ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/kpx_cpu/sheepshaver_glue.cpp
Revision: 1.28
Committed: 2004-02-16T15:34:55Z (20 years, 9 months ago) by gbeauche
Branch: MAIN
Changes since 1.27: +4 -1 lines
Log Message:
GCC 3.4 does not allow the lazy_allocator instantiation, the other form is
not supported by any GCC but ICC accepts it.

File Contents

# User Rev Content
1 gbeauche 1.1 /*
2     * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 gbeauche 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     #include "sysdeps.h"
22     #include "cpu_emulation.h"
23     #include "main.h"
24 gbeauche 1.3 #include "prefs.h"
25 gbeauche 1.1 #include "xlowmem.h"
26     #include "emul_op.h"
27     #include "rom_patches.h"
28     #include "macos_util.h"
29     #include "block-alloc.hpp"
30     #include "sigsegv.h"
31     #include "cpu/ppc/ppc-cpu.hpp"
32     #include "cpu/ppc/ppc-operations.hpp"
33 gbeauche 1.18 #include "cpu/ppc/ppc-instructions.hpp"
34 gbeauche 1.21 #include "thunks.h"
35 gbeauche 1.1
36     // Used for NativeOp trampolines
37     #include "video.h"
38     #include "name_registry.h"
39     #include "serial.h"
40 gbeauche 1.16 #include "ether.h"
41 gbeauche 1.1
42     #include <stdio.h>
43    
44     #if ENABLE_MON
45     #include "mon.h"
46     #include "mon_disass.h"
47     #endif
48    
49 gbeauche 1.10 #define DEBUG 0
50 gbeauche 1.1 #include "debug.h"
51    
52 gbeauche 1.15 // Emulation time statistics
53     #define EMUL_TIME_STATS 1
54    
55     #if EMUL_TIME_STATS
56     static clock_t emul_start_time;
57     static uint32 interrupt_count = 0;
58     static clock_t interrupt_time = 0;
59     static uint32 exec68k_count = 0;
60     static clock_t exec68k_time = 0;
61     static uint32 native_exec_count = 0;
62     static clock_t native_exec_time = 0;
63     static uint32 macos_exec_count = 0;
64     static clock_t macos_exec_time = 0;
65     #endif
66    
67 gbeauche 1.1 static void enter_mon(void)
68     {
69     // Start up mon in real-mode
70     #if ENABLE_MON
71     char *arg[4] = {"mon", "-m", "-r", NULL};
72     mon(3, arg);
73     #endif
74     }
75    
76 gbeauche 1.23 // From main_*.cpp
77     extern uintptr SignalStackBase();
78    
79 gbeauche 1.26 // From rsrc_patches.cpp
80     extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h);
81    
82 gbeauche 1.21 // PowerPC EmulOp to exit from emulation looop
83     const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1;
84    
85 gbeauche 1.2 // Enable multicore (main/interrupts) cpu emulation?
86 gbeauche 1.9 #define MULTICORE_CPU (ASYNC_IRQ ? 1 : 0)
87 gbeauche 1.2
88 gbeauche 1.1 // Enable Execute68k() safety checks?
89     #define SAFE_EXEC_68K 1
90    
91     // Save FP state in Execute68k()?
92     #define SAVE_FP_EXEC_68K 1
93    
94     // Interrupts in EMUL_OP mode?
95     #define INTERRUPTS_IN_EMUL_OP_MODE 1
96    
97     // Interrupts in native mode?
98     #define INTERRUPTS_IN_NATIVE_MODE 1
99    
100     // Pointer to Kernel Data
101 gbeauche 1.4 static KernelData * const kernel_data = (KernelData *)KERNEL_DATA_BASE;
102 gbeauche 1.1
103 gbeauche 1.17 // SIGSEGV handler
104     static sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
105    
106 gbeauche 1.20 // JIT Compiler enabled?
107     static inline bool enable_jit_p()
108     {
109     return PrefsFindBool("jit");
110     }
111    
112 gbeauche 1.1
113     /**
114     * PowerPC emulator glue with special 'sheep' opcodes
115     **/
116    
117 gbeauche 1.18 enum {
118     PPC_I(SHEEP) = PPC_I(MAX),
119     PPC_I(SHEEP_MAX)
120     };
121    
122 gbeauche 1.1 class sheepshaver_cpu
123     : public powerpc_cpu
124     {
125     void init_decoder();
126     void execute_sheep(uint32 opcode);
127    
128     public:
129    
130 gbeauche 1.10 // Constructor
131     sheepshaver_cpu();
132 gbeauche 1.1
133 gbeauche 1.24 // CR & XER accessors
134 gbeauche 1.1 uint32 get_cr() const { return cr().get(); }
135     void set_cr(uint32 v) { cr().set(v); }
136 gbeauche 1.24 uint32 get_xer() const { return xer().get(); }
137     void set_xer(uint32 v) { xer().set(v); }
138 gbeauche 1.1
139 gbeauche 1.26 // Execute EMUL_OP routine
140     void execute_emul_op(uint32 emul_op);
141    
142 gbeauche 1.1 // Execute 68k routine
143     void execute_68k(uint32 entry, M68kRegisters *r);
144    
145 gbeauche 1.2 // Execute ppc routine
146     void execute_ppc(uint32 entry);
147    
148 gbeauche 1.1 // Execute MacOS/PPC code
149     uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args);
150    
151 gbeauche 1.26 // Compile one instruction
152     virtual bool compile1(codegen_context_t & cg_context);
153    
154 gbeauche 1.1 // Resource manager thunk
155     void get_resource(uint32 old_get_resource);
156    
157     // Handle MacOS interrupt
158 gbeauche 1.4 void interrupt(uint32 entry);
159 gbeauche 1.10 void handle_interrupt();
160 gbeauche 1.2
161 gbeauche 1.1 // Lazy memory allocator (one item at a time)
162     void *operator new(size_t size)
163     { return allocator_helper< sheepshaver_cpu, lazy_allocator >::allocate(); }
164     void operator delete(void *p)
165     { allocator_helper< sheepshaver_cpu, lazy_allocator >::deallocate(p); }
166     // FIXME: really make surre array allocation fail at link time?
167     void *operator new[](size_t);
168     void operator delete[](void *p);
169 gbeauche 1.17
170     // Make sure the SIGSEGV handler can access CPU registers
171     friend sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
172 gbeauche 1.1 };
173    
174 gbeauche 1.28 // FIXME: this specialization doesn't work with GCC
175     // template<> lazy_allocator< sheepshaver_cpu > allocator_helper< sheepshaver_cpu, lazy_allocator >::allocator;
176     template< class data_type, template< class > class allocator_type >
177     allocator_type< data_type > allocator_helper< data_type, allocator_type >::allocator;
178 gbeauche 1.1
179 gbeauche 1.10 sheepshaver_cpu::sheepshaver_cpu()
180 gbeauche 1.20 : powerpc_cpu(enable_jit_p())
181 gbeauche 1.10 {
182     init_decoder();
183     }
184    
185 gbeauche 1.1 void sheepshaver_cpu::init_decoder()
186     {
187     static const instr_info_t sheep_ii_table[] = {
188     { "sheep",
189 gbeauche 1.13 (execute_pmf)&sheepshaver_cpu::execute_sheep,
190 gbeauche 1.1 NULL,
191 gbeauche 1.18 PPC_I(SHEEP),
192 gbeauche 1.7 D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
193 gbeauche 1.1 }
194     };
195    
196     const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]);
197     D(bug("SheepShaver extra decode table has %d entries\n", ii_count));
198    
199     for (int i = 0; i < ii_count; i++) {
200     const instr_info_t * ii = &sheep_ii_table[i];
201     init_decoder_entry(ii);
202     }
203     }
204    
205     // Forward declaration for native opcode handler
206     static void NativeOp(int selector);
207    
208 gbeauche 1.2 /* NativeOp instruction format:
209     +------------+--------------------------+--+----------+------------+
210     | 6 | |FN| OP | 2 |
211     +------------+--------------------------+--+----------+------------+
212     0 5 |6 19 20 21 25 26 31
213     */
214    
215     typedef bit_field< 20, 20 > FN_field;
216     typedef bit_field< 21, 25 > NATIVE_OP_field;
217     typedef bit_field< 26, 31 > EMUL_OP_field;
218    
219 gbeauche 1.26 // Execute EMUL_OP routine
220     void sheepshaver_cpu::execute_emul_op(uint32 emul_op)
221     {
222     M68kRegisters r68;
223     WriteMacInt32(XLM_68K_R25, gpr(25));
224     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
225     for (int i = 0; i < 8; i++)
226     r68.d[i] = gpr(8 + i);
227     for (int i = 0; i < 7; i++)
228     r68.a[i] = gpr(16 + i);
229     r68.a[7] = gpr(1);
230     uint32 saved_cr = get_cr() & CR_field<2>::mask();
231     uint32 saved_xer = get_xer();
232     EmulOp(&r68, gpr(24), emul_op);
233     set_cr(saved_cr);
234     set_xer(saved_xer);
235     for (int i = 0; i < 8; i++)
236     gpr(8 + i) = r68.d[i];
237     for (int i = 0; i < 7; i++)
238     gpr(16 + i) = r68.a[i];
239     gpr(1) = r68.a[7];
240     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
241     }
242    
243 gbeauche 1.1 // Execute SheepShaver instruction
244     void sheepshaver_cpu::execute_sheep(uint32 opcode)
245     {
246     // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24)));
247     assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3);
248    
249     switch (opcode & 0x3f) {
250     case 0: // EMUL_RETURN
251     QuitEmulator();
252     break;
253 gbeauche 1.8
254 gbeauche 1.1 case 1: // EXEC_RETURN
255 gbeauche 1.12 spcflags().set(SPCFLAG_CPU_EXEC_RETURN);
256 gbeauche 1.1 break;
257    
258     case 2: // EXEC_NATIVE
259 gbeauche 1.2 NativeOp(NATIVE_OP_field::extract(opcode));
260     if (FN_field::test(opcode))
261     pc() = lr();
262     else
263     pc() += 4;
264 gbeauche 1.1 break;
265    
266 gbeauche 1.26 default: // EMUL_OP
267     execute_emul_op(EMUL_OP_field::extract(opcode) - 3);
268     pc() += 4;
269     break;
270     }
271     }
272    
273     // Compile one instruction
274     bool sheepshaver_cpu::compile1(codegen_context_t & cg_context)
275     {
276     #if PPC_ENABLE_JIT
277     const instr_info_t *ii = cg_context.instr_info;
278     if (ii->mnemo != PPC_I(SHEEP))
279     return false;
280    
281     bool compiled = false;
282     powerpc_dyngen & dg = cg_context.codegen;
283     uint32 opcode = cg_context.opcode;
284    
285     switch (opcode & 0x3f) {
286     case 0: // EMUL_RETURN
287     dg.gen_invoke(QuitEmulator);
288     compiled = true;
289     break;
290    
291     case 1: // EXEC_RETURN
292     dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN);
293     compiled = true;
294     break;
295    
296     case 2: { // EXEC_NATIVE
297     uint32 selector = NATIVE_OP_field::extract(opcode);
298     switch (selector) {
299     case NATIVE_PATCH_NAME_REGISTRY:
300     dg.gen_invoke(DoPatchNameRegistry);
301     compiled = true;
302     break;
303     case NATIVE_VIDEO_INSTALL_ACCEL:
304     dg.gen_invoke(VideoInstallAccel);
305     compiled = true;
306     break;
307     case NATIVE_VIDEO_VBL:
308     dg.gen_invoke(VideoVBL);
309     compiled = true;
310     break;
311     case NATIVE_GET_RESOURCE:
312     case NATIVE_GET_1_RESOURCE:
313     case NATIVE_GET_IND_RESOURCE:
314     case NATIVE_GET_1_IND_RESOURCE:
315     case NATIVE_R_GET_RESOURCE: {
316     static const uint32 get_resource_ptr[] = {
317     XLM_GET_RESOURCE,
318     XLM_GET_1_RESOURCE,
319     XLM_GET_IND_RESOURCE,
320     XLM_GET_1_IND_RESOURCE,
321     XLM_R_GET_RESOURCE
322     };
323     uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]);
324     typedef void (*func_t)(dyngen_cpu_base, uint32);
325     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr();
326     dg.gen_invoke_CPU_im(func, old_get_resource);
327     compiled = true;
328     break;
329     }
330     case NATIVE_DISABLE_INTERRUPT:
331     dg.gen_invoke(DisableInterrupt);
332     compiled = true;
333     break;
334     case NATIVE_ENABLE_INTERRUPT:
335     dg.gen_invoke(EnableInterrupt);
336     compiled = true;
337     break;
338     case NATIVE_CHECK_LOAD_INVOC:
339     dg.gen_load_T0_GPR(3);
340     dg.gen_load_T1_GPR(4);
341     dg.gen_se_16_32_T1();
342     dg.gen_load_T2_GPR(5);
343     dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc);
344     compiled = true;
345     break;
346     }
347     if (FN_field::test(opcode)) {
348     if (compiled) {
349     dg.gen_load_A0_LR();
350     dg.gen_set_PC_A0();
351     }
352     cg_context.done_compile = true;
353     }
354     else
355     cg_context.done_compile = false;
356     break;
357     }
358    
359 gbeauche 1.1 default: { // EMUL_OP
360 gbeauche 1.26 typedef void (*func_t)(dyngen_cpu_base, uint32);
361     func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr();
362     dg.gen_invoke_CPU_im(func, EMUL_OP_field::extract(opcode) - 3);
363     cg_context.done_compile = false;
364     compiled = true;
365 gbeauche 1.1 break;
366     }
367     }
368 gbeauche 1.26 return compiled;
369     #endif
370     return false;
371 gbeauche 1.1 }
372    
373     // Handle MacOS interrupt
374 gbeauche 1.4 void sheepshaver_cpu::interrupt(uint32 entry)
375 gbeauche 1.1 {
376 gbeauche 1.15 #if EMUL_TIME_STATS
377     interrupt_count++;
378     const clock_t interrupt_start = clock();
379     #endif
380    
381 gbeauche 1.4 #if !MULTICORE_CPU
382 gbeauche 1.2 // Save program counters and branch registers
383     uint32 saved_pc = pc();
384     uint32 saved_lr = lr();
385     uint32 saved_ctr= ctr();
386 gbeauche 1.4 uint32 saved_sp = gpr(1);
387 gbeauche 1.2 #endif
388    
389 gbeauche 1.4 // Initialize stack pointer to SheepShaver alternate stack base
390 gbeauche 1.23 gpr(1) = SignalStackBase() - 64;
391 gbeauche 1.1
392     // Build trampoline to return from interrupt
393 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
394 gbeauche 1.1
395     // Prepare registers for nanokernel interrupt routine
396 gbeauche 1.5 kernel_data->v[0x004 >> 2] = htonl(gpr(1));
397     kernel_data->v[0x018 >> 2] = htonl(gpr(6));
398 gbeauche 1.1
399 gbeauche 1.5 gpr(6) = ntohl(kernel_data->v[0x65c >> 2]);
400 gbeauche 1.2 assert(gpr(6) != 0);
401 gbeauche 1.1 WriteMacInt32(gpr(6) + 0x13c, gpr(7));
402     WriteMacInt32(gpr(6) + 0x144, gpr(8));
403     WriteMacInt32(gpr(6) + 0x14c, gpr(9));
404     WriteMacInt32(gpr(6) + 0x154, gpr(10));
405     WriteMacInt32(gpr(6) + 0x15c, gpr(11));
406     WriteMacInt32(gpr(6) + 0x164, gpr(12));
407     WriteMacInt32(gpr(6) + 0x16c, gpr(13));
408    
409     gpr(1) = KernelDataAddr;
410 gbeauche 1.5 gpr(7) = ntohl(kernel_data->v[0x660 >> 2]);
411 gbeauche 1.1 gpr(8) = 0;
412 gbeauche 1.21 gpr(10) = trampoline.addr();
413     gpr(12) = trampoline.addr();
414 gbeauche 1.8 gpr(13) = get_cr();
415 gbeauche 1.1
416     // rlwimi. r7,r7,8,0,0
417     uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7));
418     record_cr0(result);
419     gpr(7) = result;
420    
421     gpr(11) = 0xf072; // MSR (SRR1)
422 gbeauche 1.8 cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000));
423 gbeauche 1.1
424     // Enter nanokernel
425     execute(entry);
426    
427 gbeauche 1.2 #if !MULTICORE_CPU
428     // Restore program counters and branch registers
429     pc() = saved_pc;
430     lr() = saved_lr;
431     ctr()= saved_ctr;
432 gbeauche 1.4 gpr(1) = saved_sp;
433 gbeauche 1.2 #endif
434 gbeauche 1.15
435     #if EMUL_TIME_STATS
436     interrupt_time += (clock() - interrupt_start);
437     #endif
438 gbeauche 1.1 }
439    
440     // Execute 68k routine
441     void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r)
442     {
443 gbeauche 1.15 #if EMUL_TIME_STATS
444     exec68k_count++;
445     const clock_t exec68k_start = clock();
446     #endif
447    
448 gbeauche 1.1 #if SAFE_EXEC_68K
449     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
450     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
451     #endif
452    
453     // Save program counters and branch registers
454     uint32 saved_pc = pc();
455     uint32 saved_lr = lr();
456     uint32 saved_ctr= ctr();
457 gbeauche 1.8 uint32 saved_cr = get_cr();
458 gbeauche 1.1
459     // Create MacOS stack frame
460 gbeauche 1.6 // FIXME: make sure MacOS doesn't expect PPC registers to live on top
461 gbeauche 1.1 uint32 sp = gpr(1);
462 gbeauche 1.6 gpr(1) -= 56;
463 gbeauche 1.1 WriteMacInt32(gpr(1), sp);
464    
465     // Save PowerPC registers
466 gbeauche 1.6 uint32 saved_GPRs[19];
467     memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13));
468 gbeauche 1.1 #if SAVE_FP_EXEC_68K
469 gbeauche 1.6 double saved_FPRs[18];
470     memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14));
471 gbeauche 1.1 #endif
472    
473     // Setup registers for 68k emulator
474 gbeauche 1.2 cr().set(CR_SO_field<2>::mask()); // Supervisor mode
475 gbeauche 1.1 for (int i = 0; i < 8; i++) // d[0]..d[7]
476     gpr(8 + i) = r->d[i];
477     for (int i = 0; i < 7; i++) // a[0]..a[6]
478     gpr(16 + i) = r->a[i];
479     gpr(23) = 0;
480     gpr(24) = entry;
481     gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR
482     gpr(26) = 0;
483     gpr(28) = 0; // VBR
484 gbeauche 1.5 gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table
485     gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator
486 gbeauche 1.1 gpr(31) = KernelDataAddr + 0x1000;
487    
488     // Push return address (points to EXEC_RETURN opcode) on stack
489     gpr(1) -= 4;
490     WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE);
491    
492     // Rentering 68k emulator
493     WriteMacInt32(XLM_RUN_MODE, MODE_68K);
494    
495     // Set r0 to 0 for 68k emulator
496     gpr(0) = 0;
497    
498     // Execute 68k opcode
499     uint32 opcode = ReadMacInt16(gpr(24));
500     gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2);
501     gpr(29) += opcode * 8;
502     execute(gpr(29));
503    
504     // Save r25 (contains current 68k interrupt level)
505     WriteMacInt32(XLM_68K_R25, gpr(25));
506    
507     // Reentering EMUL_OP mode
508     WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP);
509    
510     // Save 68k registers
511     for (int i = 0; i < 8; i++) // d[0]..d[7]
512     r->d[i] = gpr(8 + i);
513     for (int i = 0; i < 7; i++) // a[0]..a[6]
514     r->a[i] = gpr(16 + i);
515    
516     // Restore PowerPC registers
517 gbeauche 1.6 memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13));
518 gbeauche 1.1 #if SAVE_FP_EXEC_68K
519 gbeauche 1.6 memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14));
520 gbeauche 1.1 #endif
521    
522     // Cleanup stack
523 gbeauche 1.6 gpr(1) += 56;
524 gbeauche 1.1
525     // Restore program counters and branch registers
526     pc() = saved_pc;
527     lr() = saved_lr;
528     ctr()= saved_ctr;
529 gbeauche 1.8 set_cr(saved_cr);
530 gbeauche 1.15
531     #if EMUL_TIME_STATS
532     exec68k_time += (clock() - exec68k_start);
533     #endif
534 gbeauche 1.1 }
535    
536     // Call MacOS PPC code
537     uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args)
538     {
539 gbeauche 1.15 #if EMUL_TIME_STATS
540     macos_exec_count++;
541     const clock_t macos_exec_start = clock();
542     #endif
543    
544 gbeauche 1.1 // Save program counters and branch registers
545     uint32 saved_pc = pc();
546     uint32 saved_lr = lr();
547     uint32 saved_ctr= ctr();
548    
549     // Build trampoline with EXEC_RETURN
550 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
551     lr() = trampoline.addr();
552 gbeauche 1.1
553     gpr(1) -= 64; // Create stack frame
554     uint32 proc = ReadMacInt32(tvect); // Get routine address
555     uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer
556    
557     // Save PowerPC registers
558     uint32 regs[8];
559     regs[0] = gpr(2);
560     for (int i = 0; i < nargs; i++)
561     regs[i + 1] = gpr(i + 3);
562    
563     // Prepare and call MacOS routine
564     gpr(2) = toc;
565     for (int i = 0; i < nargs; i++)
566     gpr(i + 3) = args[i];
567     execute(proc);
568     uint32 retval = gpr(3);
569    
570     // Restore PowerPC registers
571     for (int i = 0; i <= nargs; i++)
572     gpr(i + 2) = regs[i];
573    
574     // Cleanup stack
575     gpr(1) += 64;
576    
577     // Restore program counters and branch registers
578     pc() = saved_pc;
579     lr() = saved_lr;
580     ctr()= saved_ctr;
581    
582 gbeauche 1.15 #if EMUL_TIME_STATS
583     macos_exec_time += (clock() - macos_exec_start);
584     #endif
585    
586 gbeauche 1.1 return retval;
587     }
588    
589 gbeauche 1.2 // Execute ppc routine
590     inline void sheepshaver_cpu::execute_ppc(uint32 entry)
591     {
592     // Save branch registers
593     uint32 saved_lr = lr();
594    
595 gbeauche 1.21 SheepVar32 trampoline = POWERPC_EXEC_RETURN;
596     WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN);
597     lr() = trampoline.addr();
598 gbeauche 1.2
599     execute(entry);
600    
601     // Restore branch registers
602     lr() = saved_lr;
603     }
604    
605 gbeauche 1.1 // Resource Manager thunk
606     inline void sheepshaver_cpu::get_resource(uint32 old_get_resource)
607     {
608 gbeauche 1.2 uint32 type = gpr(3);
609     int16 id = gpr(4);
610    
611     // Create stack frame
612     gpr(1) -= 56;
613    
614     // Call old routine
615     execute_ppc(old_get_resource);
616    
617     // Call CheckLoad()
618 gbeauche 1.5 uint32 handle = gpr(3);
619 gbeauche 1.2 check_load_invoc(type, id, handle);
620 gbeauche 1.5 gpr(3) = handle;
621 gbeauche 1.2
622     // Cleanup stack
623     gpr(1) += 56;
624 gbeauche 1.1 }
625    
626    
627     /**
628     * SheepShaver CPU engine interface
629     **/
630    
631     static sheepshaver_cpu *main_cpu = NULL; // CPU emulator to handle usual control flow
632     static sheepshaver_cpu *interrupt_cpu = NULL; // CPU emulator to handle interrupts
633     static sheepshaver_cpu *current_cpu = NULL; // Current CPU emulator context
634    
635 gbeauche 1.7 void FlushCodeCache(uintptr start, uintptr end)
636     {
637     D(bug("FlushCodeCache(%08x, %08x)\n", start, end));
638     main_cpu->invalidate_cache_range(start, end);
639     #if MULTICORE_CPU
640     interrupt_cpu->invalidate_cache_range(start, end);
641     #endif
642     }
643    
644 gbeauche 1.2 static inline void cpu_push(sheepshaver_cpu *new_cpu)
645     {
646     #if MULTICORE_CPU
647     current_cpu = new_cpu;
648     #endif
649     }
650    
651     static inline void cpu_pop()
652     {
653     #if MULTICORE_CPU
654     current_cpu = main_cpu;
655     #endif
656     }
657    
658 gbeauche 1.1 // Dump PPC registers
659     static void dump_registers(void)
660     {
661     current_cpu->dump_registers();
662     }
663    
664     // Dump log
665     static void dump_log(void)
666     {
667     current_cpu->dump_log();
668     }
669    
670     /*
671     * Initialize CPU emulation
672     */
673    
674 gbeauche 1.3 static sigsegv_return_t sigsegv_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction)
675 gbeauche 1.1 {
676     #if ENABLE_VOSF
677 gbeauche 1.3 // Handle screen fault
678     extern bool Screen_fault_handler(sigsegv_address_t, sigsegv_address_t);
679     if (Screen_fault_handler(fault_address, fault_instruction))
680     return SIGSEGV_RETURN_SUCCESS;
681 gbeauche 1.1 #endif
682 gbeauche 1.3
683     const uintptr addr = (uintptr)fault_address;
684     #if HAVE_SIGSEGV_SKIP_INSTRUCTION
685     // Ignore writes to ROM
686     if ((addr - ROM_BASE) < ROM_SIZE)
687     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
688    
689 gbeauche 1.17 // Get program counter of target CPU
690     sheepshaver_cpu * const cpu = current_cpu;
691     const uint32 pc = cpu->pc();
692    
693     // Fault in Mac ROM or RAM?
694     bool mac_fault = (pc >= ROM_BASE) && (pc < (ROM_BASE + ROM_AREA_SIZE)) || (pc >= RAMBase) && (pc < (RAMBase + RAMSize));
695     if (mac_fault) {
696    
697     // "VM settings" during MacOS 8 installation
698     if (pc == ROM_BASE + 0x488160 && cpu->gpr(20) == 0xf8000000)
699     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
700    
701     // MacOS 8.5 installation
702     else if (pc == ROM_BASE + 0x488140 && cpu->gpr(16) == 0xf8000000)
703     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
704    
705     // MacOS 8 serial drivers on startup
706     else if (pc == ROM_BASE + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000))
707     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
708    
709     // MacOS 8.1 serial drivers on startup
710     else if (pc == ROM_BASE + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
711     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
712     else if (pc == ROM_BASE + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000))
713     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
714    
715     // Ignore all other faults, if requested
716     if (PrefsFindBool("ignoresegv"))
717     return SIGSEGV_RETURN_SKIP_INSTRUCTION;
718     }
719 gbeauche 1.3 #else
720     #error "FIXME: You don't have the capability to skip instruction within signal handlers"
721 gbeauche 1.1 #endif
722 gbeauche 1.3
723     printf("SIGSEGV\n");
724     printf(" pc %p\n", fault_instruction);
725     printf(" ea %p\n", fault_address);
726     printf(" cpu %s\n", current_cpu == main_cpu ? "main" : "interrupts");
727 gbeauche 1.1 dump_registers();
728     current_cpu->dump_log();
729     enter_mon();
730     QuitEmulator();
731 gbeauche 1.3
732     return SIGSEGV_RETURN_FAILURE;
733 gbeauche 1.1 }
734    
735     void init_emul_ppc(void)
736     {
737     // Initialize main CPU emulator
738     main_cpu = new sheepshaver_cpu();
739     main_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROM_BASE + 0x30d000));
740 gbeauche 1.24 main_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000));
741 gbeauche 1.1 WriteMacInt32(XLM_RUN_MODE, MODE_68K);
742    
743 gbeauche 1.2 #if MULTICORE_CPU
744 gbeauche 1.1 // Initialize alternate CPU emulator to handle interrupts
745     interrupt_cpu = new sheepshaver_cpu();
746 gbeauche 1.2 #endif
747 gbeauche 1.1
748 gbeauche 1.3 // Install the handler for SIGSEGV
749     sigsegv_install_handler(sigsegv_handler);
750 gbeauche 1.4
751 gbeauche 1.1 #if ENABLE_MON
752     // Install "regs" command in cxmon
753     mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n");
754     mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n");
755     #endif
756 gbeauche 1.15
757     #if EMUL_TIME_STATS
758     emul_start_time = clock();
759     #endif
760 gbeauche 1.1 }
761    
762     /*
763 gbeauche 1.14 * Deinitialize emulation
764     */
765    
766     void exit_emul_ppc(void)
767     {
768 gbeauche 1.15 #if EMUL_TIME_STATS
769     clock_t emul_end_time = clock();
770    
771     printf("### Statistics for SheepShaver emulation parts\n");
772     const clock_t emul_time = emul_end_time - emul_start_time;
773     printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC));
774     printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count,
775     (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time));
776    
777     #define PRINT_STATS(LABEL, VAR_PREFIX) do { \
778     printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \
779     printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \
780     double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \
781     100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \
782     } while (0)
783    
784     PRINT_STATS("Execute68k[Trap] execution", exec68k);
785     PRINT_STATS("NativeOp execution", native_exec);
786     PRINT_STATS("MacOS routine execution", macos_exec);
787    
788     #undef PRINT_STATS
789     printf("\n");
790     #endif
791    
792 gbeauche 1.14 delete main_cpu;
793     #if MULTICORE_CPU
794     delete interrupt_cpu;
795     #endif
796     }
797    
798     /*
799 gbeauche 1.1 * Emulation loop
800     */
801    
802     void emul_ppc(uint32 entry)
803     {
804     current_cpu = main_cpu;
805 gbeauche 1.24 #if 0
806 gbeauche 1.1 current_cpu->start_log();
807 gbeauche 1.10 #endif
808     // start emulation loop and enable code translation or caching
809 gbeauche 1.19 current_cpu->execute(entry);
810 gbeauche 1.1 }
811    
812     /*
813     * Handle PowerPC interrupt
814     */
815    
816 gbeauche 1.11 #if ASYNC_IRQ
817     void HandleInterrupt(void)
818     {
819     main_cpu->handle_interrupt();
820     }
821     #else
822 gbeauche 1.2 void TriggerInterrupt(void)
823     {
824     #if 0
825     WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
826     #else
827 gbeauche 1.10 // Trigger interrupt to main cpu only
828     if (main_cpu)
829     main_cpu->trigger_interrupt();
830 gbeauche 1.2 #endif
831     }
832 gbeauche 1.4 #endif
833 gbeauche 1.2
834 gbeauche 1.10 void sheepshaver_cpu::handle_interrupt(void)
835 gbeauche 1.1 {
836     // Do nothing if interrupts are disabled
837 gbeauche 1.16 if (*(int32 *)XLM_IRQ_NEST > 0)
838 gbeauche 1.1 return;
839    
840 gbeauche 1.2 // Do nothing if there is no interrupt pending
841     if (InterruptFlags == 0)
842 gbeauche 1.1 return;
843    
844     // Disable MacOS stack sniffer
845     WriteMacInt32(0x110, 0);
846    
847     // Interrupt action depends on current run mode
848     switch (ReadMacInt32(XLM_RUN_MODE)) {
849     case MODE_68K:
850     // 68k emulator active, trigger 68k interrupt level 1
851     assert(current_cpu == main_cpu);
852     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
853 gbeauche 1.10 set_cr(get_cr() | tswap32(kernel_data->v[0x674 >> 2]));
854 gbeauche 1.1 break;
855    
856     #if INTERRUPTS_IN_NATIVE_MODE
857     case MODE_NATIVE:
858     // 68k emulator inactive, in nanokernel?
859     assert(current_cpu == main_cpu);
860 gbeauche 1.10 if (gpr(1) != KernelDataAddr) {
861 gbeauche 1.1 // Prepare for 68k interrupt level 1
862     WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1);
863     WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc,
864     ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc)
865     | tswap32(kernel_data->v[0x674 >> 2]));
866    
867     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
868 gbeauche 1.2 DisableInterrupt();
869     cpu_push(interrupt_cpu);
870 gbeauche 1.1 if (ROMType == ROMTYPE_NEWWORLD)
871 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312b1c);
872 gbeauche 1.1 else
873 gbeauche 1.4 current_cpu->interrupt(ROM_BASE + 0x312a3c);
874 gbeauche 1.2 cpu_pop();
875 gbeauche 1.1 }
876     break;
877     #endif
878    
879     #if INTERRUPTS_IN_EMUL_OP_MODE
880     case MODE_EMUL_OP:
881     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
882     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
883     #if 1
884     // Execute full 68k interrupt routine
885     M68kRegisters r;
886     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
887     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
888 gbeauche 1.2 static const uint8 proc[] = {
889     0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word)
890     0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address)
891     0x40, 0xe7, // move sr,-(sp) (saved SR)
892     0x20, 0x78, 0x00, 0x064, // move.l $64,a0
893     0x4e, 0xd0, // jmp (a0)
894     M68K_RTS >> 8, M68K_RTS & 0xff // @1
895 gbeauche 1.1 };
896     Execute68k((uint32)proc, &r);
897     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
898     #else
899     // Only update cursor
900     if (HasMacStarted()) {
901     if (InterruptFlags & INTFLAG_VIA) {
902     ClearInterruptFlag(INTFLAG_VIA);
903     ADBInterrupt();
904 gbeauche 1.22 ExecuteNative(NATIVE_VIDEO_VBL);
905 gbeauche 1.1 }
906     }
907     #endif
908     }
909     break;
910     #endif
911     }
912     }
913    
914     static void get_resource(void);
915     static void get_1_resource(void);
916     static void get_ind_resource(void);
917     static void get_1_ind_resource(void);
918     static void r_get_resource(void);
919    
920     #define GPR(REG) current_cpu->gpr(REG)
921    
922     static void NativeOp(int selector)
923     {
924 gbeauche 1.15 #if EMUL_TIME_STATS
925     native_exec_count++;
926     const clock_t native_exec_start = clock();
927     #endif
928    
929 gbeauche 1.1 switch (selector) {
930     case NATIVE_PATCH_NAME_REGISTRY:
931     DoPatchNameRegistry();
932     break;
933     case NATIVE_VIDEO_INSTALL_ACCEL:
934     VideoInstallAccel();
935     break;
936     case NATIVE_VIDEO_VBL:
937     VideoVBL();
938     break;
939     case NATIVE_VIDEO_DO_DRIVER_IO:
940     GPR(3) = (int32)(int16)VideoDoDriverIO((void *)GPR(3), (void *)GPR(4),
941     (void *)GPR(5), GPR(6), GPR(7));
942     break;
943 gbeauche 1.16 #ifdef WORDS_BIGENDIAN
944     case NATIVE_ETHER_IRQ:
945     EtherIRQ();
946     break;
947     case NATIVE_ETHER_INIT:
948     GPR(3) = InitStreamModule((void *)GPR(3));
949     break;
950     case NATIVE_ETHER_TERM:
951     TerminateStreamModule();
952     break;
953     case NATIVE_ETHER_OPEN:
954     GPR(3) = ether_open((queue_t *)GPR(3), (void *)GPR(4), GPR(5), GPR(6), (void*)GPR(7));
955 gbeauche 1.1 break;
956 gbeauche 1.16 case NATIVE_ETHER_CLOSE:
957     GPR(3) = ether_close((queue_t *)GPR(3), GPR(4), (void *)GPR(5));
958 gbeauche 1.1 break;
959 gbeauche 1.16 case NATIVE_ETHER_WPUT:
960     GPR(3) = ether_wput((queue_t *)GPR(3), (mblk_t *)GPR(4));
961 gbeauche 1.1 break;
962 gbeauche 1.16 case NATIVE_ETHER_RSRV:
963     GPR(3) = ether_rsrv((queue_t *)GPR(3));
964 gbeauche 1.1 break;
965 gbeauche 1.16 #else
966     case NATIVE_ETHER_INIT:
967     // FIXME: needs more complicated thunks
968     GPR(3) = false;
969 gbeauche 1.1 break;
970 gbeauche 1.16 #endif
971 gbeauche 1.1 case NATIVE_SERIAL_NOTHING:
972     case NATIVE_SERIAL_OPEN:
973     case NATIVE_SERIAL_PRIME_IN:
974     case NATIVE_SERIAL_PRIME_OUT:
975     case NATIVE_SERIAL_CONTROL:
976     case NATIVE_SERIAL_STATUS:
977     case NATIVE_SERIAL_CLOSE: {
978     typedef int16 (*SerialCallback)(uint32, uint32);
979     static const SerialCallback serial_callbacks[] = {
980     SerialNothing,
981     SerialOpen,
982     SerialPrimeIn,
983     SerialPrimeOut,
984     SerialControl,
985     SerialStatus,
986     SerialClose
987     };
988     GPR(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](GPR(3), GPR(4));
989 gbeauche 1.16 break;
990     }
991     case NATIVE_GET_RESOURCE:
992     case NATIVE_GET_1_RESOURCE:
993     case NATIVE_GET_IND_RESOURCE:
994     case NATIVE_GET_1_IND_RESOURCE:
995     case NATIVE_R_GET_RESOURCE: {
996     typedef void (*GetResourceCallback)(void);
997     static const GetResourceCallback get_resource_callbacks[] = {
998     get_resource,
999     get_1_resource,
1000     get_ind_resource,
1001     get_1_ind_resource,
1002     r_get_resource
1003     };
1004     get_resource_callbacks[selector - NATIVE_GET_RESOURCE]();
1005 gbeauche 1.1 break;
1006     }
1007 gbeauche 1.2 case NATIVE_DISABLE_INTERRUPT:
1008     DisableInterrupt();
1009     break;
1010     case NATIVE_ENABLE_INTERRUPT:
1011     EnableInterrupt();
1012 gbeauche 1.7 break;
1013     case NATIVE_MAKE_EXECUTABLE:
1014     MakeExecutable(0, (void *)GPR(4), GPR(5));
1015 gbeauche 1.26 break;
1016     case NATIVE_CHECK_LOAD_INVOC:
1017     check_load_invoc(GPR(3), GPR(4), GPR(5));
1018 gbeauche 1.2 break;
1019 gbeauche 1.1 default:
1020     printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector);
1021     QuitEmulator();
1022     break;
1023     }
1024 gbeauche 1.15
1025     #if EMUL_TIME_STATS
1026     native_exec_time += (clock() - native_exec_start);
1027     #endif
1028 gbeauche 1.1 }
1029    
1030     /*
1031     * Execute 68k subroutine (must be ended with EXEC_RETURN)
1032     * This must only be called by the emul_thread when in EMUL_OP mode
1033     * r->a[7] is unused, the routine runs on the caller's stack
1034     */
1035    
1036     void Execute68k(uint32 pc, M68kRegisters *r)
1037     {
1038     current_cpu->execute_68k(pc, r);
1039     }
1040    
1041     /*
1042     * Execute 68k A-Trap from EMUL_OP routine
1043     * r->a[7] is unused, the routine runs on the caller's stack
1044     */
1045    
1046     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1047     {
1048 gbeauche 1.21 SheepVar proc_var(4);
1049     uint32 proc = proc_var.addr();
1050     WriteMacInt16(proc, trap);
1051     WriteMacInt16(proc + 2, M68K_RTS);
1052     Execute68k(proc, r);
1053 gbeauche 1.1 }
1054    
1055     /*
1056     * Call MacOS PPC code
1057     */
1058    
1059     uint32 call_macos(uint32 tvect)
1060     {
1061     return current_cpu->execute_macos_code(tvect, 0, NULL);
1062     }
1063    
1064     uint32 call_macos1(uint32 tvect, uint32 arg1)
1065     {
1066     const uint32 args[] = { arg1 };
1067     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1068     }
1069    
1070     uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2)
1071     {
1072     const uint32 args[] = { arg1, arg2 };
1073     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1074     }
1075    
1076     uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3)
1077     {
1078     const uint32 args[] = { arg1, arg2, arg3 };
1079     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1080     }
1081    
1082     uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4)
1083     {
1084     const uint32 args[] = { arg1, arg2, arg3, arg4 };
1085     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1086     }
1087    
1088     uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5)
1089     {
1090     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 };
1091     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1092     }
1093    
1094     uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6)
1095     {
1096     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
1097     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1098     }
1099    
1100     uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7)
1101     {
1102     const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };
1103     return current_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args);
1104     }
1105    
1106     /*
1107     * Resource Manager thunks
1108     */
1109    
1110     void get_resource(void)
1111     {
1112     current_cpu->get_resource(ReadMacInt32(XLM_GET_RESOURCE));
1113     }
1114    
1115     void get_1_resource(void)
1116     {
1117     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_RESOURCE));
1118     }
1119    
1120     void get_ind_resource(void)
1121     {
1122     current_cpu->get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE));
1123     }
1124    
1125     void get_1_ind_resource(void)
1126     {
1127     current_cpu->get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE));
1128     }
1129    
1130     void r_get_resource(void)
1131     {
1132     current_cpu->get_resource(ReadMacInt32(XLM_R_GET_RESOURCE));
1133     }