ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.34
Committed: 2004-04-22T21:45:18Z (20 years, 7 months ago) by gbeauche
Branch: MAIN
Changes since 1.33: +6 -6 lines
Log Message:
NQD: use ReadMacInt*() and WriteMacInt*() accessors, i.e. code should now
be little-endian and 64-bit safe.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43 gbeauche 1.31 #include <stdlib.h>
44 gbeauche 1.1
45     #if ENABLE_MON
46     #include "mon.h"
47     #include "mon_disass.h"
48     #endif
49    
50 gbeauche 1.10 #define DEBUG 0
51 gbeauche 1.1 #include "debug.h"
52    
53 gbeauche 1.15 // Emulation time statistics
54     #define EMUL_TIME_STATS 1
55    
56     #if EMUL_TIME_STATS
57     static clock_t emul_start_time;
58     static uint32 interrupt_count = 0;
59     static clock_t interrupt_time = 0;
60     static uint32 exec68k_count = 0;
61     static clock_t exec68k_time = 0;
62     static uint32 native_exec_count = 0;
63     static clock_t native_exec_time = 0;
64     static uint32 macos_exec_count = 0;
65     static clock_t macos_exec_time = 0;
66     #endif
67    
68 gbeauche 1.1 static void enter_mon(void)
69     {
70     // Start up mon in real-mode
71     #if ENABLE_MON
72     char *arg[4] = {"mon", "-m", "-r", NULL};
73     mon(3, arg);
74     #endif
75     }
76    
77 gbeauche 1.23 // From main_*.cpp
78     extern uintptr SignalStackBase();
79    
80 gbeauche 1.26 // From rsrc_patches.cpp
81     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
82    
83 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
84     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
85    
86 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
87 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
88 gbeauche 1.2
89 gbeauche 1.1 // Enable Execute68k() safety checks?
90     #define SAFE_EXEC_68K 1
91    
92     // Save FP state in Execute68k()?
93     #define SAVE_FP_EXEC_68K 1
94    
95     // Interrupts in EMUL_OP mode?
96     #define INTERRUPTS_IN_EMUL_OP_MODE 1
97    
98     // Interrupts in native mode?
99     #define INTERRUPTS_IN_NATIVE_MODE 1
100    
101     // Pointer to Kernel Data
102 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
103 gbeauche 1.1
104 gbeauche 1.17 // SIGSEGV handler
105     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
106    
107 gbeauche 1.20 // JIT Compiler enabled?
108     static inline bool enable_jit_p()
109     {
110     return PrefsFindBool("jit");
111     }
112    
113 gbeauche 1.1
114     /**
115     * PowerPC emulator glue with special 'sheep' opcodes
116     **/
117    
118 gbeauche 1.18 enum {
119     PPC_I(SHEEP) = PPC_I(MAX),
120     PPC_I(SHEEP_MAX)
121     };
122    
123 gbeauche 1.1 class sheepshaver_cpu
124     : public powerpc_cpu
125     {
126     void init_decoder();
127     void execute_sheep(uint32 opcode);
128    
129     public:
130    
131 gbeauche 1.10 // Constructor
132     sheepshaver_cpu();
133 gbeauche 1.1
134 gbeauche 1.24 // CR & XER accessors
135 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
136     void set_cr(uint32 v) { cr().set(v); }
137 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
138     void set_xer(uint32 v) { xer().set(v); }
139 gbeauche 1.1
140 gbeauche 1.26 // Execute EMUL_OP routine
141     void execute_emul_op(uint32 emul_op);
142    
143 gbeauche 1.1 // Execute 68k routine
144     void execute_68k(uint32 entry, M68kRegisters *r);
145    
146 gbeauche 1.2 // Execute ppc routine
147     void execute_ppc(uint32 entry);
148    
149 gbeauche 1.1 // Execute MacOS/PPC code
150     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
151    
152 gbeauche 1.26 // Compile one instruction
153     virtual bool compile1(codegen_context_t & cg_context);
154    
155 gbeauche 1.1 // Resource manager thunk
156     void get_resource(uint32 old_get_resource);
157    
158     // Handle MacOS interrupt
159 gbeauche 1.4 void interrupt(uint32 entry);
160 gbeauche 1.10 void handle_interrupt();
161 gbeauche 1.2
162 gbeauche 1.17 // Make sure the SIGSEGV handler can access CPU registers
163     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
164 gbeauche 1.1 };
165    
166 gbeauche 1.29 // Memory allocator returning areas aligned on 16-byte boundaries
167     void *operator new(size_t size)
168     {
169     void *p;
170    
171 gbeauche 1.31 #if defined(HAVE_POSIX_MEMALIGN)
172 gbeauche 1.29 if (posix_memalign(&p, 16, size) != 0)
173     throw std::bad_alloc();
174 gbeauche 1.31 #elif defined(HAVE_MEMALIGN)
175     p = memalign(16, size);
176     #elif defined(HAVE_VALLOC)
177     p = valloc(size); // page-aligned!
178     #else
179     /* XXX: handle padding ourselves */
180     p = malloc(size);
181     #endif
182 gbeauche 1.29
183     return p;
184     }
185    
186     void operator delete(void *p)
187     {
188 gbeauche 1.31 #if defined(HAVE_MEMALIGN) || defined(HAVE_VALLOC)
189     #if defined(__GLIBC__)
190     // this is known to work only with GNU libc
191     free(p);
192     #endif
193     #else
194 gbeauche 1.29 free(p);
195 gbeauche 1.31 #endif
196 gbeauche 1.29 }
197 gbeauche 1.1
198 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
199 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
200 gbeauche 1.10 {
201     init_decoder();
202     }
203    
204 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
205     {
206     static const instr_info_t sheep_ii_table[] = {
207     { "sheep",
208 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
209 gbeauche 1.1 NULL,
210 gbeauche 1.18 PPC_I(SHEEP),
211 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
212 gbeauche 1.1 }
213     };
214    
215     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
216     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
217    
218     for (int i = 0; i < ii_count; i++) {
219     const instr_info_t * ii = &sheep_ii_table[i];
220     init_decoder_entry(ii);
221     }
222     }
223    
224     // Forward declaration for native opcode handler
225     static void NativeOp(int selector);
226    
227 gbeauche 1.2 /* NativeOp instruction format:
228     +------------+--------------------------+--+----------+------------+
229     | 6 | |FN| OP | 2 |
230     +------------+--------------------------+--+----------+------------+
231     0 5 |6 19 20 21 25 26 31
232     */
233    
234     typedef bit_field< 20, 20 > FN_field;
235     typedef bit_field< 21, 25 > NATIVE_OP_field;
236     typedef bit_field< 26, 31 > EMUL_OP_field;
237    
238 gbeauche 1.26 // Execute EMUL_OP routine
239     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
240     {
241     M68kRegisters r68;
242     WriteMacInt32(XLM_68K_R25, gpr(25));
243     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
244     for (int i = 0; i < 8; i++)
245     r68.d[i] = gpr(8 + i);
246     for (int i = 0; i < 7; i++)
247     r68.a[i] = gpr(16 + i);
248     r68.a[7] = gpr(1);
249     uint32 saved_cr = get_cr() & CR_field<2>::mask();
250     uint32 saved_xer = get_xer();
251     EmulOp(&r68, gpr(24), emul_op);
252     set_cr(saved_cr);
253     set_xer(saved_xer);
254     for (int i = 0; i < 8; i++)
255     gpr(8 + i) = r68.d[i];
256     for (int i = 0; i < 7; i++)
257     gpr(16 + i) = r68.a[i];
258     gpr(1) = r68.a[7];
259     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
260     }
261    
262 gbeauche 1.1 // Execute SheepShaver instruction
263     void sheepshaver_cpu::execute_sheep(uint32 opcode)
264     {
265     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
266     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
267    
268     switch (opcode & 0x3f) {
269     case 0: // EMUL_RETURN
270     QuitEmulator();
271     break;
272 gbeauche 1.8
273 gbeauche 1.1 case 1: // EXEC_RETURN
274 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
275 gbeauche 1.1 break;
276    
277     case 2: // EXEC_NATIVE
278 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
279     if (FN_field::test(opcode))
280     pc() = lr();
281     else
282     pc() += 4;
283 gbeauche 1.1 break;
284    
285 gbeauche 1.26 default: // EMUL_OP
286     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
287     pc() += 4;
288     break;
289     }
290     }
291    
292     // Compile one instruction
293     bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
294     {
295     #if PPC_ENABLE_JIT
296     const instr_info_t *ii = cg_context.instr_info;
297     if (ii->mnemo != PPC_I(SHEEP))
298     return false;
299    
300     bool compiled = false;
301     powerpc_dyngen & dg = cg_context.codegen;
302     uint32 opcode = cg_context.opcode;
303    
304     switch (opcode & 0x3f) {
305     case 0: // EMUL_RETURN
306     dg.gen_invoke(QuitEmulator);
307     compiled = true;
308     break;
309    
310     case 1: // EXEC_RETURN
311     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
312     compiled = true;
313     break;
314    
315     case 2: { // EXEC_NATIVE
316     uint32 selector = NATIVE_OP_field::extract(opcode);
317     switch (selector) {
318     case NATIVE_PATCH_NAME_REGISTRY:
319     dg.gen_invoke(DoPatchNameRegistry);
320     compiled = true;
321     break;
322     case NATIVE_VIDEO_INSTALL_ACCEL:
323     dg.gen_invoke(VideoInstallAccel);
324     compiled = true;
325     break;
326     case NATIVE_VIDEO_VBL:
327     dg.gen_invoke(VideoVBL);
328     compiled = true;
329     break;
330     case NATIVE_GET_RESOURCE:
331     case NATIVE_GET_1_RESOURCE:
332     case NATIVE_GET_IND_RESOURCE:
333     case NATIVE_GET_1_IND_RESOURCE:
334     case NATIVE_R_GET_RESOURCE: {
335     static const uint32 get_resource_ptr[] = {
336     XLM_GET_RESOURCE,
337     XLM_GET_1_RESOURCE,
338     XLM_GET_IND_RESOURCE,
339     XLM_GET_1_IND_RESOURCE,
340     XLM_R_GET_RESOURCE
341     };
342     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
343     typedef void (*func_t)(dyngen_cpu_base, uint32);
344     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
345     dg.gen_invoke_CPU_im(func, old_get_resource);
346     compiled = true;
347     break;
348     }
349     case NATIVE_DISABLE_INTERRUPT:
350     dg.gen_invoke(DisableInterrupt);
351     compiled = true;
352     break;
353     case NATIVE_ENABLE_INTERRUPT:
354     dg.gen_invoke(EnableInterrupt);
355     compiled = true;
356     break;
357     case NATIVE_CHECK_LOAD_INVOC:
358     dg.gen_load_T0_GPR(3);
359     dg.gen_load_T1_GPR(4);
360     dg.gen_se_16_32_T1();
361     dg.gen_load_T2_GPR(5);
362     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
363     compiled = true;
364     break;
365     }
366     if (FN_field::test(opcode)) {
367     if (compiled) {
368     dg.gen_load_A0_LR();
369     dg.gen_set_PC_A0();
370     }
371     cg_context.done_compile = true;
372     }
373     else
374     cg_context.done_compile = false;
375     break;
376     }
377    
378 gbeauche 1.1 default: { // EMUL_OP
379 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
380     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
381     dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
382     cg_context.done_compile = false;
383     compiled = true;
384 gbeauche 1.1 break;
385     }
386     }
387 gbeauche 1.26 return compiled;
388     #endif
389     return false;
390 gbeauche 1.1 }
391    
392     // Handle MacOS interrupt
393 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
394 gbeauche 1.1 {
395 gbeauche 1.15 #if EMUL_TIME_STATS
396     interrupt_count++;
397     const clock_t interrupt_start = clock();
398     #endif
399    
400 gbeauche 1.4 #if !MULTICORE_CPU
401 gbeauche 1.2 // Save program counters and branch registers
402     uint32 saved_pc = pc();
403     uint32 saved_lr = lr();
404     uint32 saved_ctr= ctr();
405 gbeauche 1.4 uint32 saved_sp = gpr(1);
406 gbeauche 1.2 #endif
407    
408 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
409 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
410 gbeauche 1.1
411     // Build trampoline to return from interrupt
412 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
413 gbeauche 1.1
414     // Prepare registers for nanokernel interrupt routine
415 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
416     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
417 gbeauche 1.1
418 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
419 gbeauche 1.2 assert(gpr(6) != 0);
420 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
421     WriteMacInt32(gpr(6) + 0x144, gpr(8));
422     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
423     WriteMacInt32(gpr(6) + 0x154, gpr(10));
424     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
425     WriteMacInt32(gpr(6) + 0x164, gpr(12));
426     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
427    
428     gpr(1) = KernelDataAddr;
429 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
430 gbeauche 1.1 gpr(8) = 0;
431 gbeauche 1.21 gpr(10) = trampoline.addr();
432     gpr(12) = trampoline.addr();
433 gbeauche 1.8 gpr(13) = get_cr();
434 gbeauche 1.1
435     // rlwimi. r7,r7,8,0,0
436     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
437     record_cr0(result);
438     gpr(7) = result;
439    
440     gpr(11) = 0xf072; // MSR (SRR1)
441 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
442 gbeauche 1.1
443     // Enter nanokernel
444     execute(entry);
445    
446 gbeauche 1.2 #if !MULTICORE_CPU
447     // Restore program counters and branch registers
448     pc() = saved_pc;
449     lr() = saved_lr;
450     ctr()= saved_ctr;
451 gbeauche 1.4 gpr(1) = saved_sp;
452 gbeauche 1.2 #endif
453 gbeauche 1.15
454     #if EMUL_TIME_STATS
455     interrupt_time += (clock() - interrupt_start);
456     #endif
457 gbeauche 1.1 }
458    
459     // Execute 68k routine
460     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
461     {
462 gbeauche 1.15 #if EMUL_TIME_STATS
463     exec68k_count++;
464     const clock_t exec68k_start = clock();
465     #endif
466    
467 gbeauche 1.1 #if SAFE_EXEC_68K
468     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
469     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
470     #endif
471    
472     // Save program counters and branch registers
473     uint32 saved_pc = pc();
474     uint32 saved_lr = lr();
475     uint32 saved_ctr= ctr();
476 gbeauche 1.8 uint32 saved_cr = get_cr();
477 gbeauche 1.1
478     // Create MacOS stack frame
479 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
480 gbeauche 1.1 uint32 sp = gpr(1);
481 gbeauche 1.6 gpr(1) -= 56;
482 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
483    
484     // Save PowerPC registers
485 gbeauche 1.6 uint32 saved_GPRs[19];
486     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
487 gbeauche 1.1 #if SAVE_FP_EXEC_68K
488 gbeauche 1.6 double saved_FPRs[18];
489     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
490 gbeauche 1.1 #endif
491    
492     // Setup registers for 68k emulator
493 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
494 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
495     gpr(8 + i) = r->d[i];
496     for (int i = 0; i < 7; i++) // a[0]..a[6]
497     gpr(16 + i) = r->a[i];
498     gpr(23) = 0;
499     gpr(24) = entry;
500     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
501     gpr(26) = 0;
502     gpr(28) = 0; // VBR
503 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
504     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
505 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
506    
507     // Push return address (points to EXEC_RETURN opcode) on stack
508     gpr(1) -= 4;
509     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
510    
511     // Rentering 68k emulator
512     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
513    
514     // Set r0 to 0 for 68k emulator
515     gpr(0) = 0;
516    
517     // Execute 68k opcode
518     uint32 opcode = ReadMacInt16(gpr(24));
519     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
520     gpr(29) += opcode * 8;
521     execute(gpr(29));
522    
523     // Save r25 (contains current 68k interrupt level)
524     WriteMacInt32(XLM_68K_R25, gpr(25));
525    
526     // Reentering EMUL_OP mode
527     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
528    
529     // Save 68k registers
530     for (int i = 0; i < 8; i++) // d[0]..d[7]
531     r->d[i] = gpr(8 + i);
532     for (int i = 0; i < 7; i++) // a[0]..a[6]
533     r->a[i] = gpr(16 + i);
534    
535     // Restore PowerPC registers
536 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
537 gbeauche 1.1 #if SAVE_FP_EXEC_68K
538 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
539 gbeauche 1.1 #endif
540    
541     // Cleanup stack
542 gbeauche 1.6 gpr(1) += 56;
543 gbeauche 1.1
544     // Restore program counters and branch registers
545     pc() = saved_pc;
546     lr() = saved_lr;
547     ctr()= saved_ctr;
548 gbeauche 1.8 set_cr(saved_cr);
549 gbeauche 1.15
550     #if EMUL_TIME_STATS
551     exec68k_time += (clock() - exec68k_start);
552     #endif
553 gbeauche 1.1 }
554    
555     // Call MacOS PPC code
556     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
557     {
558 gbeauche 1.15 #if EMUL_TIME_STATS
559     macos_exec_count++;
560     const clock_t macos_exec_start = clock();
561     #endif
562    
563 gbeauche 1.1 // Save program counters and branch registers
564     uint32 saved_pc = pc();
565     uint32 saved_lr = lr();
566     uint32 saved_ctr= ctr();
567    
568     // Build trampoline with EXEC_RETURN
569 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
570     lr() = trampoline.addr();
571 gbeauche 1.1
572     gpr(1) -= 64; // Create stack frame
573     uint32 proc = ReadMacInt32(tvect); // Get routine address
574     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
575    
576     // Save PowerPC registers
577     uint32 regs[8];
578     regs[0] = gpr(2);
579     for (int i = 0; i < nargs; i++)
580     regs[i + 1] = gpr(i + 3);
581    
582     // Prepare and call MacOS routine
583     gpr(2) = toc;
584     for (int i = 0; i < nargs; i++)
585     gpr(i + 3) = args[i];
586     execute(proc);
587     uint32 retval = gpr(3);
588    
589     // Restore PowerPC registers
590     for (int i = 0; i <= nargs; i++)
591     gpr(i + 2) = regs[i];
592    
593     // Cleanup stack
594     gpr(1) += 64;
595    
596     // Restore program counters and branch registers
597     pc() = saved_pc;
598     lr() = saved_lr;
599     ctr()= saved_ctr;
600    
601 gbeauche 1.15 #if EMUL_TIME_STATS
602     macos_exec_time += (clock() - macos_exec_start);
603     #endif
604    
605 gbeauche 1.1 return retval;
606     }
607    
608 gbeauche 1.2 // Execute ppc routine
609     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
610     {
611     // Save branch registers
612     uint32 saved_lr = lr();
613    
614 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
615     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
616     lr() = trampoline.addr();
617 gbeauche 1.2
618     execute(entry);
619    
620     // Restore branch registers
621     lr() = saved_lr;
622     }
623    
624 gbeauche 1.1 // Resource Manager thunk
625     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
626     {
627 gbeauche 1.2 uint32 type = gpr(3);
628     int16 id = gpr(4);
629    
630     // Create stack frame
631     gpr(1) -= 56;
632    
633     // Call old routine
634     execute_ppc(old_get_resource);
635    
636     // Call CheckLoad()
637 gbeauche 1.5 uint32 handle = gpr(3);
638 gbeauche 1.2 check_load_invoc(type, id, handle);
639 gbeauche 1.5 gpr(3) = handle;
640 gbeauche 1.2
641     // Cleanup stack
642     gpr(1) += 56;
643 gbeauche 1.1 }
644    
645    
646     /**
647     * SheepShaver CPU engine interface
648     **/
649    
650     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
651     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
652     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
653    
654 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
655     {
656     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
657     main_cpu->invalidate_cache_range(start, end);
658     #if MULTICORE_CPU
659     interrupt_cpu->invalidate_cache_range(start, end);
660     #endif
661     }
662    
663 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
664     {
665     #if MULTICORE_CPU
666     current_cpu = new_cpu;
667     #endif
668     }
669    
670     static inline void cpu_pop()
671     {
672     #if MULTICORE_CPU
673     current_cpu = main_cpu;
674     #endif
675     }
676    
677 gbeauche 1.1 // Dump PPC registers
678     static void dump_registers(void)
679     {
680     current_cpu->dump_registers();
681     }
682    
683     // Dump log
684     static void dump_log(void)
685     {
686     current_cpu->dump_log();
687     }
688    
689     /*
690     * Initialize CPU emulation
691     */
692    
693 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
694 gbeauche 1.1 {
695     #if ENABLE_VOSF
696 gbeauche 1.3 // Handle screen fault
697     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
698     if (Screen_fault_handler(fault_address, fault_instruction))
699     return SIGSEGV_RETURN_SUCCESS;
700 gbeauche 1.1 #endif
701 gbeauche 1.3
702     const uintptr addr = (uintptr)fault_address;
703     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
704     // Ignore writes to ROM
705     if ((addr - ROM_BASE) < ROM_SIZE)
706     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
707    
708 gbeauche 1.17 // Get program counter of target CPU
709     sheepshaver_cpu * const cpu = current_cpu;
710     const uint32 pc = cpu->pc();
711    
712     // Fault in Mac ROM or RAM?
713     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
714     if (mac_fault) {
715    
716     // "VM settings" during MacOS 8 installation
717     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
718     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
719    
720     // MacOS 8.5 installation
721     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
722     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
723    
724     // MacOS 8 serial drivers on startup
725     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
726     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
727    
728     // MacOS 8.1 serial drivers on startup
729     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
730     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
731     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
732     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
733    
734 gbeauche 1.30 // Ignore writes to the zero page
735     else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize())
736     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
737    
738 gbeauche 1.17 // Ignore all other faults, if requested
739     if (PrefsFindBool("ignoresegv"))
740     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
741     }
742 gbeauche 1.3 #else
743     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
744 gbeauche 1.1 #endif
745 gbeauche 1.3
746     printf("SIGSEGV\n");
747     printf(" pc %p\n", fault_instruction);
748     printf(" ea %p\n", fault_address);
749     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
750 gbeauche 1.1 dump_registers();
751     current_cpu->dump_log();
752     enter_mon();
753     QuitEmulator();
754 gbeauche 1.3
755     return SIGSEGV_RETURN_FAILURE;
756 gbeauche 1.1 }
757    
758     void init_emul_ppc(void)
759     {
760     // Initialize main CPU emulator
761     main_cpu = new sheepshaver_cpu();
762     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
763 gbeauche 1.24 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
764 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
765    
766 gbeauche 1.2 #if MULTICORE_CPU
767 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
768     interrupt_cpu = new sheepshaver_cpu();
769 gbeauche 1.2 #endif
770 gbeauche 1.1
771 gbeauche 1.3 // Install the handler for SIGSEGV
772     sigsegv_install_handler(sigsegv_handler);
773 gbeauche 1.4
774 gbeauche 1.1 #if ENABLE_MON
775     // Install "regs" command in cxmon
776     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
777     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
778     #endif
779 gbeauche 1.15
780     #if EMUL_TIME_STATS
781     emul_start_time = clock();
782     #endif
783 gbeauche 1.1 }
784    
785     /*
786 gbeauche 1.14 * Deinitialize emulation
787     */
788    
789     void exit_emul_ppc(void)
790     {
791 gbeauche 1.15 #if EMUL_TIME_STATS
792     clock_t emul_end_time = clock();
793    
794     printf("### Statistics for SheepShaver emulation parts\n");
795     const clock_t emul_time = emul_end_time - emul_start_time;
796     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
797     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
798     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
799    
800     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
801     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
802     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
803     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
804     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
805     } while (0)
806    
807     PRINT_STATS("Execute68k[Trap] execution", exec68k);
808     PRINT_STATS("NativeOp execution", native_exec);
809     PRINT_STATS("MacOS routine execution", macos_exec);
810    
811     #undef PRINT_STATS
812     printf("\n");
813     #endif
814    
815 gbeauche 1.14 delete main_cpu;
816     #if MULTICORE_CPU
817     delete interrupt_cpu;
818     #endif
819     }
820    
821     /*
822 gbeauche 1.1 * Emulation loop
823     */
824    
825     void emul_ppc(uint32 entry)
826     {
827     current_cpu = main_cpu;
828 gbeauche 1.24 #if 0
829 gbeauche 1.1 current_cpu->start_log();
830 gbeauche 1.10 #endif
831     // start emulation loop and enable code translation or caching
832 gbeauche 1.19 current_cpu->execute(entry);
833 gbeauche 1.1 }
834    
835     /*
836     * Handle PowerPC interrupt
837     */
838    
839 gbeauche 1.11 #if ASYNC_IRQ
840     void HandleInterrupt(void)
841     {
842     main_cpu->handle_interrupt();
843     }
844     #else
845 gbeauche 1.2 void TriggerInterrupt(void)
846     {
847     #if 0
848     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
849     #else
850 gbeauche 1.10 // Trigger interrupt to main cpu only
851     if (main_cpu)
852     main_cpu->trigger_interrupt();
853 gbeauche 1.2 #endif
854     }
855 gbeauche 1.4 #endif
856 gbeauche 1.2
857 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
858 gbeauche 1.1 {
859     // Do nothing if interrupts are disabled
860 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
861 gbeauche 1.1 return;
862    
863 gbeauche 1.2 // Do nothing if there is no interrupt pending
864     if (InterruptFlags == 0)
865 gbeauche 1.1 return;
866    
867     // Disable MacOS stack sniffer
868     WriteMacInt32(0x110, 0);
869    
870     // Interrupt action depends on current run mode
871     switch (ReadMacInt32(XLM_RUN_MODE)) {
872     case MODE_68K:
873     // 68k emulator active, trigger 68k interrupt level 1
874     assert(current_cpu == main_cpu);
875     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
876 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
877 gbeauche 1.1 break;
878    
879     #if INTERRUPTS_IN_NATIVE_MODE
880     case MODE_NATIVE:
881     // 68k emulator inactive, in nanokernel?
882     assert(current_cpu == main_cpu);
883 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
884 gbeauche 1.1 // Prepare for 68k interrupt level 1
885     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
886     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
887     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
888     | tswap32(kernel_data->v[0x674 >> 2]));
889    
890     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
891 gbeauche 1.2 DisableInterrupt();
892     cpu_push(interrupt_cpu);
893 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
894 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
895 gbeauche 1.1 else
896 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
897 gbeauche 1.2 cpu_pop();
898 gbeauche 1.1 }
899     break;
900     #endif
901    
902     #if INTERRUPTS_IN_EMUL_OP_MODE
903     case MODE_EMUL_OP:
904     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
905     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
906     #if 1
907     // Execute full 68k interrupt routine
908     M68kRegisters r;
909     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
910     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
911 gbeauche 1.2 static const uint8 proc[] = {
912     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
913     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
914     0x40, 0xe7, // move sr,-(sp) (saved SR)
915     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
916     0x4e, 0xd0, // jmp (a0)
917     M68K_RTS >> 8, M68K_RTS & 0xff // @1
918 gbeauche 1.1 };
919     Execute68k((uint32)proc, &r);
920     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
921     #else
922     // Only update cursor
923     if (HasMacStarted()) {
924     if (InterruptFlags & INTFLAG_VIA) {
925     ClearInterruptFlag(INTFLAG_VIA);
926     ADBInterrupt();
927 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
928 gbeauche 1.1 }
929     }
930     #endif
931     }
932     break;
933     #endif
934     }
935     }
936    
937     static void get_resource(void);
938     static void get_1_resource(void);
939     static void get_ind_resource(void);
940     static void get_1_ind_resource(void);
941     static void r_get_resource(void);
942    
943     #define GPR(REG) current_cpu->gpr(REG)
944    
945     static void NativeOp(int selector)
946     {
947 gbeauche 1.15 #if EMUL_TIME_STATS
948     native_exec_count++;
949     const clock_t native_exec_start = clock();
950     #endif
951    
952 gbeauche 1.1 switch (selector) {
953     case NATIVE_PATCH_NAME_REGISTRY:
954     DoPatchNameRegistry();
955     break;
956     case NATIVE_VIDEO_INSTALL_ACCEL:
957     VideoInstallAccel();
958     break;
959     case NATIVE_VIDEO_VBL:
960     VideoVBL();
961     break;
962     case NATIVE_VIDEO_DO_DRIVER_IO:
963     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
964     (void *)GPR(5), GPR(6), GPR(7));
965     break;
966 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
967     case NATIVE_ETHER_IRQ:
968     EtherIRQ();
969     break;
970     case NATIVE_ETHER_INIT:
971     GPR(3) = InitStreamModule((void *)GPR(3));
972     break;
973     case NATIVE_ETHER_TERM:
974     TerminateStreamModule();
975     break;
976     case NATIVE_ETHER_OPEN:
977     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
978 gbeauche 1.1 break;
979 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
980     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
981 gbeauche 1.1 break;
982 gbeauche 1.16 case NATIVE_ETHER_WPUT:
983     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
984 gbeauche 1.1 break;
985 gbeauche 1.16 case NATIVE_ETHER_RSRV:
986     GPR(3) = ether_rsrv((queue_t *)GPR(3));
987 gbeauche 1.1 break;
988 gbeauche 1.34 #else
989     case NATIVE_ETHER_INIT:
990     // FIXME: needs more complicated thunks
991     GPR(3) = false;
992     break;
993     #endif
994 gbeauche 1.32 case NATIVE_SYNC_HOOK:
995     GPR(3) = NQD_sync_hook(GPR(3));
996     break;
997     case NATIVE_BITBLT_HOOK:
998     GPR(3) = NQD_bitblt_hook(GPR(3));
999     break;
1000     case NATIVE_BITBLT:
1001     NQD_bitblt(GPR(3));
1002     break;
1003     case NATIVE_FILLRECT_HOOK:
1004     GPR(3) = NQD_fillrect_hook(GPR(3));
1005     break;
1006     case NATIVE_INVRECT:
1007     NQD_invrect(GPR(3));
1008     break;
1009 gbeauche 1.33 case NATIVE_FILLRECT:
1010     NQD_fillrect(GPR(3));
1011 gbeauche 1.32 break;
1012 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
1013     case NATIVE_SERIAL_OPEN:
1014     case NATIVE_SERIAL_PRIME_IN:
1015     case NATIVE_SERIAL_PRIME_OUT:
1016     case NATIVE_SERIAL_CONTROL:
1017     case NATIVE_SERIAL_STATUS:
1018     case NATIVE_SERIAL_CLOSE: {
1019     typedef int16 (*SerialCallback)(uint32, uint32);
1020     static const SerialCallback serial_callbacks[] = {
1021     SerialNothing,
1022     SerialOpen,
1023     SerialPrimeIn,
1024     SerialPrimeOut,
1025     SerialControl,
1026     SerialStatus,
1027     SerialClose
1028     };
1029     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
1030 gbeauche 1.16 break;
1031     }
1032     case NATIVE_GET_RESOURCE:
1033     case NATIVE_GET_1_RESOURCE:
1034     case NATIVE_GET_IND_RESOURCE:
1035     case NATIVE_GET_1_IND_RESOURCE:
1036     case NATIVE_R_GET_RESOURCE: {
1037     typedef void (*GetResourceCallback)(void);
1038     static const GetResourceCallback get_resource_callbacks[] = {
1039     get_resource,
1040     get_1_resource,
1041     get_ind_resource,
1042     get_1_ind_resource,
1043     r_get_resource
1044     };
1045     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1046 gbeauche 1.1 break;
1047     }
1048 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
1049     DisableInterrupt();
1050     break;
1051     case NATIVE_ENABLE_INTERRUPT:
1052     EnableInterrupt();
1053 gbeauche 1.7 break;
1054     case NATIVE_MAKE_EXECUTABLE:
1055     MakeExecutable(0, (void *)GPR(4), GPR(5));
1056 gbeauche 1.26 break;
1057     case NATIVE_CHECK_LOAD_INVOC:
1058     check_load_invoc(GPR(3), GPR(4), GPR(5));
1059 gbeauche 1.2 break;
1060 gbeauche 1.1 default:
1061     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1062     QuitEmulator();
1063     break;
1064     }
1065 gbeauche 1.15
1066     #if EMUL_TIME_STATS
1067     native_exec_time += (clock() - native_exec_start);
1068     #endif
1069 gbeauche 1.1 }
1070    
1071     /*
1072     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1073     * This must only be called by the emul_thread when in EMUL_OP mode
1074     * r->a[7] is unused, the routine runs on the caller's stack
1075     */
1076    
1077     void Execute68k(uint32 pc, M68kRegisters *r)
1078     {
1079     current_cpu->execute_68k(pc, r);
1080     }
1081    
1082     /*
1083     * Execute 68k A-Trap from EMUL_OP routine
1084     * r->a[7] is unused, the routine runs on the caller's stack
1085     */
1086    
1087     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1088     {
1089 gbeauche 1.21 SheepVar proc_var(4);
1090     uint32 proc = proc_var.addr();
1091     WriteMacInt16(proc, trap);
1092     WriteMacInt16(proc + 2, M68K_RTS);
1093     Execute68k(proc, r);
1094 gbeauche 1.1 }
1095    
1096     /*
1097     * Call MacOS PPC code
1098     */
1099    
1100     uint32 call_macos(uint32 tvect)
1101     {
1102     return current_cpu->execute_macos_code(tvect, 0, NULL);
1103     }
1104    
1105     uint32 call_macos1(uint32 tvect, uint32 arg1)
1106     {
1107     const uint32 args[] = { arg1 };
1108     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1109     }
1110    
1111     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1112     {
1113     const uint32 args[] = { arg1, arg2 };
1114     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1115     }
1116    
1117     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1118     {
1119     const uint32 args[] = { arg1, arg2, arg3 };
1120     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1121     }
1122    
1123     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1124     {
1125     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1126     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1127     }
1128    
1129     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1130     {
1131     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1132     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1133     }
1134    
1135     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1136     {
1137     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1138     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1139     }
1140    
1141     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1142     {
1143     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1144     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1145     }
1146    
1147     /*
1148     * Resource Manager thunks
1149     */
1150    
1151     void get_resource(void)
1152     {
1153     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1154     }
1155    
1156     void get_1_resource(void)
1157     {
1158     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1159     }
1160    
1161     void get_ind_resource(void)
1162     {
1163     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1164     }
1165    
1166     void get_1_ind_resource(void)
1167     {
1168     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1169     }
1170    
1171     void r_get_resource(void)
1172     {
1173     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1174     }