ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.50
Committed: 2004-07-11T07:54:56Z (20 years, 4 months ago) by gbeauche
Branch: MAIN
Changes since 1.49: +0 -7 lines
Log Message:
Enable ethernet everywhere, several users got it to work. Hangs may be
unrelated to ethernet code anyway and ethernet driver should be endian
safe nowadays.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.37 #include "timer.h"
42 gbeauche 1.1
43     #include <stdio.h>
44 gbeauche 1.31 #include <stdlib.h>
45 gbeauche 1.1
46 gbeauche 1.47 #ifdef USE_SDL_VIDEO
47     #include <SDL_events.h>
48     #endif
49    
50 gbeauche 1.1 #if ENABLE_MON
51     #include "mon.h"
52     #include "mon_disass.h"
53     #endif
54    
55 gbeauche 1.10 #define DEBUG 0
56 gbeauche 1.1 #include "debug.h"
57    
58 gbeauche 1.15 // Emulation time statistics
59 gbeauche 1.44 #ifndef EMUL_TIME_STATS
60     #define EMUL_TIME_STATS 0
61     #endif
62 gbeauche 1.15
63     #if EMUL_TIME_STATS
64     static clock_t emul_start_time;
65 gbeauche 1.44 static uint32 interrupt_count = 0, ppc_interrupt_count = 0;
66 gbeauche 1.15 static clock_t interrupt_time = 0;
67     static uint32 exec68k_count = 0;
68     static clock_t exec68k_time = 0;
69     static uint32 native_exec_count = 0;
70     static clock_t native_exec_time = 0;
71     static uint32 macos_exec_count = 0;
72     static clock_t macos_exec_time = 0;
73     #endif
74    
75 gbeauche 1.1 static void enter_mon(void)
76     {
77     // Start up mon in real-mode
78     #if ENABLE_MON
79     char *arg[4] = {"mon", "-m", "-r", NULL};
80     mon(3, arg);
81     #endif
82     }
83    
84 gbeauche 1.23 // From main_*.cpp
85     extern uintptr SignalStackBase();
86    
87 gbeauche 1.26 // From rsrc_patches.cpp
88     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
89    
90 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
91     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
92    
93 gbeauche 1.36 // Enable interrupt routine safety checks?
94     #define SAFE_INTERRUPT_PPC 1
95    
96 gbeauche 1.1 // Enable Execute68k() safety checks?
97     #define SAFE_EXEC_68K 1
98    
99     // Save FP state in Execute68k()?
100     #define SAVE_FP_EXEC_68K 1
101    
102     // Interrupts in EMUL_OP mode?
103     #define INTERRUPTS_IN_EMUL_OP_MODE 1
104    
105     // Interrupts in native mode?
106     #define INTERRUPTS_IN_NATIVE_MODE 1
107    
108     // Pointer to Kernel Data
109 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
110 gbeauche 1.1
111 gbeauche 1.17 // SIGSEGV handler
112 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
113 gbeauche 1.17
114 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
115     // Special trampolines for EmulOp and NativeOp
116     static uint8 *emul_op_trampoline;
117     static uint8 *native_op_trampoline;
118     #endif
119    
120 gbeauche 1.20 // JIT Compiler enabled?
121     static inline bool enable_jit_p()
122     {
123     return PrefsFindBool("jit");
124     }
125    
126 gbeauche 1.1
127     /**
128     * PowerPC emulator glue with special 'sheep' opcodes
129     **/
130    
131 gbeauche 1.18 enum {
132     PPC_I(SHEEP) = PPC_I(MAX),
133     PPC_I(SHEEP_MAX)
134     };
135    
136 gbeauche 1.1 class sheepshaver_cpu
137     : public powerpc_cpu
138     {
139     void init_decoder();
140     void execute_sheep(uint32 opcode);
141    
142 gbeauche 1.39 // CPU context to preserve on interrupt
143     class interrupt_context {
144     uint32 gpr[32];
145     uint32 pc;
146     uint32 lr;
147     uint32 ctr;
148     uint32 cr;
149     uint32 xer;
150     sheepshaver_cpu *cpu;
151     const char *where;
152     public:
153     interrupt_context(sheepshaver_cpu *_cpu, const char *_where);
154     ~interrupt_context();
155     };
156    
157 gbeauche 1.1 public:
158    
159 gbeauche 1.10 // Constructor
160     sheepshaver_cpu();
161 gbeauche 1.1
162 gbeauche 1.24 // CR & XER accessors
163 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
164     void set_cr(uint32 v) { cr().set(v); }
165 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
166     void set_xer(uint32 v) { xer().set(v); }
167 gbeauche 1.1
168 gbeauche 1.38 // Execute NATIVE_OP routine
169     void execute_native_op(uint32 native_op);
170    
171 gbeauche 1.26 // Execute EMUL_OP routine
172     void execute_emul_op(uint32 emul_op);
173    
174 gbeauche 1.1 // Execute 68k routine
175     void execute_68k(uint32 entry, M68kRegisters *r);
176    
177 gbeauche 1.2 // Execute ppc routine
178     void execute_ppc(uint32 entry);
179    
180 gbeauche 1.1 // Execute MacOS/PPC code
181     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
182    
183 gbeauche 1.26 // Compile one instruction
184 gbeauche 1.38 virtual int compile1(codegen_context_t & cg_context);
185 gbeauche 1.26
186 gbeauche 1.1 // Resource manager thunk
187     void get_resource(uint32 old_get_resource);
188    
189     // Handle MacOS interrupt
190 gbeauche 1.4 void interrupt(uint32 entry);
191 gbeauche 1.10 void handle_interrupt();
192 gbeauche 1.2
193 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
194     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
195 gbeauche 1.1 };
196    
197 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
198     void *operator new(size_t size)
199     {
200     void *p;
201    
202 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
203 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
204     throw std::bad_alloc();
205 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
206     p = memalign(16, size);
207     #elif defined(HAVE_VALLOC)
208     p = valloc(size); // page-aligned!
209     #else
210     /* XXX: handle padding ourselves */
211     p = malloc(size);
212     #endif
213 gbeauche 1.29
214     return p;
215     }
216    
217     void operator delete(void *p)
218     {
219 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
220     #if defined(__GLIBC__)
221     // this is known to work only with GNU libc
222     free(p);
223     #endif
224     #else
225 gbeauche 1.29 free(p);
226 gbeauche 1.31 #endif
227 gbeauche 1.29 }
228 gbeauche 1.1
229 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
230 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
231 gbeauche 1.10 {
232     init_decoder();
233     }
234    
235 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
236     {
237     static const instr_info_t sheep_ii_table[] = {
238     { "sheep",
239 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
240 gbeauche 1.1 NULL,
241 gbeauche 1.18 PPC_I(SHEEP),
242 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
243 gbeauche 1.1 }
244     };
245    
246     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
247     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
248    
249     for (int i = 0; i < ii_count; i++) {
250     const instr_info_t * ii = &sheep_ii_table[i];
251     init_decoder_entry(ii);
252     }
253     }
254    
255 gbeauche 1.2 /* NativeOp instruction format:
256 gbeauche 1.35 +------------+-------------------------+--+-----------+------------+
257     | 6 | |FN| OP | 2 |
258     +------------+-------------------------+--+-----------+------------+
259     0 5 |6 18 19 20 25 26 31
260 gbeauche 1.2 */
261    
262 gbeauche 1.35 typedef bit_field< 19, 19 > FN_field;
263     typedef bit_field< 20, 25 > NATIVE_OP_field;
264 gbeauche 1.2 typedef bit_field< 26, 31 > EMUL_OP_field;
265    
266 gbeauche 1.26 // Execute EMUL_OP routine
267     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
268     {
269     M68kRegisters r68;
270     WriteMacInt32(XLM_68K_R25, gpr(25));
271     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
272     for (int i = 0; i < 8; i++)
273     r68.d[i] = gpr(8 + i);
274     for (int i = 0; i < 7; i++)
275     r68.a[i] = gpr(16 + i);
276     r68.a[7] = gpr(1);
277     uint32 saved_cr = get_cr() & CR_field<2>::mask();
278     uint32 saved_xer = get_xer();
279     EmulOp(&r68, gpr(24), emul_op);
280     set_cr(saved_cr);
281     set_xer(saved_xer);
282     for (int i = 0; i < 8; i++)
283     gpr(8 + i) = r68.d[i];
284     for (int i = 0; i < 7; i++)
285     gpr(16 + i) = r68.a[i];
286     gpr(1) = r68.a[7];
287     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
288     }
289    
290 gbeauche 1.1 // Execute SheepShaver instruction
291     void sheepshaver_cpu::execute_sheep(uint32 opcode)
292     {
293     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
294     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
295    
296     switch (opcode & 0x3f) {
297     case 0: // EMUL_RETURN
298     QuitEmulator();
299     break;
300 gbeauche 1.8
301 gbeauche 1.1 case 1: // EXEC_RETURN
302 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
303 gbeauche 1.1 break;
304    
305     case 2: // EXEC_NATIVE
306 gbeauche 1.38 execute_native_op(NATIVE_OP_field::extract(opcode));
307 gbeauche 1.2 if (FN_field::test(opcode))
308     pc() = lr();
309     else
310     pc() += 4;
311 gbeauche 1.1 break;
312    
313 gbeauche 1.26 default: // EMUL_OP
314     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
315     pc() += 4;
316     break;
317     }
318     }
319    
320     // Compile one instruction
321 gbeauche 1.38 int sheepshaver_cpu::compile1(codegen_context_t & cg_context)
322 gbeauche 1.26 {
323     #if PPC_ENABLE_JIT
324     const instr_info_t *ii = cg_context.instr_info;
325     if (ii->mnemo != PPC_I(SHEEP))
326 gbeauche 1.38 return COMPILE_FAILURE;
327 gbeauche 1.26
328 gbeauche 1.38 int status = COMPILE_FAILURE;
329 gbeauche 1.26 powerpc_dyngen & dg = cg_context.codegen;
330     uint32 opcode = cg_context.opcode;
331    
332     switch (opcode & 0x3f) {
333     case 0: // EMUL_RETURN
334     dg.gen_invoke(QuitEmulator);
335 gbeauche 1.38 status = COMPILE_CODE_OK;
336 gbeauche 1.26 break;
337    
338     case 1: // EXEC_RETURN
339     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
340 gbeauche 1.38 // Don't check for pending interrupts, we do know we have to
341     // get out of this block ASAP
342     dg.gen_exec_return();
343     status = COMPILE_EPILOGUE_OK;
344 gbeauche 1.26 break;
345    
346     case 2: { // EXEC_NATIVE
347     uint32 selector = NATIVE_OP_field::extract(opcode);
348     switch (selector) {
349 gbeauche 1.38 #if !PPC_REENTRANT_JIT
350     // Filter out functions that may invoke Execute68k() or
351     // CallMacOS(), this would break reentrancy as they could
352     // invalidate the translation cache and even overwrite
353     // continuation code when we are done with them.
354 gbeauche 1.26 case NATIVE_PATCH_NAME_REGISTRY:
355     dg.gen_invoke(DoPatchNameRegistry);
356 gbeauche 1.38 status = COMPILE_CODE_OK;
357 gbeauche 1.26 break;
358     case NATIVE_VIDEO_INSTALL_ACCEL:
359     dg.gen_invoke(VideoInstallAccel);
360 gbeauche 1.38 status = COMPILE_CODE_OK;
361 gbeauche 1.26 break;
362     case NATIVE_VIDEO_VBL:
363     dg.gen_invoke(VideoVBL);
364 gbeauche 1.38 status = COMPILE_CODE_OK;
365 gbeauche 1.26 break;
366     case NATIVE_GET_RESOURCE:
367     case NATIVE_GET_1_RESOURCE:
368     case NATIVE_GET_IND_RESOURCE:
369     case NATIVE_GET_1_IND_RESOURCE:
370     case NATIVE_R_GET_RESOURCE: {
371     static const uint32 get_resource_ptr[] = {
372     XLM_GET_RESOURCE,
373     XLM_GET_1_RESOURCE,
374     XLM_GET_IND_RESOURCE,
375     XLM_GET_1_IND_RESOURCE,
376     XLM_R_GET_RESOURCE
377     };
378     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
379     typedef void (*func_t)(dyngen_cpu_base, uint32);
380     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
381     dg.gen_invoke_CPU_im(func, old_get_resource);
382 gbeauche 1.38 status = COMPILE_CODE_OK;
383 gbeauche 1.26 break;
384     }
385     case NATIVE_CHECK_LOAD_INVOC:
386     dg.gen_load_T0_GPR(3);
387     dg.gen_load_T1_GPR(4);
388     dg.gen_se_16_32_T1();
389     dg.gen_load_T2_GPR(5);
390     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
391 gbeauche 1.38 status = COMPILE_CODE_OK;
392     break;
393     #endif
394 gbeauche 1.35 case NATIVE_BITBLT:
395     dg.gen_load_T0_GPR(3);
396     dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt);
397 gbeauche 1.38 status = COMPILE_CODE_OK;
398 gbeauche 1.35 break;
399     case NATIVE_INVRECT:
400     dg.gen_load_T0_GPR(3);
401     dg.gen_invoke_T0((void (*)(uint32))NQD_invrect);
402 gbeauche 1.38 status = COMPILE_CODE_OK;
403 gbeauche 1.35 break;
404     case NATIVE_FILLRECT:
405     dg.gen_load_T0_GPR(3);
406     dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect);
407 gbeauche 1.38 status = COMPILE_CODE_OK;
408 gbeauche 1.26 break;
409     }
410 gbeauche 1.38 // Could we fully translate this NativeOp?
411 gbeauche 1.42 if (status == COMPILE_CODE_OK) {
412     if (!FN_field::test(opcode))
413     cg_context.done_compile = false;
414     else {
415 gbeauche 1.26 dg.gen_load_A0_LR();
416     dg.gen_set_PC_A0();
417 gbeauche 1.42 cg_context.done_compile = true;
418 gbeauche 1.26 }
419 gbeauche 1.38 break;
420     }
421     #if PPC_REENTRANT_JIT
422     // Try to execute NativeOp trampoline
423 gbeauche 1.42 if (!FN_field::test(opcode))
424     dg.gen_set_PC_im(cg_context.pc + 4);
425     else {
426     dg.gen_load_A0_LR();
427     dg.gen_set_PC_A0();
428     }
429 gbeauche 1.38 dg.gen_mov_32_T0_im(selector);
430     dg.gen_jmp(native_op_trampoline);
431     cg_context.done_compile = true;
432     status = COMPILE_EPILOGUE_OK;
433     break;
434     #endif
435     // Invoke NativeOp handler
436 gbeauche 1.42 if (!FN_field::test(opcode)) {
437     typedef void (*func_t)(dyngen_cpu_base, uint32);
438     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
439     dg.gen_invoke_CPU_im(func, selector);
440     cg_context.done_compile = false;
441     status = COMPILE_CODE_OK;
442     }
443     // Otherwise, let it generate a call to execute_sheep() which
444     // will cause necessary updates to the program counter
445 gbeauche 1.26 break;
446     }
447    
448 gbeauche 1.1 default: { // EMUL_OP
449 gbeauche 1.37 uint32 emul_op = EMUL_OP_field::extract(opcode) - 3;
450 gbeauche 1.38 #if PPC_REENTRANT_JIT
451     // Try to execute EmulOp trampoline
452     dg.gen_set_PC_im(cg_context.pc + 4);
453     dg.gen_mov_32_T0_im(emul_op);
454     dg.gen_jmp(emul_op_trampoline);
455     cg_context.done_compile = true;
456     status = COMPILE_EPILOGUE_OK;
457     break;
458     #endif
459     // Invoke EmulOp handler
460 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
461     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
462 gbeauche 1.37 dg.gen_invoke_CPU_im(func, emul_op);
463 gbeauche 1.26 cg_context.done_compile = false;
464 gbeauche 1.38 status = COMPILE_CODE_OK;
465 gbeauche 1.1 break;
466     }
467     }
468 gbeauche 1.38 return status;
469 gbeauche 1.26 #endif
470 gbeauche 1.38 return COMPILE_FAILURE;
471 gbeauche 1.1 }
472    
473 gbeauche 1.39 // CPU context to preserve on interrupt
474     sheepshaver_cpu::interrupt_context::interrupt_context(sheepshaver_cpu *_cpu, const char *_where)
475     {
476     #if SAFE_INTERRUPT_PPC >= 2
477     cpu = _cpu;
478     where = _where;
479    
480     // Save interrupt context
481     memcpy(&gpr[0], &cpu->gpr(0), sizeof(gpr));
482     pc = cpu->pc();
483     lr = cpu->lr();
484     ctr = cpu->ctr();
485     cr = cpu->get_cr();
486     xer = cpu->get_xer();
487     #endif
488     }
489    
490     sheepshaver_cpu::interrupt_context::~interrupt_context()
491     {
492     #if SAFE_INTERRUPT_PPC >= 2
493     // Check whether CPU context was preserved by interrupt
494     if (memcmp(&gpr[0], &cpu->gpr(0), sizeof(gpr)) != 0) {
495     printf("FATAL: %s: interrupt clobbers registers\n", where);
496     for (int i = 0; i < 32; i++)
497     if (gpr[i] != cpu->gpr(i))
498     printf(" r%d: %08x -> %08x\n", i, gpr[i], cpu->gpr(i));
499     }
500     if (pc != cpu->pc())
501     printf("FATAL: %s: interrupt clobbers PC\n", where);
502     if (lr != cpu->lr())
503     printf("FATAL: %s: interrupt clobbers LR\n", where);
504     if (ctr != cpu->ctr())
505     printf("FATAL: %s: interrupt clobbers CTR\n", where);
506     if (cr != cpu->get_cr())
507     printf("FATAL: %s: interrupt clobbers CR\n", where);
508     if (xer != cpu->get_xer())
509     printf("FATAL: %s: interrupt clobbers XER\n", where);
510     #endif
511     }
512    
513 gbeauche 1.1 // Handle MacOS interrupt
514 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
515 gbeauche 1.1 {
516 gbeauche 1.15 #if EMUL_TIME_STATS
517 gbeauche 1.44 ppc_interrupt_count++;
518 gbeauche 1.15 const clock_t interrupt_start = clock();
519     #endif
520    
521 gbeauche 1.36 #if SAFE_INTERRUPT_PPC
522     static int depth = 0;
523     if (depth != 0)
524     printf("FATAL: sheepshaver_cpu::interrupt() called more than once: %d\n", depth);
525     depth++;
526     #endif
527    
528 gbeauche 1.2 // Save program counters and branch registers
529     uint32 saved_pc = pc();
530     uint32 saved_lr = lr();
531     uint32 saved_ctr= ctr();
532 gbeauche 1.4 uint32 saved_sp = gpr(1);
533 gbeauche 1.2
534 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
535 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
536 gbeauche 1.1
537     // Build trampoline to return from interrupt
538 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
539 gbeauche 1.1
540     // Prepare registers for nanokernel interrupt routine
541 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
542     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
543 gbeauche 1.1
544 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
545 gbeauche 1.2 assert(gpr(6) != 0);
546 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
547     WriteMacInt32(gpr(6) + 0x144, gpr(8));
548     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
549     WriteMacInt32(gpr(6) + 0x154, gpr(10));
550     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
551     WriteMacInt32(gpr(6) + 0x164, gpr(12));
552     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
553    
554     gpr(1) = KernelDataAddr;
555 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
556 gbeauche 1.1 gpr(8) = 0;
557 gbeauche 1.21 gpr(10) = trampoline.addr();
558     gpr(12) = trampoline.addr();
559 gbeauche 1.8 gpr(13) = get_cr();
560 gbeauche 1.1
561     // rlwimi. r7,r7,8,0,0
562     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
563     record_cr0(result);
564     gpr(7) = result;
565    
566     gpr(11) = 0xf072; // MSR (SRR1)
567 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
568 gbeauche 1.1
569     // Enter nanokernel
570     execute(entry);
571    
572 gbeauche 1.2 // Restore program counters and branch registers
573     pc() = saved_pc;
574     lr() = saved_lr;
575     ctr()= saved_ctr;
576 gbeauche 1.4 gpr(1) = saved_sp;
577 gbeauche 1.15
578     #if EMUL_TIME_STATS
579     interrupt_time += (clock() - interrupt_start);
580     #endif
581 gbeauche 1.36
582     #if SAFE_INTERRUPT_PPC
583     depth--;
584     #endif
585 gbeauche 1.1 }
586    
587     // Execute 68k routine
588     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
589     {
590 gbeauche 1.15 #if EMUL_TIME_STATS
591     exec68k_count++;
592     const clock_t exec68k_start = clock();
593     #endif
594    
595 gbeauche 1.1 #if SAFE_EXEC_68K
596     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
597     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
598     #endif
599    
600     // Save program counters and branch registers
601     uint32 saved_pc = pc();
602     uint32 saved_lr = lr();
603     uint32 saved_ctr= ctr();
604 gbeauche 1.8 uint32 saved_cr = get_cr();
605 gbeauche 1.1
606     // Create MacOS stack frame
607 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
608 gbeauche 1.1 uint32 sp = gpr(1);
609 gbeauche 1.6 gpr(1) -= 56;
610 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
611    
612     // Save PowerPC registers
613 gbeauche 1.6 uint32 saved_GPRs[19];
614     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
615 gbeauche 1.1 #if SAVE_FP_EXEC_68K
616 gbeauche 1.6 double saved_FPRs[18];
617     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
618 gbeauche 1.1 #endif
619    
620     // Setup registers for 68k emulator
621 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
622 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
623     gpr(8 + i) = r->d[i];
624     for (int i = 0; i < 7; i++) // a[0]..a[6]
625     gpr(16 + i) = r->a[i];
626     gpr(23) = 0;
627     gpr(24) = entry;
628     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
629     gpr(26) = 0;
630     gpr(28) = 0; // VBR
631 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
632     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
633 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
634    
635     // Push return address (points to EXEC_RETURN opcode) on stack
636     gpr(1) -= 4;
637     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
638    
639     // Rentering 68k emulator
640     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
641    
642     // Set r0 to 0 for 68k emulator
643     gpr(0) = 0;
644    
645     // Execute 68k opcode
646     uint32 opcode = ReadMacInt16(gpr(24));
647     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
648     gpr(29) += opcode * 8;
649     execute(gpr(29));
650    
651     // Save r25 (contains current 68k interrupt level)
652     WriteMacInt32(XLM_68K_R25, gpr(25));
653    
654     // Reentering EMUL_OP mode
655     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
656    
657     // Save 68k registers
658     for (int i = 0; i < 8; i++) // d[0]..d[7]
659     r->d[i] = gpr(8 + i);
660     for (int i = 0; i < 7; i++) // a[0]..a[6]
661     r->a[i] = gpr(16 + i);
662    
663     // Restore PowerPC registers
664 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
665 gbeauche 1.1 #if SAVE_FP_EXEC_68K
666 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
667 gbeauche 1.1 #endif
668    
669     // Cleanup stack
670 gbeauche 1.6 gpr(1) += 56;
671 gbeauche 1.1
672     // Restore program counters and branch registers
673     pc() = saved_pc;
674     lr() = saved_lr;
675     ctr()= saved_ctr;
676 gbeauche 1.8 set_cr(saved_cr);
677 gbeauche 1.15
678     #if EMUL_TIME_STATS
679     exec68k_time += (clock() - exec68k_start);
680     #endif
681 gbeauche 1.1 }
682    
683     // Call MacOS PPC code
684     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
685     {
686 gbeauche 1.15 #if EMUL_TIME_STATS
687     macos_exec_count++;
688     const clock_t macos_exec_start = clock();
689     #endif
690    
691 gbeauche 1.1 // Save program counters and branch registers
692     uint32 saved_pc = pc();
693     uint32 saved_lr = lr();
694     uint32 saved_ctr= ctr();
695    
696     // Build trampoline with EXEC_RETURN
697 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
698     lr() = trampoline.addr();
699 gbeauche 1.1
700     gpr(1) -= 64; // Create stack frame
701     uint32 proc = ReadMacInt32(tvect); // Get routine address
702     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
703    
704     // Save PowerPC registers
705     uint32 regs[8];
706     regs[0] = gpr(2);
707     for (int i = 0; i < nargs; i++)
708     regs[i + 1] = gpr(i + 3);
709    
710     // Prepare and call MacOS routine
711     gpr(2) = toc;
712     for (int i = 0; i < nargs; i++)
713     gpr(i + 3) = args[i];
714     execute(proc);
715     uint32 retval = gpr(3);
716    
717     // Restore PowerPC registers
718     for (int i = 0; i <= nargs; i++)
719     gpr(i + 2) = regs[i];
720    
721     // Cleanup stack
722     gpr(1) += 64;
723    
724     // Restore program counters and branch registers
725     pc() = saved_pc;
726     lr() = saved_lr;
727     ctr()= saved_ctr;
728    
729 gbeauche 1.15 #if EMUL_TIME_STATS
730     macos_exec_time += (clock() - macos_exec_start);
731     #endif
732    
733 gbeauche 1.1 return retval;
734     }
735    
736 gbeauche 1.2 // Execute ppc routine
737     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
738     {
739     // Save branch registers
740     uint32 saved_lr = lr();
741    
742 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
743     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
744     lr() = trampoline.addr();
745 gbeauche 1.2
746     execute(entry);
747    
748     // Restore branch registers
749     lr() = saved_lr;
750     }
751    
752 gbeauche 1.1 // Resource Manager thunk
753     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
754     {
755 gbeauche 1.2 uint32 type = gpr(3);
756     int16 id = gpr(4);
757    
758     // Create stack frame
759     gpr(1) -= 56;
760    
761     // Call old routine
762     execute_ppc(old_get_resource);
763    
764     // Call CheckLoad()
765 gbeauche 1.5 uint32 handle = gpr(3);
766 gbeauche 1.2 check_load_invoc(type, id, handle);
767 gbeauche 1.5 gpr(3) = handle;
768 gbeauche 1.2
769     // Cleanup stack
770     gpr(1) += 56;
771 gbeauche 1.1 }
772    
773    
774     /**
775     * SheepShaver CPU engine interface
776     **/
777    
778 gbeauche 1.41 // PowerPC CPU emulator
779     static sheepshaver_cpu *ppc_cpu = NULL;
780 gbeauche 1.1
781 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
782     {
783     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
784 gbeauche 1.41 ppc_cpu->invalidate_cache_range(start, end);
785 gbeauche 1.2 }
786    
787 gbeauche 1.1 // Dump PPC registers
788     static void dump_registers(void)
789     {
790 gbeauche 1.41 ppc_cpu->dump_registers();
791 gbeauche 1.1 }
792    
793     // Dump log
794     static void dump_log(void)
795     {
796 gbeauche 1.41 ppc_cpu->dump_log();
797 gbeauche 1.1 }
798    
799     /*
800     * Initialize CPU emulation
801     */
802    
803 gbeauche 1.48 sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
804 gbeauche 1.1 {
805     #if ENABLE_VOSF
806 gbeauche 1.3 // Handle screen fault
807     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
808     if (Screen_fault_handler(fault_address, fault_instruction))
809     return SIGSEGV_RETURN_SUCCESS;
810 gbeauche 1.1 #endif
811 gbeauche 1.3
812     const uintptr addr = (uintptr)fault_address;
813     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
814     // Ignore writes to ROM
815     if ((addr - ROM_BASE) < ROM_SIZE)
816     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
817    
818 gbeauche 1.17 // Get program counter of target CPU
819 gbeauche 1.41 sheepshaver_cpu * const cpu = ppc_cpu;
820 gbeauche 1.17 const uint32 pc = cpu->pc();
821    
822     // Fault in Mac ROM or RAM?
823 gbeauche 1.43 bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE));
824 gbeauche 1.17 if (mac_fault) {
825    
826     // "VM settings" during MacOS 8 installation
827     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
828     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
829    
830     // MacOS 8.5 installation
831     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
832     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
833    
834     // MacOS 8 serial drivers on startup
835     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
836     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
837    
838     // MacOS 8.1 serial drivers on startup
839     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
840     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
841     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
842     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
843 gbeauche 1.43
844     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
845     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000))
846     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
847     else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
848     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
849 gbeauche 1.17
850 gbeauche 1.30 // Ignore writes to the zero page
851     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
852     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
853    
854 gbeauche 1.17 // Ignore all other faults, if requested
855     if (PrefsFindBool("ignoresegv"))
856     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
857     }
858 gbeauche 1.3 #else
859     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
860 gbeauche 1.1 #endif
861 gbeauche 1.3
862     printf("SIGSEGV\n");
863     printf(" pc %p\n", fault_instruction);
864     printf(" ea %p\n", fault_address);
865 gbeauche 1.1 dump_registers();
866 gbeauche 1.41 ppc_cpu->dump_log();
867 gbeauche 1.1 enter_mon();
868     QuitEmulator();
869 gbeauche 1.3
870     return SIGSEGV_RETURN_FAILURE;
871 gbeauche 1.1 }
872    
873     void init_emul_ppc(void)
874     {
875     // Initialize main CPU emulator
876 gbeauche 1.41 ppc_cpu = new sheepshaver_cpu();
877     ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
878     ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
879 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
880    
881     #if ENABLE_MON
882     // Install "regs" command in cxmon
883     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
884     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
885     #endif
886 gbeauche 1.15
887     #if EMUL_TIME_STATS
888     emul_start_time = clock();
889     #endif
890 gbeauche 1.1 }
891    
892     /*
893 gbeauche 1.14 * Deinitialize emulation
894     */
895    
896     void exit_emul_ppc(void)
897     {
898 gbeauche 1.15 #if EMUL_TIME_STATS
899     clock_t emul_end_time = clock();
900    
901     printf("### Statistics for SheepShaver emulation parts\n");
902     const clock_t emul_time = emul_end_time - emul_start_time;
903     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
904     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
905     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
906 gbeauche 1.44 printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count,
907     (double(ppc_interrupt_count) * 100.0) / double(interrupt_count));
908 gbeauche 1.15
909     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
910     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
911     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
912     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
913     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
914     } while (0)
915    
916     PRINT_STATS("Execute68k[Trap] execution", exec68k);
917     PRINT_STATS("NativeOp execution", native_exec);
918     PRINT_STATS("MacOS routine execution", macos_exec);
919    
920     #undef PRINT_STATS
921     printf("\n");
922     #endif
923    
924 gbeauche 1.41 delete ppc_cpu;
925 gbeauche 1.14 }
926    
927 gbeauche 1.38 #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT
928     // Initialize EmulOp trampolines
929     void init_emul_op_trampolines(basic_dyngen & dg)
930     {
931     typedef void (*func_t)(dyngen_cpu_base, uint32);
932     func_t func;
933    
934     // EmulOp
935     emul_op_trampoline = dg.gen_start();
936     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
937     dg.gen_invoke_CPU_T0(func);
938     dg.gen_exec_return();
939     dg.gen_end();
940    
941     // NativeOp
942     native_op_trampoline = dg.gen_start();
943     func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr();
944     dg.gen_invoke_CPU_T0(func);
945     dg.gen_exec_return();
946     dg.gen_end();
947    
948     D(bug("EmulOp trampoline: %p\n", emul_op_trampoline));
949     D(bug("NativeOp trampoline: %p\n", native_op_trampoline));
950     }
951     #endif
952    
953 gbeauche 1.14 /*
954 gbeauche 1.1 * Emulation loop
955     */
956    
957     void emul_ppc(uint32 entry)
958     {
959 gbeauche 1.24 #if 0
960 gbeauche 1.41 ppc_cpu->start_log();
961 gbeauche 1.10 #endif
962     // start emulation loop and enable code translation or caching
963 gbeauche 1.41 ppc_cpu->execute(entry);
964 gbeauche 1.1 }
965    
966     /*
967     * Handle PowerPC interrupt
968     */
969    
970 gbeauche 1.2 void TriggerInterrupt(void)
971     {
972     #if 0
973     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
974     #else
975 gbeauche 1.10 // Trigger interrupt to main cpu only
976 gbeauche 1.41 if (ppc_cpu)
977     ppc_cpu->trigger_interrupt();
978 gbeauche 1.2 #endif
979     }
980    
981 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
982 gbeauche 1.1 {
983 gbeauche 1.47 #ifdef USE_SDL_VIDEO
984     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
985     SDL_PumpEvents();
986     #endif
987    
988 gbeauche 1.1 // Do nothing if interrupts are disabled
989 gbeauche 1.46 if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0)
990 gbeauche 1.1 return;
991    
992 gbeauche 1.40 // Current interrupt nest level
993     static int interrupt_depth = 0;
994     ++interrupt_depth;
995 gbeauche 1.44 #if EMUL_TIME_STATS
996     interrupt_count++;
997     #endif
998 gbeauche 1.40
999 gbeauche 1.1 // Disable MacOS stack sniffer
1000     WriteMacInt32(0x110, 0);
1001    
1002     // Interrupt action depends on current run mode
1003     switch (ReadMacInt32(XLM_RUN_MODE)) {
1004     case MODE_68K:
1005     // 68k emulator active, trigger 68k interrupt level 1
1006     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1007 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
1008 gbeauche 1.1 break;
1009    
1010     #if INTERRUPTS_IN_NATIVE_MODE
1011     case MODE_NATIVE:
1012     // 68k emulator inactive, in nanokernel?
1013 gbeauche 1.40 if (gpr(1) != KernelDataAddr && interrupt_depth == 1) {
1014 gbeauche 1.39 interrupt_context ctx(this, "PowerPC mode");
1015    
1016 gbeauche 1.1 // Prepare for 68k interrupt level 1
1017     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
1018     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
1019     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
1020     | tswap32(kernel_data->v[0x674 >> 2]));
1021    
1022     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1023 gbeauche 1.2 DisableInterrupt();
1024 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
1025 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312b1c);
1026 gbeauche 1.1 else
1027 gbeauche 1.41 ppc_cpu->interrupt(ROM_BASE + 0x312a3c);
1028 gbeauche 1.1 }
1029     break;
1030     #endif
1031    
1032     #if INTERRUPTS_IN_EMUL_OP_MODE
1033     case MODE_EMUL_OP:
1034     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1035     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1036 gbeauche 1.39 interrupt_context ctx(this, "68k mode");
1037 gbeauche 1.44 #if EMUL_TIME_STATS
1038     const clock_t interrupt_start = clock();
1039     #endif
1040 gbeauche 1.1 #if 1
1041     // Execute full 68k interrupt routine
1042     M68kRegisters r;
1043     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1044     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1045 gbeauche 1.2 static const uint8 proc[] = {
1046     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
1047     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
1048     0x40, 0xe7, // move sr,-(sp) (saved SR)
1049     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
1050     0x4e, 0xd0, // jmp (a0)
1051     M68K_RTS >> 8, M68K_RTS & 0xff // @1
1052 gbeauche 1.1 };
1053     Execute68k((uint32)proc, &r);
1054     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1055     #else
1056     // Only update cursor
1057     if (HasMacStarted()) {
1058     if (InterruptFlags & INTFLAG_VIA) {
1059     ClearInterruptFlag(INTFLAG_VIA);
1060     ADBInterrupt();
1061 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
1062 gbeauche 1.1 }
1063     }
1064     #endif
1065 gbeauche 1.44 #if EMUL_TIME_STATS
1066     interrupt_time += (clock() - interrupt_start);
1067     #endif
1068 gbeauche 1.1 }
1069     break;
1070     #endif
1071     }
1072 gbeauche 1.40
1073     // We are done with this interrupt
1074     --interrupt_depth;
1075 gbeauche 1.1 }
1076    
1077     static void get_resource(void);
1078     static void get_1_resource(void);
1079     static void get_ind_resource(void);
1080     static void get_1_ind_resource(void);
1081     static void r_get_resource(void);
1082    
1083 gbeauche 1.38 // Execute NATIVE_OP routine
1084     void sheepshaver_cpu::execute_native_op(uint32 selector)
1085 gbeauche 1.1 {
1086 gbeauche 1.15 #if EMUL_TIME_STATS
1087     native_exec_count++;
1088     const clock_t native_exec_start = clock();
1089     #endif
1090    
1091 gbeauche 1.1 switch (selector) {
1092     case NATIVE_PATCH_NAME_REGISTRY:
1093     DoPatchNameRegistry();
1094     break;
1095     case NATIVE_VIDEO_INSTALL_ACCEL:
1096     VideoInstallAccel();
1097     break;
1098     case NATIVE_VIDEO_VBL:
1099     VideoVBL();
1100     break;
1101     case NATIVE_VIDEO_DO_DRIVER_IO:
1102 gbeauche 1.38 gpr(3) = (int32)(int16)VideoDoDriverIO((void *)gpr(3), (void *)gpr(4),
1103     (void *)gpr(5), gpr(6), gpr(7));
1104 gbeauche 1.1 break;
1105 gbeauche 1.16 case NATIVE_ETHER_IRQ:
1106     EtherIRQ();
1107     break;
1108     case NATIVE_ETHER_INIT:
1109 gbeauche 1.38 gpr(3) = InitStreamModule((void *)gpr(3));
1110 gbeauche 1.16 break;
1111     case NATIVE_ETHER_TERM:
1112     TerminateStreamModule();
1113     break;
1114     case NATIVE_ETHER_OPEN:
1115 gbeauche 1.38 gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7));
1116 gbeauche 1.1 break;
1117 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
1118 gbeauche 1.38 gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5));
1119 gbeauche 1.1 break;
1120 gbeauche 1.16 case NATIVE_ETHER_WPUT:
1121 gbeauche 1.38 gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4));
1122 gbeauche 1.1 break;
1123 gbeauche 1.16 case NATIVE_ETHER_RSRV:
1124 gbeauche 1.38 gpr(3) = ether_rsrv((queue_t *)gpr(3));
1125 gbeauche 1.1 break;
1126 gbeauche 1.32 case NATIVE_SYNC_HOOK:
1127 gbeauche 1.38 gpr(3) = NQD_sync_hook(gpr(3));
1128 gbeauche 1.32 break;
1129     case NATIVE_BITBLT_HOOK:
1130 gbeauche 1.38 gpr(3) = NQD_bitblt_hook(gpr(3));
1131 gbeauche 1.32 break;
1132     case NATIVE_BITBLT:
1133 gbeauche 1.38 NQD_bitblt(gpr(3));
1134 gbeauche 1.32 break;
1135     case NATIVE_FILLRECT_HOOK:
1136 gbeauche 1.38 gpr(3) = NQD_fillrect_hook(gpr(3));
1137 gbeauche 1.32 break;
1138     case NATIVE_INVRECT:
1139 gbeauche 1.38 NQD_invrect(gpr(3));
1140 gbeauche 1.32 break;
1141 gbeauche 1.33 case NATIVE_FILLRECT:
1142 gbeauche 1.38 NQD_fillrect(gpr(3));
1143 gbeauche 1.32 break;
1144 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1145     case NATIVE_SERIAL_OPEN:
1146     case NATIVE_SERIAL_PRIME_IN:
1147     case NATIVE_SERIAL_PRIME_OUT:
1148     case NATIVE_SERIAL_CONTROL:
1149     case NATIVE_SERIAL_STATUS:
1150     case NATIVE_SERIAL_CLOSE: {
1151     typedef int16 (*SerialCallback)(uint32, uint32);
1152     static const SerialCallback serial_callbacks[] = {
1153     SerialNothing,
1154     SerialOpen,
1155     SerialPrimeIn,
1156     SerialPrimeOut,
1157     SerialControl,
1158     SerialStatus,
1159     SerialClose
1160     };
1161 gbeauche 1.38 gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4));
1162 gbeauche 1.16 break;
1163     }
1164     case NATIVE_GET_RESOURCE:
1165     case NATIVE_GET_1_RESOURCE:
1166     case NATIVE_GET_IND_RESOURCE:
1167     case NATIVE_GET_1_IND_RESOURCE:
1168     case NATIVE_R_GET_RESOURCE: {
1169     typedef void (*GetResourceCallback)(void);
1170     static const GetResourceCallback get_resource_callbacks[] = {
1171 gbeauche 1.38 ::get_resource,
1172     ::get_1_resource,
1173     ::get_ind_resource,
1174     ::get_1_ind_resource,
1175     ::r_get_resource
1176 gbeauche 1.16 };
1177     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1178 gbeauche 1.1 break;
1179     }
1180 gbeauche 1.7 case NATIVE_MAKE_EXECUTABLE:
1181 gbeauche 1.38 MakeExecutable(0, (void *)gpr(4), gpr(5));
1182 gbeauche 1.26 break;
1183     case NATIVE_CHECK_LOAD_INVOC:
1184 gbeauche 1.38 check_load_invoc(gpr(3), gpr(4), gpr(5));
1185 gbeauche 1.2 break;
1186 gbeauche 1.1 default:
1187     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1188     QuitEmulator();
1189     break;
1190     }
1191 gbeauche 1.15
1192     #if EMUL_TIME_STATS
1193     native_exec_time += (clock() - native_exec_start);
1194     #endif
1195 gbeauche 1.1 }
1196    
1197     /*
1198     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1199     * This must only be called by the emul_thread when in EMUL_OP mode
1200     * r->a[7] is unused, the routine runs on the caller's stack
1201     */
1202    
1203     void Execute68k(uint32 pc, M68kRegisters *r)
1204     {
1205 gbeauche 1.41 ppc_cpu->execute_68k(pc, r);
1206 gbeauche 1.1 }
1207    
1208     /*
1209     * Execute 68k A-Trap from EMUL_OP routine
1210     * r->a[7] is unused, the routine runs on the caller's stack
1211     */
1212    
1213     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1214     {
1215 gbeauche 1.21 SheepVar proc_var(4);
1216     uint32 proc = proc_var.addr();
1217     WriteMacInt16(proc, trap);
1218     WriteMacInt16(proc + 2, M68K_RTS);
1219     Execute68k(proc, r);
1220 gbeauche 1.1 }
1221    
1222     /*
1223     * Call MacOS PPC code
1224     */
1225    
1226     uint32 call_macos(uint32 tvect)
1227     {
1228 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, 0, NULL);
1229 gbeauche 1.1 }
1230    
1231     uint32 call_macos1(uint32 tvect, uint32 arg1)
1232     {
1233     const uint32 args[] = { arg1 };
1234 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1235 gbeauche 1.1 }
1236    
1237     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1238     {
1239     const uint32 args[] = { arg1, arg2 };
1240 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1241 gbeauche 1.1 }
1242    
1243     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1244     {
1245     const uint32 args[] = { arg1, arg2, arg3 };
1246 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1247 gbeauche 1.1 }
1248    
1249     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1250     {
1251     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1252 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1253 gbeauche 1.1 }
1254    
1255     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1256     {
1257     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1258 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1259 gbeauche 1.1 }
1260    
1261     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1262     {
1263     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1264 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1265 gbeauche 1.1 }
1266    
1267     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1268     {
1269     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1270 gbeauche 1.41 return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1271 gbeauche 1.1 }
1272    
1273     /*
1274     * Resource Manager thunks
1275     */
1276    
1277     void get_resource(void)
1278     {
1279 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1280 gbeauche 1.1 }
1281    
1282     void get_1_resource(void)
1283     {
1284 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1285 gbeauche 1.1 }
1286    
1287     void get_ind_resource(void)
1288     {
1289 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1290 gbeauche 1.1 }
1291    
1292     void get_1_ind_resource(void)
1293     {
1294 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1295 gbeauche 1.1 }
1296    
1297     void r_get_resource(void)
1298     {
1299 gbeauche 1.41 ppc_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1300 gbeauche 1.1 }