ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.58
Committed: 2005-03-05T15:25:10Z (19 years, 8 months ago) by gbeauche
Branch: MAIN
Changes since 1.57: +4 -96 lines
Log Message:
Preserve all necessary registers on interrupt, thus also permitting nested
interrupts to occur. SheepShaver locks should now be reduced.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 gbeauche 1.57 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.53 #ifdef HAVE_MALLOC_H
46     #include <malloc.h>
47     #endif
48 gbeauche 1.1
49 gbeauche 1.47 #ifdef USE_SDL_VIDEO
50     #include <SDL_events.h>
51     #endif
52    
53 gbeauche 1.1 #if ENABLE_MON
54     #include "mon.h"
55     #include "mon_disass.h"
56     #endif
57    
58 gbeauche 1.10 #define DEBUG 0
59 gbeauche 1.1 #include "debug.h"
60    
61 gbeauche 1.15 // Emulation time statistics
62 gbeauche 1.44 #ifndef EMUL_TIME_STATS
63     #define EMUL_TIME_STATS 0
64     #endif
65 gbeauche 1.15
66     #if EMUL_TIME_STATS
67     static clock_t emul_start_time;
68 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
69 gbeauche 1.15 static clock_t interrupt_time = 0;
70     static uint32 exec68k_count = 0;
71     static clock_t exec68k_time = 0;
72     static uint32 native_exec_count = 0;
73     static clock_t native_exec_time = 0;
74     static uint32 macos_exec_count = 0;
75     static clock_t macos_exec_time = 0;
76     #endif
77    
78 gbeauche 1.1 static void enter_mon(void)
79     {
80     // Start up mon in real-mode
81     #if ENABLE_MON
82     char *arg[4] = {"mon", "-m", "-r", NULL};
83     mon(3, arg);
84     #endif
85     }
86    
87 gbeauche 1.23 // From main_*.cpp
88     extern uintptr SignalStackBase();
89    
90 gbeauche 1.26 // From rsrc_patches.cpp
91     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
92    
93 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
94     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
95    
96 gbeauche 1.1 // Enable Execute68k() safety checks?
97     #define SAFE_EXEC_68K 1
98    
99     // Save FP state in Execute68k()?
100     #define SAVE_FP_EXEC_68K 1
101    
102     // Interrupts in EMUL_OP mode?
103     #define INTERRUPTS_IN_EMUL_OP_MODE 1
104    
105     // Interrupts in native mode?
106     #define INTERRUPTS_IN_NATIVE_MODE 1
107    
108     // Pointer to Kernel Data
109 gbeauche 1.52 static KernelData * kernel_data;
110 gbeauche 1.1
111 gbeauche 1.17 // SIGSEGV handler
112 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 gbeauche 1.17
114 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115     // Special trampolines for EmulOp and NativeOp
116     static uint8 *emul_op_trampoline;
117     static uint8 *native_op_trampoline;
118     #endif
119    
120 gbeauche 1.20 // JIT Compiler enabled?
121     static inline bool enable_jit_p()
122     {
123     return PrefsFindBool("jit");
124     }
125    
126 gbeauche 1.1
127     /**
128     * PowerPC emulator glue with special 'sheep' opcodes
129     **/
130    
131 gbeauche 1.18 enum {
132     PPC_I(SHEEP) = PPC_I(MAX),
133     PPC_I(SHEEP_MAX)
134     };
135    
136 gbeauche 1.1 class sheepshaver_cpu
137     : public powerpc_cpu
138     {
139     void init_decoder();
140     void execute_sheep(uint32 opcode);
141    
142     public:
143    
144 gbeauche 1.10 // Constructor
145     sheepshaver_cpu();
146 gbeauche 1.1
147 gbeauche 1.24 // CR & XER accessors
148 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
149     void set_cr(uint32 v) { cr().set(v); }
150 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
151     void set_xer(uint32 v) { xer().set(v); }
152 gbeauche 1.1
153 gbeauche 1.38 // Execute NATIVE_OP routine
154     void execute_native_op(uint32 native_op);
155    
156 gbeauche 1.26 // Execute EMUL_OP routine
157     void execute_emul_op(uint32 emul_op);
158    
159 gbeauche 1.1 // Execute 68k routine
160     void execute_68k(uint32 entry, M68kRegisters *r);
161    
162 gbeauche 1.2 // Execute ppc routine
163     void execute_ppc(uint32 entry);
164    
165 gbeauche 1.1 // Execute MacOS/PPC code
166     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
167    
168 gbeauche 1.53 #if PPC_ENABLE_JIT
169 gbeauche 1.26 // Compile one instruction
170 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
171 gbeauche 1.53 #endif
172 gbeauche 1.1 // Resource manager thunk
173     void get_resource(uint32 old_get_resource);
174    
175     // Handle MacOS interrupt
176 gbeauche 1.4 void interrupt(uint32 entry);
177 gbeauche 1.2
178 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
179     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
180 gbeauche 1.54
181     // Memory allocator returning areas aligned on 16-byte boundaries
182     void *operator new(size_t size);
183     void operator delete(void *p);
184 gbeauche 1.1 };
185    
186 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
187 gbeauche 1.54 void *sheepshaver_cpu::operator new(size_t size)
188 gbeauche 1.29 {
189     void *p;
190    
191 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
192 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
193     throw std::bad_alloc();
194 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
195     p = memalign(16, size);
196     #elif defined(HAVE_VALLOC)
197     p = valloc(size); // page-aligned!
198     #else
199     /* XXX: handle padding ourselves */
200     p = malloc(size);
201     #endif
202 gbeauche 1.29
203     return p;
204     }
205    
206 gbeauche 1.54 void sheepshaver_cpu::operator delete(void *p)
207 gbeauche 1.29 {
208 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
209     #if defined(__GLIBC__)
210     // this is known to work only with GNU libc
211     free(p);
212     #endif
213     #else
214 gbeauche 1.29 free(p);
215 gbeauche 1.31 #endif
216 gbeauche 1.29 }
217 gbeauche 1.1
218 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
219 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
220 gbeauche 1.10 {
221     init_decoder();
222     }
223    
224 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
225     {
226     static const instr_info_t sheep_ii_table[] = {
227     { "sheep",
228 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
229 gbeauche 1.1 NULL,
230 gbeauche 1.18 PPC_I(SHEEP),
231 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
232 gbeauche 1.1 }
233     };
234    
235     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
236     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
237    
238     for (int i = 0; i < ii_count; i++) {
239     const instr_info_t * ii = &sheep_ii_table[i];
240     init_decoder_entry(ii);
241     }
242     }
243    
244 gbeauche 1.2 /* NativeOp instruction format:
245 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
246     | 6 | |FN| OP | 2 |
247     +------------+-------------------------+--+-----------+------------+
248     0 5 |6 18 19 20 25 26 31
249 gbeauche 1.2 */
250    
251 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
252     typedef bit_field< 20, 25 > NATIVE_OP_field;
253 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
254    
255 gbeauche 1.26 // Execute EMUL_OP routine
256     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
257     {
258     M68kRegisters r68;
259     WriteMacInt32(XLM_68K_R25, gpr(25));
260     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
261     for (int i = 0; i < 8; i++)
262     r68.d[i] = gpr(8 + i);
263     for (int i = 0; i < 7; i++)
264     r68.a[i] = gpr(16 + i);
265     r68.a[7] = gpr(1);
266     uint32 saved_cr = get_cr() & CR_field<2>::mask();
267     uint32 saved_xer = get_xer();
268     EmulOp(&r68, gpr(24), emul_op);
269     set_cr(saved_cr);
270     set_xer(saved_xer);
271     for (int i = 0; i < 8; i++)
272     gpr(8 + i) = r68.d[i];
273     for (int i = 0; i < 7; i++)
274     gpr(16 + i) = r68.a[i];
275     gpr(1) = r68.a[7];
276     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
277     }
278    
279 gbeauche 1.1 // Execute SheepShaver instruction
280     void sheepshaver_cpu::execute_sheep(uint32 opcode)
281     {
282     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
283     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
284    
285     switch (opcode & 0x3f) {
286     case 0: // EMUL_RETURN
287     QuitEmulator();
288     break;
289 gbeauche 1.8
290 gbeauche 1.1 case 1: // EXEC_RETURN
291 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
292 gbeauche 1.1 break;
293    
294     case 2: // EXEC_NATIVE
295 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
296 gbeauche 1.2 if (FN_field::test(opcode))
297     pc() = lr();
298     else
299     pc() += 4;
300 gbeauche 1.1 break;
301    
302 gbeauche 1.26 default: // EMUL_OP
303     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
304     pc() += 4;
305     break;
306     }
307     }
308    
309     // Compile one instruction
310 gbeauche 1.53 #if PPC_ENABLE_JIT
311 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
312 gbeauche 1.26 {
313     const instr_info_t *ii = cg_context.instr_info;
314     if (ii->mnemo != PPC_I(SHEEP))
315 gbeauche 1.38 return COMPILE_FAILURE;
316 gbeauche 1.26
317 gbeauche 1.38 int status = COMPILE_FAILURE;
318 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
319     uint32 opcode = cg_context.opcode;
320    
321     switch (opcode & 0x3f) {
322     case 0: // EMUL_RETURN
323     dg.gen_invoke(QuitEmulator);
324 gbeauche 1.38 status = COMPILE_CODE_OK;
325 gbeauche 1.26 break;
326    
327     case 1: // EXEC_RETURN
328     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
329 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
330     // get out of this block ASAP
331     dg.gen_exec_return();
332     status = COMPILE_EPILOGUE_OK;
333 gbeauche 1.26 break;
334    
335     case 2: { // EXEC_NATIVE
336     uint32 selector = NATIVE_OP_field::extract(opcode);
337     switch (selector) {
338 gbeauche 1.38 #if !PPC_REENTRANT_JIT
339     // Filter out functions that may invoke Execute68k() or
340     // CallMacOS(), this would break reentrancy as they could
341     // invalidate the translation cache and even overwrite
342     // continuation code when we are done with them.
343 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
344     dg.gen_invoke(DoPatchNameRegistry);
345 gbeauche 1.38 status = COMPILE_CODE_OK;
346 gbeauche 1.26 break;
347     case NATIVE_VIDEO_INSTALL_ACCEL:
348     dg.gen_invoke(VideoInstallAccel);
349 gbeauche 1.38 status = COMPILE_CODE_OK;
350 gbeauche 1.26 break;
351     case NATIVE_VIDEO_VBL:
352     dg.gen_invoke(VideoVBL);
353 gbeauche 1.38 status = COMPILE_CODE_OK;
354 gbeauche 1.26 break;
355     case NATIVE_GET_RESOURCE:
356     case NATIVE_GET_1_RESOURCE:
357     case NATIVE_GET_IND_RESOURCE:
358     case NATIVE_GET_1_IND_RESOURCE:
359     case NATIVE_R_GET_RESOURCE: {
360     static const uint32 get_resource_ptr[] = {
361     XLM_GET_RESOURCE,
362     XLM_GET_1_RESOURCE,
363     XLM_GET_IND_RESOURCE,
364     XLM_GET_1_IND_RESOURCE,
365     XLM_R_GET_RESOURCE
366     };
367     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
368     typedef void (*func_t)(dyngen_cpu_base, uint32);
369     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
370     dg.gen_invoke_CPU_im(func, old_get_resource);
371 gbeauche 1.38 status = COMPILE_CODE_OK;
372 gbeauche 1.26 break;
373     }
374     case NATIVE_CHECK_LOAD_INVOC:
375     dg.gen_load_T0_GPR(3);
376     dg.gen_load_T1_GPR(4);
377     dg.gen_se_16_32_T1();
378     dg.gen_load_T2_GPR(5);
379     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
380 gbeauche 1.38 status = COMPILE_CODE_OK;
381     break;
382     #endif
383 gbeauche 1.35 case NATIVE_BITBLT:
384     dg.gen_load_T0_GPR(3);
385     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
386 gbeauche 1.38 status = COMPILE_CODE_OK;
387 gbeauche 1.35 break;
388     case NATIVE_INVRECT:
389     dg.gen_load_T0_GPR(3);
390     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
391 gbeauche 1.38 status = COMPILE_CODE_OK;
392 gbeauche 1.35 break;
393     case NATIVE_FILLRECT:
394     dg.gen_load_T0_GPR(3);
395     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
396 gbeauche 1.38 status = COMPILE_CODE_OK;
397 gbeauche 1.26 break;
398     }
399 gbeauche 1.38 // Could we fully translate this NativeOp?
400 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
401     if (!FN_field::test(opcode))
402     cg_context.done_compile = false;
403     else {
404 gbeauche 1.26 dg.gen_load_A0_LR();
405     dg.gen_set_PC_A0();
406 gbeauche 1.42 cg_context.done_compile = true;
407 gbeauche 1.26 }
408 gbeauche 1.38 break;
409     }
410     #if PPC_REENTRANT_JIT
411     // Try to execute NativeOp trampoline
412 gbeauche 1.42 if (!FN_field::test(opcode))
413     dg.gen_set_PC_im(cg_context.pc + 4);
414     else {
415     dg.gen_load_A0_LR();
416     dg.gen_set_PC_A0();
417     }
418 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
419     dg.gen_jmp(native_op_trampoline);
420     cg_context.done_compile = true;
421     status = COMPILE_EPILOGUE_OK;
422     break;
423     #endif
424     // Invoke NativeOp handler
425 gbeauche 1.42 if (!FN_field::test(opcode)) {
426     typedef void (*func_t)(dyngen_cpu_base, uint32);
427     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
428     dg.gen_invoke_CPU_im(func, selector);
429     cg_context.done_compile = false;
430     status = COMPILE_CODE_OK;
431     }
432     // Otherwise, let it generate a call to execute_sheep() which
433     // will cause necessary updates to the program counter
434 gbeauche 1.26 break;
435     }
436    
437 gbeauche 1.1 default: { // EMUL_OP
438 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
439 gbeauche 1.38 #if PPC_REENTRANT_JIT
440     // Try to execute EmulOp trampoline
441     dg.gen_set_PC_im(cg_context.pc + 4);
442     dg.gen_mov_32_T0_im(emul_op);
443     dg.gen_jmp(emul_op_trampoline);
444     cg_context.done_compile = true;
445     status = COMPILE_EPILOGUE_OK;
446     break;
447     #endif
448     // Invoke EmulOp handler
449 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
450     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
451 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
452 gbeauche 1.26 cg_context.done_compile = false;
453 gbeauche 1.38 status = COMPILE_CODE_OK;
454 gbeauche 1.1 break;
455     }
456     }
457 gbeauche 1.38 return status;
458 gbeauche 1.53 }
459 gbeauche 1.26 #endif
460 gbeauche 1.1
461     // Handle MacOS interrupt
462 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
463 gbeauche 1.1 {
464 gbeauche 1.15 #if EMUL_TIME_STATS
465 gbeauche 1.44 ppc_interrupt_count++;
466 gbeauche 1.15 const clock_t interrupt_start = clock();
467     #endif
468    
469 gbeauche 1.2 // Save program counters and branch registers
470     uint32 saved_pc = pc();
471     uint32 saved_lr = lr();
472     uint32 saved_ctr= ctr();
473 gbeauche 1.4 uint32 saved_sp = gpr(1);
474 gbeauche 1.2
475 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
476 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
477 gbeauche 1.1
478     // Build trampoline to return from interrupt
479 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
480 gbeauche 1.1
481     // Prepare registers for nanokernel interrupt routine
482 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
483     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
484 gbeauche 1.1
485 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
486 gbeauche 1.2 assert(gpr(6) != 0);
487 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
488     WriteMacInt32(gpr(6) + 0x144, gpr(8));
489     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
490     WriteMacInt32(gpr(6) + 0x154, gpr(10));
491     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
492     WriteMacInt32(gpr(6) + 0x164, gpr(12));
493     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
494    
495     gpr(1) = KernelDataAddr;
496 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
497 gbeauche 1.1 gpr(8) = 0;
498 gbeauche 1.21 gpr(10) = trampoline.addr();
499     gpr(12) = trampoline.addr();
500 gbeauche 1.8 gpr(13) = get_cr();
501 gbeauche 1.1
502     // rlwimi. r7,r7,8,0,0
503     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
504     record_cr0(result);
505     gpr(7) = result;
506    
507     gpr(11) = 0xf072; // MSR (SRR1)
508 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
509 gbeauche 1.1
510     // Enter nanokernel
511     execute(entry);
512    
513 gbeauche 1.2 // Restore program counters and branch registers
514     pc() = saved_pc;
515     lr() = saved_lr;
516     ctr()= saved_ctr;
517 gbeauche 1.4 gpr(1) = saved_sp;
518 gbeauche 1.15
519     #if EMUL_TIME_STATS
520     interrupt_time += (clock() - interrupt_start);
521     #endif
522 gbeauche 1.1 }
523    
524     // Execute 68k routine
525     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
526     {
527 gbeauche 1.15 #if EMUL_TIME_STATS
528     exec68k_count++;
529     const clock_t exec68k_start = clock();
530     #endif
531    
532 gbeauche 1.1 #if SAFE_EXEC_68K
533     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
534     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
535     #endif
536    
537     // Save program counters and branch registers
538     uint32 saved_pc = pc();
539     uint32 saved_lr = lr();
540     uint32 saved_ctr= ctr();
541 gbeauche 1.8 uint32 saved_cr = get_cr();
542 gbeauche 1.1
543     // Create MacOS stack frame
544 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
545 gbeauche 1.1 uint32 sp = gpr(1);
546 gbeauche 1.6 gpr(1) -= 56;
547 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
548    
549     // Save PowerPC registers
550 gbeauche 1.6 uint32 saved_GPRs[19];
551     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
552 gbeauche 1.1 #if SAVE_FP_EXEC_68K
553 gbeauche 1.6 double saved_FPRs[18];
554     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
555 gbeauche 1.1 #endif
556    
557     // Setup registers for 68k emulator
558 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
559 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
560     gpr(8 + i) = r->d[i];
561     for (int i = 0; i < 7; i++) // a[0]..a[6]
562     gpr(16 + i) = r->a[i];
563     gpr(23) = 0;
564     gpr(24) = entry;
565     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
566     gpr(26) = 0;
567     gpr(28) = 0; // VBR
568 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
569     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
570 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
571    
572     // Push return address (points to EXEC_RETURN opcode) on stack
573     gpr(1) -= 4;
574     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
575    
576     // Rentering 68k emulator
577     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
578    
579     // Set r0 to 0 for 68k emulator
580     gpr(0) = 0;
581    
582     // Execute 68k opcode
583     uint32 opcode = ReadMacInt16(gpr(24));
584     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
585     gpr(29) += opcode * 8;
586     execute(gpr(29));
587    
588     // Save r25 (contains current 68k interrupt level)
589     WriteMacInt32(XLM_68K_R25, gpr(25));
590    
591     // Reentering EMUL_OP mode
592     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
593    
594     // Save 68k registers
595     for (int i = 0; i < 8; i++) // d[0]..d[7]
596     r->d[i] = gpr(8 + i);
597     for (int i = 0; i < 7; i++) // a[0]..a[6]
598     r->a[i] = gpr(16 + i);
599    
600     // Restore PowerPC registers
601 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
602 gbeauche 1.1 #if SAVE_FP_EXEC_68K
603 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
604 gbeauche 1.1 #endif
605    
606     // Cleanup stack
607 gbeauche 1.6 gpr(1) += 56;
608 gbeauche 1.1
609     // Restore program counters and branch registers
610     pc() = saved_pc;
611     lr() = saved_lr;
612     ctr()= saved_ctr;
613 gbeauche 1.8 set_cr(saved_cr);
614 gbeauche 1.15
615     #if EMUL_TIME_STATS
616     exec68k_time += (clock() - exec68k_start);
617     #endif
618 gbeauche 1.1 }
619    
620     // Call MacOS PPC code
621     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
622     {
623 gbeauche 1.15 #if EMUL_TIME_STATS
624     macos_exec_count++;
625     const clock_t macos_exec_start = clock();
626     #endif
627    
628 gbeauche 1.1 // Save program counters and branch registers
629     uint32 saved_pc = pc();
630     uint32 saved_lr = lr();
631     uint32 saved_ctr= ctr();
632    
633     // Build trampoline with EXEC_RETURN
634 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
635     lr() = trampoline.addr();
636 gbeauche 1.1
637     gpr(1) -= 64; // Create stack frame
638     uint32 proc = ReadMacInt32(tvect); // Get routine address
639     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
640    
641     // Save PowerPC registers
642     uint32 regs[8];
643     regs[0] = gpr(2);
644     for (int i = 0; i < nargs; i++)
645     regs[i + 1] = gpr(i + 3);
646    
647     // Prepare and call MacOS routine
648     gpr(2) = toc;
649     for (int i = 0; i < nargs; i++)
650     gpr(i + 3) = args[i];
651     execute(proc);
652     uint32 retval = gpr(3);
653    
654     // Restore PowerPC registers
655     for (int i = 0; i <= nargs; i++)
656     gpr(i + 2) = regs[i];
657    
658     // Cleanup stack
659     gpr(1) += 64;
660    
661     // Restore program counters and branch registers
662     pc() = saved_pc;
663     lr() = saved_lr;
664     ctr()= saved_ctr;
665    
666 gbeauche 1.15 #if EMUL_TIME_STATS
667     macos_exec_time += (clock() - macos_exec_start);
668     #endif
669    
670 gbeauche 1.1 return retval;
671     }
672    
673 gbeauche 1.2 // Execute ppc routine
674     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
675     {
676     // Save branch registers
677     uint32 saved_lr = lr();
678    
679 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
680     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
681     lr() = trampoline.addr();
682 gbeauche 1.2
683     execute(entry);
684    
685     // Restore branch registers
686     lr() = saved_lr;
687     }
688    
689 gbeauche 1.1 // Resource Manager thunk
690     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
691     {
692 gbeauche 1.2 uint32 type = gpr(3);
693     int16 id = gpr(4);
694    
695     // Create stack frame
696     gpr(1) -= 56;
697    
698     // Call old routine
699     execute_ppc(old_get_resource);
700    
701     // Call CheckLoad()
702 gbeauche 1.5 uint32 handle = gpr(3);
703 gbeauche 1.2 check_load_invoc(type, id, handle);
704 gbeauche 1.5 gpr(3) = handle;
705 gbeauche 1.2
706     // Cleanup stack
707     gpr(1) += 56;
708 gbeauche 1.1 }
709    
710    
711     /**
712     * SheepShaver CPU engine interface
713     **/
714    
715 gbeauche 1.41 // PowerPC CPU emulator
716     static sheepshaver_cpu *ppc_cpu = NULL;
717 gbeauche 1.1
718 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
719     {
720     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
721 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
722 gbeauche 1.2 }
723    
724 gbeauche 1.1 // Dump PPC registers
725     static void dump_registers(void)
726     {
727 gbeauche 1.41 ppc_cpu->dump_registers();
728 gbeauche 1.1 }
729    
730     // Dump log
731     static void dump_log(void)
732     {
733 gbeauche 1.41 ppc_cpu->dump_log();
734 gbeauche 1.1 }
735    
736     /*
737     * Initialize CPU emulation
738     */
739    
740 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
741 gbeauche 1.1 {
742     #if ENABLE_VOSF
743 gbeauche 1.3 // Handle screen fault
744     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
745     if (Screen_fault_handler(fault_address, fault_instruction))
746     return SIGSEGV_RETURN_SUCCESS;
747 gbeauche 1.1 #endif
748 gbeauche 1.3
749     const uintptr addr = (uintptr)fault_address;
750     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
751     // Ignore writes to ROM
752 gbeauche 1.52 if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE)
753 gbeauche 1.3 return SIGSEGV_RETURN_SKIP_INSTRUCTION;
754    
755 gbeauche 1.17 // Get program counter of target CPU
756 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
757 gbeauche 1.17 const uint32 pc = cpu->pc();
758    
759     // Fault in Mac ROM or RAM?
760 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
761 gbeauche 1.17 if (mac_fault) {
762    
763     // "VM settings" during MacOS 8 installation
764     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
765     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
766    
767     // MacOS 8.5 installation
768     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
769     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
770    
771     // MacOS 8 serial drivers on startup
772     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
773     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
774    
775     // MacOS 8.1 serial drivers on startup
776     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
777     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
778     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
779     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
780 gbeauche 1.43
781     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
782     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
783     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
784     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
785     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
786 gbeauche 1.17
787 gbeauche 1.30 // Ignore writes to the zero page
788     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
789     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
790    
791 gbeauche 1.17 // Ignore all other faults, if requested
792     if (PrefsFindBool("ignoresegv"))
793     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
794     }
795 gbeauche 1.3 #else
796     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
797 gbeauche 1.1 #endif
798 gbeauche 1.3
799     printf("SIGSEGV\n");
800     printf(" pc %p\n", fault_instruction);
801     printf(" ea %p\n", fault_address);
802 gbeauche 1.1 dump_registers();
803 gbeauche 1.41 ppc_cpu->dump_log();
804 gbeauche 1.1 enter_mon();
805     QuitEmulator();
806 gbeauche 1.3
807     return SIGSEGV_RETURN_FAILURE;
808 gbeauche 1.1 }
809    
810     void init_emul_ppc(void)
811     {
812 gbeauche 1.52 // Get pointer to KernelData in host address space
813     kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
814    
815 gbeauche 1.1 // Initialize main CPU emulator
816 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
817     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
818     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
819 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
820    
821     #if ENABLE_MON
822     // Install "regs" command in cxmon
823     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
824     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
825     #endif
826 gbeauche 1.15
827     #if EMUL_TIME_STATS
828     emul_start_time = clock();
829     #endif
830 gbeauche 1.1 }
831    
832     /*
833 gbeauche 1.14 * Deinitialize emulation
834     */
835    
836     void exit_emul_ppc(void)
837     {
838 gbeauche 1.15 #if EMUL_TIME_STATS
839     clock_t emul_end_time = clock();
840    
841     printf("### Statistics for SheepShaver emulation parts\n");
842     const clock_t emul_time = emul_end_time - emul_start_time;
843     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
844     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
845     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
846 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
847     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
848 gbeauche 1.15
849     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
850     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
851     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
852     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
853     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
854     } while (0)
855    
856     PRINT_STATS("Execute68k[Trap] execution", exec68k);
857     PRINT_STATS("NativeOp execution", native_exec);
858     PRINT_STATS("MacOS routine execution", macos_exec);
859    
860     #undef PRINT_STATS
861     printf("\n");
862     #endif
863    
864 gbeauche 1.41 delete ppc_cpu;
865 gbeauche 1.14 }
866    
867 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
868     // Initialize EmulOp trampolines
869     void init_emul_op_trampolines(basic_dyngen & dg)
870     {
871     typedef void (*func_t)(dyngen_cpu_base, uint32);
872     func_t func;
873    
874     // EmulOp
875     emul_op_trampoline = dg.gen_start();
876     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
877     dg.gen_invoke_CPU_T0(func);
878     dg.gen_exec_return();
879     dg.gen_end();
880    
881     // NativeOp
882     native_op_trampoline = dg.gen_start();
883     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
884     dg.gen_invoke_CPU_T0(func);
885     dg.gen_exec_return();
886     dg.gen_end();
887    
888     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
889     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
890     }
891     #endif
892    
893 gbeauche 1.14 /*
894 gbeauche 1.1 * Emulation loop
895     */
896    
897     void emul_ppc(uint32 entry)
898     {
899 gbeauche 1.24 #if 0
900 gbeauche 1.41 ppc_cpu->start_log();
901 gbeauche 1.10 #endif
902     // start emulation loop and enable code translation or caching
903 gbeauche 1.41 ppc_cpu->execute(entry);
904 gbeauche 1.1 }
905    
906     /*
907     * Handle PowerPC interrupt
908     */
909    
910 gbeauche 1.2 void TriggerInterrupt(void)
911     {
912     #if 0
913     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
914     #else
915 gbeauche 1.10 // Trigger interrupt to main cpu only
916 gbeauche 1.41 if (ppc_cpu)
917     ppc_cpu->trigger_interrupt();
918 gbeauche 1.2 #endif
919     }
920    
921 gbeauche 1.58 void HandleInterrupt(powerpc_registers *r)
922 gbeauche 1.1 {
923 gbeauche 1.47 #ifdef USE_SDL_VIDEO
924     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
925     SDL_PumpEvents();
926     #endif
927    
928 gbeauche 1.1 // Do nothing if interrupts are disabled
929 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
930 gbeauche 1.1 return;
931    
932 gbeauche 1.58 // Increment interrupt counter
933 gbeauche 1.44 #if EMUL_TIME_STATS
934     interrupt_count++;
935     #endif
936 gbeauche 1.40
937 gbeauche 1.1 // Interrupt action depends on current run mode
938     switch (ReadMacInt32(XLM_RUN_MODE)) {
939     case MODE_68K:
940     // 68k emulator active, trigger 68k interrupt level 1
941     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
942 gbeauche 1.58 r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2]));
943 gbeauche 1.1 break;
944    
945     #if INTERRUPTS_IN_NATIVE_MODE
946     case MODE_NATIVE:
947     // 68k emulator inactive, in nanokernel?
948 gbeauche 1.58 if (r->gpr[1] != KernelDataAddr) {
949 gbeauche 1.39
950 gbeauche 1.1 // Prepare for 68k interrupt level 1
951     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
952     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
953     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
954     | tswap32(kernel_data->v[0x674 >> 2]));
955    
956     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
957 gbeauche 1.2 DisableInterrupt();
958 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
959 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
960 gbeauche 1.1 else
961 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
962 gbeauche 1.1 }
963     break;
964     #endif
965    
966     #if INTERRUPTS_IN_EMUL_OP_MODE
967     case MODE_EMUL_OP:
968     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
969     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
970 gbeauche 1.44 #if EMUL_TIME_STATS
971     const clock_t interrupt_start = clock();
972     #endif
973 gbeauche 1.1 #if 1
974     // Execute full 68k interrupt routine
975     M68kRegisters r;
976     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
977     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
978 gbeauche 1.53 static const uint8 proc_template[] = {
979 gbeauche 1.2 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
980     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
981     0x40, 0xe7, // move sr,-(sp) (saved SR)
982     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
983     0x4e, 0xd0, // jmp (a0)
984     M68K_RTS >> 8, M68K_RTS & 0xff // @1
985 gbeauche 1.1 };
986 gbeauche 1.53 BUILD_SHEEPSHAVER_PROCEDURE(proc);
987     Execute68k(proc, &r);
988 gbeauche 1.1 WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
989     #else
990     // Only update cursor
991     if (HasMacStarted()) {
992     if (InterruptFlags & INTFLAG_VIA) {
993     ClearInterruptFlag(INTFLAG_VIA);
994     ADBInterrupt();
995 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
996 gbeauche 1.1 }
997     }
998     #endif
999 gbeauche 1.44 #if EMUL_TIME_STATS
1000     interrupt_time += (clock() - interrupt_start);
1001     #endif
1002 gbeauche 1.1 }
1003     break;
1004     #endif
1005     }
1006     }
1007    
1008     static void get_resource(void);
1009     static void get_1_resource(void);
1010     static void get_ind_resource(void);
1011     static void get_1_ind_resource(void);
1012     static void r_get_resource(void);
1013    
1014 gbeauche 1.38 // Execute NATIVE_OP routine
1015     void sheepshaver_cpu::execute_native_op(uint32 selector)
1016 gbeauche 1.1 {
1017 gbeauche 1.15 #if EMUL_TIME_STATS
1018     native_exec_count++;
1019     const clock_t native_exec_start = clock();
1020     #endif
1021    
1022 gbeauche 1.1 switch (selector) {
1023     case NATIVE_PATCH_NAME_REGISTRY:
1024     DoPatchNameRegistry();
1025     break;
1026     case NATIVE_VIDEO_INSTALL_ACCEL:
1027     VideoInstallAccel();
1028     break;
1029     case NATIVE_VIDEO_VBL:
1030     VideoVBL();
1031     break;
1032     case NATIVE_VIDEO_DO_DRIVER_IO:
1033 gbeauche 1.52 gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7));
1034 gbeauche 1.1 break;
1035 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1036     EtherIRQ();
1037     break;
1038     case NATIVE_ETHER_INIT:
1039 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1040 gbeauche 1.16 break;
1041     case NATIVE_ETHER_TERM:
1042     TerminateStreamModule();
1043     break;
1044     case NATIVE_ETHER_OPEN:
1045 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1046 gbeauche 1.1 break;
1047 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1048 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1049 gbeauche 1.1 break;
1050 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1051 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1052 gbeauche 1.1 break;
1053 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1054 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1055 gbeauche 1.1 break;
1056 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1057 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1058 gbeauche 1.32 break;
1059     case NATIVE_BITBLT_HOOK:
1060 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1061 gbeauche 1.32 break;
1062     case NATIVE_BITBLT:
1063 gbeauche 1.38 NQD_bitblt(gpr(3));
1064 gbeauche 1.32 break;
1065     case NATIVE_FILLRECT_HOOK:
1066 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1067 gbeauche 1.32 break;
1068     case NATIVE_INVRECT:
1069 gbeauche 1.38 NQD_invrect(gpr(3));
1070 gbeauche 1.32 break;
1071 gbeauche 1.33 case NATIVE_FILLRECT:
1072 gbeauche 1.38 NQD_fillrect(gpr(3));
1073 gbeauche 1.32 break;
1074 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1075     case NATIVE_SERIAL_OPEN:
1076     case NATIVE_SERIAL_PRIME_IN:
1077     case NATIVE_SERIAL_PRIME_OUT:
1078     case NATIVE_SERIAL_CONTROL:
1079     case NATIVE_SERIAL_STATUS:
1080     case NATIVE_SERIAL_CLOSE: {
1081     typedef int16 (*SerialCallback)(uint32, uint32);
1082     static const SerialCallback serial_callbacks[] = {
1083     SerialNothing,
1084     SerialOpen,
1085     SerialPrimeIn,
1086     SerialPrimeOut,
1087     SerialControl,
1088     SerialStatus,
1089     SerialClose
1090     };
1091 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1092 gbeauche 1.16 break;
1093     }
1094     case NATIVE_GET_RESOURCE:
1095     case NATIVE_GET_1_RESOURCE:
1096     case NATIVE_GET_IND_RESOURCE:
1097     case NATIVE_GET_1_IND_RESOURCE:
1098     case NATIVE_R_GET_RESOURCE: {
1099     typedef void (*GetResourceCallback)(void);
1100     static const GetResourceCallback get_resource_callbacks[] = {
1101 gbeauche 1.38 ::get_resource,
1102     ::get_1_resource,
1103     ::get_ind_resource,
1104     ::get_1_ind_resource,
1105     ::r_get_resource
1106 gbeauche 1.16 };
1107     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1108 gbeauche 1.1 break;
1109     }
1110 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1111 gbeauche 1.52 MakeExecutable(0, gpr(4), gpr(5));
1112 gbeauche 1.26 break;
1113     case NATIVE_CHECK_LOAD_INVOC:
1114 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1115 gbeauche 1.2 break;
1116 gbeauche 1.1 default:
1117     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1118     QuitEmulator();
1119     break;
1120     }
1121 gbeauche 1.15
1122     #if EMUL_TIME_STATS
1123     native_exec_time += (clock() - native_exec_start);
1124     #endif
1125 gbeauche 1.1 }
1126    
1127     /*
1128     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1129     * This must only be called by the emul_thread when in EMUL_OP mode
1130     * r->a[7] is unused, the routine runs on the caller's stack
1131     */
1132    
1133     void Execute68k(uint32 pc, M68kRegisters *r)
1134     {
1135 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1136 gbeauche 1.1 }
1137    
1138     /*
1139     * Execute 68k A-Trap from EMUL_OP routine
1140     * r->a[7] is unused, the routine runs on the caller's stack
1141     */
1142    
1143     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1144     {
1145 gbeauche 1.21 SheepVar proc_var(4);
1146     uint32 proc = proc_var.addr();
1147     WriteMacInt16(proc, trap);
1148     WriteMacInt16(proc + 2, M68K_RTS);
1149     Execute68k(proc, r);
1150 gbeauche 1.1 }
1151    
1152     /*
1153     * Call MacOS PPC code
1154     */
1155    
1156     uint32 call_macos(uint32 tvect)
1157     {
1158 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1159 gbeauche 1.1 }
1160    
1161     uint32 call_macos1(uint32 tvect, uint32 arg1)
1162     {
1163     const uint32 args[] = { arg1 };
1164 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1165 gbeauche 1.1 }
1166    
1167     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1168     {
1169     const uint32 args[] = { arg1, arg2 };
1170 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1171 gbeauche 1.1 }
1172    
1173     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1174     {
1175     const uint32 args[] = { arg1, arg2, arg3 };
1176 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1177 gbeauche 1.1 }
1178    
1179     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1180     {
1181     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1182 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1183 gbeauche 1.1 }
1184    
1185     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1186     {
1187     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1188 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1189 gbeauche 1.1 }
1190    
1191     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1192     {
1193     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1194 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1195 gbeauche 1.1 }
1196    
1197     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1198     {
1199     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1200 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1201 gbeauche 1.1 }
1202    
1203     /*
1204     * Resource Manager thunks
1205     */
1206    
1207     void get_resource(void)
1208     {
1209 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1210 gbeauche 1.1 }
1211    
1212     void get_1_resource(void)
1213     {
1214 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1215 gbeauche 1.1 }
1216    
1217     void get_ind_resource(void)
1218     {
1219 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1220 gbeauche 1.1 }
1221    
1222     void get_1_ind_resource(void)
1223     {
1224 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1225 gbeauche 1.1 }
1226    
1227     void r_get_resource(void)
1228     {
1229 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1230 gbeauche 1.1 }