters *r)
1111     {
1112 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1113 gbeauche 1.1 }
1114    
1115     /*
1116     * Execute 68k A-Trap from EMUL_OP routine
1117     * r->a[7] is unused, the routine runs on the caller's stack
1118     */
1119    
1120     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1121     {
1122 gbeauche 1.21 SheepVar proc_var(4);
1123     uint32 proc = proc_var.addr();
1124     WriteMacInt16(proc, trap);
1125     WriteMacInt16(proc + 2, M68K_RTS);
1126     Execute68k(proc, r);
1127 gbeauche 1.1 }
1128    
1129     /*
1130     * Call MacOS PPC code
1131     */
1132    
1133     uint32 call_macos(uint32 tvect)
1134     {
1135 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1136 gbeauche 1.1 }
1137    
1138     uint32 call_macos1(uint32 tvect, uint32 arg1)
1139     {
1140     const uint32 args[] = { arg1 };
1141 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1142 gbeauche 1.1 }
1143    
1144     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1145     {
1146     const uint32 args[] = { arg1, arg2 };
1147 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1148 gbeauche 1.1 }
1149    
1150     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1151     {
1152     const uint32 args[] = { arg1, arg2, arg3 };
1153 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1154 gbeauche 1.1 }
1155    
1156     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1157     {
1158     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1159 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1160 gbeauche 1.1 }
1161    
1162     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1163     {
1164     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1165 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1166 gbeauche 1.1 }
1167    
1168     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1169     {
1170     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1171 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1172 gbeauche 1.1 }
1173    
1174     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1175     {
1176     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1177 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1178 gbeauche 1.1 }
1179    
1180     /*
1181     * Resource Manager thunks
1182     */
1183    
1184     void get_resource(void)
1185     {
1186 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1187 gbeauche 1.1 }
1188    
1189     void get_1_resource(void)
1190     {
1191 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1192 gbeauche 1.1 }
1193    
1194     void get_ind_resource(void)
1195     {
1196 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1197 gbeauche 1.1 }
1198    
1199     void get_1_ind_resource(void)
1200     {
1201 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1202 gbeauche 1.1 }
1203    
1204     void r_get_resource(void)
1205     {
1206 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1207 gbeauche 1.1 }