ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/Unix/main_unix.cpp
Revision: 1.62
Committed: 2005-03-28T09:50:58Z (19 years, 5 months ago) by gbeauche
Branch: MAIN
Changes since 1.61: +9 -10 lines
Log Message:
better logics in sigstack allocation on native platforms

File Contents

# User Rev Content
1 cebix 1.1 /*
2     * main_unix.cpp - Emulation core, Unix implementation
3     *
4 gbeauche 1.58 * SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig
5 cebix 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     /*
22     * NOTES:
23     *
24     * See main_beos.cpp for a description of the three operating modes.
25     *
26     * In addition to that, we have to handle the fact that the MacOS ABI
27     * is slightly different from the SysV ABI used by Linux:
28     * - Stack frames are different (e.g. LR is stored in 8(r1) under
29     * MacOS, but in 4(r1) under Linux)
30 gbeauche 1.60 * - There is a pointer to Thread Local Storage (TLS) under Linux with
31     * recent enough glibc. This is r2 in 32-bit mode and r13 in
32     * 64-bit mode (PowerOpen/AIX ABI)
33 cebix 1.1 * - r13 is used as a small data pointer under Linux (but appearently
34     * it is not used this way? To be sure, we specify -msdata=none
35     * in the Makefile)
36 gbeauche 1.60 * - There are no TVECTs under Linux; function pointers point
37     * directly to the function code
38 cebix 1.1 * The Execute*() functions have to account for this. Additionally, we
39     * cannot simply call MacOS functions by getting their TVECT and jumping
40     * to it. Such calls are done via the call_macos*() functions in
41     * asm_linux.S that create a MacOS stack frame, load the TOC pointer
42     * and put the arguments into the right registers.
43     *
44     * As on the BeOS, we have to specify an alternate signal stack because
45     * interrupts (and, under Linux, Low Memory accesses) may occur when r1
46     * is pointing to the Kernel Data or to Low Memory. There is one
47     * problem, however, due to the alternate signal stack being global to
48     * all signal handlers. Consider the following scenario:
49     * - The main thread is executing some native PPC MacOS code in
50     * MODE_NATIVE, running on the MacOS stack (somewhere in the Mac RAM).
51     * - A SIGUSR2 interrupt occurs. The kernel switches to the signal
52     * stack and starts executing the SIGUSR2 signal handler.
53     * - The signal handler sees the MODE_NATIVE and calls ppc_interrupt()
54     * to handle a native interrupt.
55     * - ppc_interrupt() sets r1 to point to the Kernel Data and jumps to
56     * the nanokernel.
57     * - The nanokernel accesses a Low Memory global (most likely one of
58     * the XLMs), a SIGSEGV occurs.
59     * - The kernel sees that r1 does not point to the signal stack and
60     * switches to the signal stack again, thus overwriting the data that
61     * the SIGUSR2 handler put there.
62     * The same problem arises when calling ExecutePPC() inside the MODE_EMUL_OP
63     * interrupt handler.
64     *
65     * The solution is to set the signal stack to a second, "extra" stack
66     * inside the SIGUSR2 handler before entering the Nanokernel or calling
67     * ExecutePPC (or any function that might cause a mode switch). The signal
68     * stack is restored before exiting the SIGUSR2 handler.
69     *
70 gbeauche 1.33 * There is apparently another problem when processing signals. In
71     * fullscreen mode, we get quick updates of the mouse position. This
72     * causes an increased number of calls to TriggerInterrupt(). And,
73     * since IRQ_NEST is not fully handled atomically, nested calls to
74     * ppc_interrupt() may cause stack corruption to eventually crash the
75     * emulator.
76     *
77     * FIXME:
78     * The current solution is to allocate another signal stack when
79     * processing ppc_interrupt(). However, it may be better to detect
80     * the INTFLAG_ADB case and handle it specifically with some extra mutex?
81     *
82 cebix 1.1 * TODO:
83     * check if SIGSEGV handler works for all registers (including FP!)
84     */
85    
86     #include <unistd.h>
87     #include <fcntl.h>
88     #include <time.h>
89     #include <errno.h>
90     #include <stdio.h>
91     #include <stdlib.h>
92     #include <string.h>
93     #include <pthread.h>
94     #include <sys/mman.h>
95     #include <sys/ipc.h>
96     #include <sys/shm.h>
97     #include <signal.h>
98    
99     #include "sysdeps.h"
100     #include "main.h"
101     #include "version.h"
102     #include "prefs.h"
103     #include "prefs_editor.h"
104     #include "cpu_emulation.h"
105     #include "emul_op.h"
106     #include "xlowmem.h"
107     #include "xpram.h"
108     #include "timer.h"
109     #include "adb.h"
110     #include "video.h"
111     #include "sys.h"
112     #include "macos_util.h"
113     #include "rom_patches.h"
114     #include "user_strings.h"
115 gbeauche 1.4 #include "vm_alloc.h"
116 gbeauche 1.5 #include "sigsegv.h"
117 cebix 1.1
118     #define DEBUG 0
119     #include "debug.h"
120    
121    
122 gbeauche 1.47 #ifdef HAVE_DIRENT_H
123     #include <dirent.h>
124     #endif
125    
126 gbeauche 1.42 #ifdef USE_SDL
127     #include <SDL.h>
128     #endif
129    
130     #ifndef USE_SDL_VIDEO
131 cebix 1.1 #include <X11/Xlib.h>
132 gbeauche 1.42 #endif
133 cebix 1.1
134     #ifdef ENABLE_GTK
135     #include <gtk/gtk.h>
136     #endif
137    
138     #ifdef ENABLE_XF86_DGA
139     #include <X11/Xlib.h>
140     #include <X11/Xutil.h>
141     #include <X11/extensions/xf86dga.h>
142     #endif
143    
144     #ifdef ENABLE_MON
145     #include "mon.h"
146     #endif
147    
148    
149 gbeauche 1.23 // Enable emulation of unaligned lmw/stmw?
150     #define EMULATE_UNALIGNED_LOADSTORE_MULTIPLE 1
151    
152 cebix 1.1 // Enable Execute68k() safety checks?
153     #define SAFE_EXEC_68K 0
154    
155     // Interrupts in EMUL_OP mode?
156     #define INTERRUPTS_IN_EMUL_OP_MODE 1
157    
158     // Interrupts in native mode?
159     #define INTERRUPTS_IN_NATIVE_MODE 1
160    
161 gbeauche 1.33 // Number of alternate stacks for signal handlers?
162     #define SIG_STACK_COUNT 4
163    
164 cebix 1.1
165     // Constants
166     const char ROM_FILE_NAME[] = "ROM";
167     const char ROM_FILE_NAME2[] = "Mac OS ROM";
168    
169 gbeauche 1.52 #if REAL_ADDRESSING
170 gbeauche 1.15 const uintptr RAM_BASE = 0x20000000; // Base address of RAM
171 gbeauche 1.52 #else
172     // FIXME: needs to be >= 0x04000000
173     const uintptr RAM_BASE = 0x10000000; // Base address of RAM
174     #endif
175 cebix 1.1 const uint32 SIG_STACK_SIZE = 0x10000; // Size of signal stack
176    
177    
178     #if !EMULATED_PPC
179 gbeauche 1.26 struct sigregs {
180     uint32 nip;
181     uint32 link;
182     uint32 ctr;
183     uint32 msr;
184     uint32 xer;
185     uint32 ccr;
186     uint32 gpr[32];
187     };
188 cebix 1.1
189 gbeauche 1.26 #if defined(__linux__)
190 gbeauche 1.28 #include <sys/ucontext.h>
191     #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext.regs))
192    
193 gbeauche 1.26 struct machine_regs : public pt_regs
194     {
195     u_long & cr() { return pt_regs::ccr; }
196     uint32 cr() const { return pt_regs::ccr; }
197     uint32 lr() const { return pt_regs::link; }
198     uint32 ctr() const { return pt_regs::ctr; }
199     uint32 xer() const { return pt_regs::xer; }
200     uint32 msr() const { return pt_regs::msr; }
201     uint32 dar() const { return pt_regs::dar; }
202     u_long & pc() { return pt_regs::nip; }
203     uint32 pc() const { return pt_regs::nip; }
204     u_long & gpr(int i) { return pt_regs::gpr[i]; }
205     uint32 gpr(int i) const { return pt_regs::gpr[i]; }
206 cebix 1.1 };
207 gbeauche 1.28 #endif
208    
209 gbeauche 1.59 #if defined(__NetBSD__)
210     #include <sys/ucontext.h>
211     #define MACHINE_REGISTERS(scp) ((machine_regs *)&(((ucontext_t *)scp)->uc_mcontext))
212    
213     struct machine_regs : public mcontext_t
214     {
215     long & cr() { return __gregs[_REG_CR]; }
216     uint32 cr() const { return __gregs[_REG_CR]; }
217     uint32 lr() const { return __gregs[_REG_LR]; }
218     uint32 ctr() const { return __gregs[_REG_CTR]; }
219     uint32 xer() const { return __gregs[_REG_XER]; }
220     uint32 msr() const { return __gregs[_REG_MSR]; }
221     uint32 dar() const { return (uint32)(((siginfo_t *)(((unsigned long)this) - offsetof(ucontext_t, uc_mcontext))) - 1)->si_addr; } /* HACK */
222     long & pc() { return __gregs[_REG_PC]; }
223     uint32 pc() const { return __gregs[_REG_PC]; }
224     long & gpr(int i) { return __gregs[_REG_R0 + i]; }
225     uint32 gpr(int i) const { return __gregs[_REG_R0 + i]; }
226     };
227     #endif
228    
229 gbeauche 1.28 #if defined(__APPLE__) && defined(__MACH__)
230     #include <sys/signal.h>
231     extern "C" int sigaltstack(const struct sigaltstack *ss, struct sigaltstack *oss);
232 gbeauche 1.26
233     #include <sys/ucontext.h>
234 gbeauche 1.28 #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext))
235 gbeauche 1.26
236     struct machine_regs : public mcontext
237     {
238     uint32 & cr() { return ss.cr; }
239     uint32 cr() const { return ss.cr; }
240     uint32 lr() const { return ss.lr; }
241     uint32 ctr() const { return ss.ctr; }
242     uint32 xer() const { return ss.xer; }
243     uint32 msr() const { return ss.srr1; }
244     uint32 dar() const { return es.dar; }
245     uint32 & pc() { return ss.srr0; }
246     uint32 pc() const { return ss.srr0; }
247     uint32 & gpr(int i) { return (&ss.r0)[i]; }
248     uint32 gpr(int i) const { return (&ss.r0)[i]; }
249     };
250     #endif
251    
252     static void build_sigregs(sigregs *srp, machine_regs *mrp)
253     {
254     srp->nip = mrp->pc();
255     srp->link = mrp->lr();
256     srp->ctr = mrp->ctr();
257     srp->msr = mrp->msr();
258     srp->xer = mrp->xer();
259     srp->ccr = mrp->cr();
260     for (int i = 0; i < 32; i++)
261     srp->gpr[i] = mrp->gpr(i);
262     }
263 gbeauche 1.33
264     static struct sigaltstack sig_stacks[SIG_STACK_COUNT]; // Stacks for signal handlers
265     static int sig_stack_id = 0; // Stack slot currently used
266    
267 gbeauche 1.62 static inline int sig_stack_acquire(void)
268 gbeauche 1.33 {
269 gbeauche 1.62 if (sig_stack_id >= SIG_STACK_COUNT) {
270 gbeauche 1.33 printf("FATAL: signal stack overflow\n");
271 gbeauche 1.62 return -1;
272 gbeauche 1.33 }
273 gbeauche 1.62 return sigaltstack(&sig_stacks[sig_stack_id++], NULL);
274 gbeauche 1.33 }
275    
276 gbeauche 1.62 static inline int sig_stack_release(void)
277 gbeauche 1.33 {
278 gbeauche 1.62 if (sig_stack_id <= 0) {
279 gbeauche 1.33 printf("FATAL: signal stack underflow\n");
280 gbeauche 1.62 return -1;
281 gbeauche 1.33 }
282 gbeauche 1.62 return sigaltstack(&sig_stacks[--sig_stack_id], NULL);
283 gbeauche 1.33 }
284 cebix 1.1 #endif
285    
286    
287     // Global variables (exported)
288     #if !EMULATED_PPC
289 gbeauche 1.60 void *TOC; // Pointer to Thread Local Storage (r2)
290     void *R13; // Pointer to .sdata section (r13 under Linux)
291 cebix 1.1 #endif
292     uint32 RAMBase; // Base address of Mac RAM
293     uint32 RAMSize; // Size of Mac RAM
294     uint32 KernelDataAddr; // Address of Kernel Data
295     uint32 BootGlobsAddr; // Address of BootGlobs structure at top of Mac RAM
296 gbeauche 1.36 uint32 DRCacheAddr; // Address of DR Cache
297 cebix 1.1 uint32 PVR; // Theoretical PVR
298     int64 CPUClockSpeed; // Processor clock speed (Hz)
299     int64 BusClockSpeed; // Bus clock speed (Hz)
300 gbeauche 1.47 int64 TimebaseSpeed; // Timebase clock speed (Hz)
301 gbeauche 1.52 uint8 *RAMBaseHost; // Base address of Mac RAM (host address space)
302     uint8 *ROMBaseHost; // Base address of Mac ROM (host address space)
303 cebix 1.1
304    
305     // Global variables
306 gbeauche 1.42 #ifndef USE_SDL_VIDEO
307 gbeauche 1.11 char *x_display_name = NULL; // X11 display name
308 cebix 1.1 Display *x_display = NULL; // X11 display handle
309 gbeauche 1.21 #ifdef X11_LOCK_TYPE
310     X11_LOCK_TYPE x_display_lock = X11_LOCK_INIT; // X11 display lock
311     #endif
312 gbeauche 1.42 #endif
313 cebix 1.1
314     static int zero_fd = 0; // FD of /dev/zero
315     static bool lm_area_mapped = false; // Flag: Low Memory area mmap()ped
316     static int kernel_area = -1; // SHM ID of Kernel Data area
317     static bool rom_area_mapped = false; // Flag: Mac ROM mmap()ped
318     static bool ram_area_mapped = false; // Flag: Mac RAM mmap()ped
319 gbeauche 1.36 static bool dr_cache_area_mapped = false; // Flag: Mac DR Cache mmap()ped
320     static bool dr_emulator_area_mapped = false;// Flag: Mac DR Emulator mmap()ped
321 cebix 1.1 static KernelData *kernel_data; // Pointer to Kernel Data
322     static EmulatorData *emulator_data;
323    
324     static uint8 last_xpram[XPRAM_SIZE]; // Buffer for monitoring XPRAM changes
325    
326     static bool nvram_thread_active = false; // Flag: NVRAM watchdog installed
327 gbeauche 1.40 static volatile bool nvram_thread_cancel; // Flag: Cancel NVRAM thread
328 cebix 1.1 static pthread_t nvram_thread; // NVRAM watchdog
329     static bool tick_thread_active = false; // Flag: MacOS thread installed
330 gbeauche 1.40 static volatile bool tick_thread_cancel; // Flag: Cancel 60Hz thread
331 cebix 1.1 static pthread_t tick_thread; // 60Hz thread
332     static pthread_t emul_thread; // MacOS thread
333    
334     static bool ready_for_signals = false; // Handler installed, signals can be sent
335     static int64 num_segv = 0; // Number of handled SEGV signals
336    
337 gbeauche 1.6 static struct sigaction sigusr2_action; // Interrupt signal (of emulator thread)
338 gbeauche 1.20 #if EMULATED_PPC
339     static uintptr sig_stack = 0; // Stack for PowerPC interrupt routine
340     #else
341 cebix 1.1 static struct sigaction sigsegv_action; // Data access exception signal (of emulator thread)
342     static struct sigaction sigill_action; // Illegal instruction signal (of emulator thread)
343     static bool emul_thread_fatal = false; // Flag: MacOS thread crashed, tick thread shall dump debug output
344     static sigregs sigsegv_regs; // Register dump when crashed
345 gbeauche 1.23 static const char *crash_reason = NULL; // Reason of the crash (SIGSEGV, SIGBUS, SIGILL)
346 cebix 1.1 #endif
347    
348 gbeauche 1.31 uint32 SheepMem::page_size; // Size of a native page
349 gbeauche 1.18 uintptr SheepMem::zero_page = 0; // Address of ro page filled in with zeros
350 gbeauche 1.15 uintptr SheepMem::base = 0x60000000; // Address of SheepShaver data
351 gbeauche 1.53 uintptr SheepMem::proc; // Bottom address of SheepShave procedures
352     uintptr SheepMem::data; // Top of SheepShaver data (stack like storage)
353 gbeauche 1.15
354 cebix 1.1
355     // Prototypes
356 gbeauche 1.53 static bool kernel_data_init(void);
357     static void kernel_data_exit(void);
358 cebix 1.1 static void Quit(void);
359     static void *emul_func(void *arg);
360     static void *nvram_func(void *arg);
361     static void *tick_func(void *arg);
362 gbeauche 1.8 #if EMULATED_PPC
363 gbeauche 1.13 extern void emul_ppc(uint32 start);
364     extern void init_emul_ppc(void);
365     extern void exit_emul_ppc(void);
366 gbeauche 1.43 sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t);
367 gbeauche 1.8 #else
368 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp);
369     static void sigsegv_handler(int sig, siginfo_t *sip, void *scp);
370     static void sigill_handler(int sig, siginfo_t *sip, void *scp);
371 cebix 1.1 #endif
372    
373    
374     // From asm_linux.S
375 gbeauche 1.12 #if !EMULATED_PPC
376 cebix 1.1 extern "C" void *get_sp(void);
377 gbeauche 1.60 extern "C" void *get_r2(void);
378     extern "C" void set_r2(void *);
379     extern "C" void *get_r13(void);
380     extern "C" void set_r13(void *);
381 gbeauche 1.57 extern "C" void flush_icache_range(uint32 start, uint32 end);
382 cebix 1.1 extern "C" void jump_to_rom(uint32 entry, uint32 context);
383     extern "C" void quit_emulator(void);
384     extern "C" void execute_68k(uint32 pc, M68kRegisters *r);
385     extern "C" void ppc_interrupt(uint32 entry, uint32 kernel_data);
386     extern "C" int atomic_add(int *var, int v);
387     extern "C" int atomic_and(int *var, int v);
388     extern "C" int atomic_or(int *var, int v);
389     extern void paranoia_check(void);
390 gbeauche 1.12 #endif
391    
392    
393     #if EMULATED_PPC
394     /*
395 gbeauche 1.20 * Return signal stack base
396     */
397    
398     uintptr SignalStackBase(void)
399     {
400     return sig_stack + SIG_STACK_SIZE;
401     }
402    
403    
404     /*
405 gbeauche 1.12 * Atomic operations
406     */
407    
408     #if HAVE_SPINLOCKS
409     static spinlock_t atomic_ops_lock = SPIN_LOCK_UNLOCKED;
410     #else
411     #define spin_lock(LOCK)
412     #define spin_unlock(LOCK)
413     #endif
414    
415     int atomic_add(int *var, int v)
416     {
417     spin_lock(&atomic_ops_lock);
418     int ret = *var;
419     *var += v;
420     spin_unlock(&atomic_ops_lock);
421     return ret;
422     }
423    
424     int atomic_and(int *var, int v)
425     {
426     spin_lock(&atomic_ops_lock);
427     int ret = *var;
428     *var &= v;
429     spin_unlock(&atomic_ops_lock);
430     return ret;
431     }
432    
433     int atomic_or(int *var, int v)
434     {
435     spin_lock(&atomic_ops_lock);
436     int ret = *var;
437     *var |= v;
438     spin_unlock(&atomic_ops_lock);
439     return ret;
440     }
441 cebix 1.1 #endif
442    
443    
444     /*
445 gbeauche 1.53 * Memory management helpers
446     */
447    
448     static inline int vm_mac_acquire(uint32 addr, uint32 size)
449     {
450     return vm_acquire_fixed(Mac2HostAddr(addr), size);
451     }
452    
453     static inline int vm_mac_release(uint32 addr, uint32 size)
454     {
455     return vm_release(Mac2HostAddr(addr), size);
456     }
457    
458    
459     /*
460 cebix 1.1 * Main program
461     */
462    
463     static void usage(const char *prg_name)
464     {
465     printf("Usage: %s [OPTION...]\n", prg_name);
466     printf("\nUnix options:\n");
467     printf(" --display STRING\n X display to use\n");
468     PrefsPrintUsage();
469     exit(0);
470     }
471    
472     int main(int argc, char **argv)
473     {
474     char str[256];
475     int rom_fd;
476     FILE *proc_file;
477     const char *rom_path;
478     uint32 rom_size, actual;
479     uint8 *rom_tmp;
480     time_t now, expire;
481    
482     // Initialize variables
483     RAMBase = 0;
484     tzset();
485    
486     // Print some info
487     printf(GetString(STR_ABOUT_TEXT1), VERSION_MAJOR, VERSION_MINOR);
488     printf(" %s\n", GetString(STR_ABOUT_TEXT2));
489    
490     #if !EMULATED_PPC
491 gbeauche 1.60 #ifdef SYSTEM_CLOBBERS_R2
492 cebix 1.1 // Get TOC pointer
493 gbeauche 1.60 TOC = get_r2();
494     #endif
495     #ifdef SYSTEM_CLOBBERS_R13
496     // Get r13 register
497     R13 = get_r13();
498     #endif
499 cebix 1.1 #endif
500    
501     #ifdef ENABLE_GTK
502     // Init GTK
503     gtk_set_locale();
504     gtk_init(&argc, &argv);
505     #endif
506    
507     // Read preferences
508     PrefsInit(argc, argv);
509    
510     // Parse command line arguments
511     for (int i=1; i<argc; i++) {
512     if (strcmp(argv[i], "--help") == 0) {
513     usage(argv[0]);
514 gbeauche 1.42 #ifndef USE_SDL_VIDEO
515 cebix 1.1 } else if (strcmp(argv[i], "--display") == 0) {
516     i++;
517     if (i < argc)
518     x_display_name = strdup(argv[i]);
519 gbeauche 1.42 #endif
520 cebix 1.1 } else if (argv[i][0] == '-') {
521     fprintf(stderr, "Unrecognized option '%s'\n", argv[i]);
522     usage(argv[0]);
523     }
524     }
525    
526 gbeauche 1.42 #ifdef USE_SDL
527     // Initialize SDL system
528     int sdl_flags = 0;
529     #ifdef USE_SDL_VIDEO
530     sdl_flags |= SDL_INIT_VIDEO;
531     #endif
532 gbeauche 1.51 #ifdef USE_SDL_AUDIO
533     sdl_flags |= SDL_INIT_AUDIO;
534     #endif
535 gbeauche 1.42 assert(sdl_flags != 0);
536     if (SDL_Init(sdl_flags) == -1) {
537     char str[256];
538     sprintf(str, "Could not initialize SDL: %s.\n", SDL_GetError());
539     ErrorAlert(str);
540     goto quit;
541     }
542     atexit(SDL_Quit);
543     #endif
544    
545     #ifndef USE_SDL_VIDEO
546 cebix 1.1 // Open display
547     x_display = XOpenDisplay(x_display_name);
548     if (x_display == NULL) {
549     char str[256];
550     sprintf(str, GetString(STR_NO_XSERVER_ERR), XDisplayName(x_display_name));
551     ErrorAlert(str);
552     goto quit;
553     }
554    
555     #if defined(ENABLE_XF86_DGA) && !defined(ENABLE_MON)
556     // Fork out, so we can return from fullscreen mode when things get ugly
557     XF86DGAForkApp(DefaultScreen(x_display));
558     #endif
559 gbeauche 1.42 #endif
560 cebix 1.1
561     #ifdef ENABLE_MON
562     // Initialize mon
563     mon_init();
564     #endif
565    
566 gbeauche 1.43 #if !EMULATED_PPC
567 gbeauche 1.44 // Create and install stacks for signal handlers
568     for (int i = 0; i < SIG_STACK_COUNT; i++) {
569     void *sig_stack = malloc(SIG_STACK_SIZE);
570     D(bug("Signal stack %d at %p\n", i, sig_stack));
571     if (sig_stack == NULL) {
572     ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
573     goto quit;
574     }
575     sig_stacks[i].ss_sp = sig_stack;
576     sig_stacks[i].ss_flags = 0;
577     sig_stacks[i].ss_size = SIG_STACK_SIZE;
578     }
579 gbeauche 1.62 if (sig_stack_acquire() < 0) {
580 gbeauche 1.44 sprintf(str, GetString(STR_SIGALTSTACK_ERR), strerror(errno));
581     ErrorAlert(str);
582     goto quit;
583     }
584     #endif
585    
586     #if !EMULATED_PPC
587 gbeauche 1.43 // Install SIGSEGV and SIGBUS handlers
588     sigemptyset(&sigsegv_action.sa_mask); // Block interrupts during SEGV handling
589     sigaddset(&sigsegv_action.sa_mask, SIGUSR2);
590     sigsegv_action.sa_sigaction = sigsegv_handler;
591     sigsegv_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
592     #ifdef HAVE_SIGNAL_SA_RESTORER
593     sigsegv_action.sa_restorer = NULL;
594     #endif
595     if (sigaction(SIGSEGV, &sigsegv_action, NULL) < 0) {
596     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
597     ErrorAlert(str);
598     goto quit;
599     }
600     if (sigaction(SIGBUS, &sigsegv_action, NULL) < 0) {
601     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
602     ErrorAlert(str);
603     goto quit;
604     }
605     #else
606     // Install SIGSEGV handler for CPU emulator
607     if (!sigsegv_install_handler(sigsegv_handler)) {
608     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
609     ErrorAlert(str);
610     goto quit;
611     }
612     #endif
613    
614     // Initialize VM system
615     vm_init();
616    
617 cebix 1.1 // Get system info
618     PVR = 0x00040000; // Default: 604
619     CPUClockSpeed = 100000000; // Default: 100MHz
620     BusClockSpeed = 100000000; // Default: 100MHz
621 gbeauche 1.47 TimebaseSpeed = 25000000; // Default: 25MHz
622 gbeauche 1.30 #if EMULATED_PPC
623     PVR = 0x000c0000; // Default: 7400 (with AltiVec)
624 gbeauche 1.39 #elif defined(__APPLE__) && defined(__MACH__)
625     proc_file = popen("ioreg -c IOPlatformDevice", "r");
626     if (proc_file) {
627     char line[256];
628     bool powerpc_node = false;
629     while (fgets(line, sizeof(line) - 1, proc_file)) {
630     // Read line
631     int len = strlen(line);
632     if (len == 0)
633     continue;
634     line[len - 1] = 0;
635    
636     // Parse line
637     if (strstr(line, "o PowerPC,"))
638     powerpc_node = true;
639     else if (powerpc_node) {
640     uint32 value;
641     char head[256];
642     if (sscanf(line, "%[ |]\"cpu-version\" = <%x>", head, &value) == 2)
643     PVR = value;
644     else if (sscanf(line, "%[ |]\"clock-frequency\" = <%x>", head, &value) == 2)
645     CPUClockSpeed = value;
646     else if (sscanf(line, "%[ |]\"bus-frequency\" = <%x>", head, &value) == 2)
647     BusClockSpeed = value;
648 gbeauche 1.48 else if (sscanf(line, "%[ |]\"timebase-frequency\" = <%x>", head, &value) == 2)
649     TimebaseSpeed = value;
650 gbeauche 1.39 else if (strchr(line, '}'))
651     powerpc_node = false;
652     }
653     }
654     fclose(proc_file);
655     } else {
656     sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
657     WarningAlert(str);
658     }
659 gbeauche 1.30 #else
660 cebix 1.1 proc_file = fopen("/proc/cpuinfo", "r");
661     if (proc_file) {
662 gbeauche 1.50 // CPU specs from Linux kernel
663     // TODO: make it more generic with features (e.g. AltiVec) and
664     // cache information and friends for NameRegistry
665     static const struct {
666     uint32 pvr_mask;
667     uint32 pvr_value;
668     const char *cpu_name;
669     }
670     cpu_specs[] = {
671     { 0xffff0000, 0x00010000, "601" },
672     { 0xffff0000, 0x00030000, "603" },
673     { 0xffff0000, 0x00060000, "603e" },
674     { 0xffff0000, 0x00070000, "603ev" },
675     { 0xffff0000, 0x00040000, "604" },
676     { 0xfffff000, 0x00090000, "604e" },
677     { 0xffff0000, 0x00090000, "604r" },
678     { 0xffff0000, 0x000a0000, "604ev" },
679     { 0xffffffff, 0x00084202, "740/750" },
680     { 0xfffff000, 0x00083000, "745/755" },
681     { 0xfffffff0, 0x00080100, "750CX" },
682     { 0xfffffff0, 0x00082200, "750CX" },
683     { 0xfffffff0, 0x00082210, "750CXe" },
684     { 0xffffff00, 0x70000100, "750FX" },
685     { 0xffffffff, 0x70000200, "750FX" },
686     { 0xffff0000, 0x70000000, "750FX" },
687     { 0xffff0000, 0x70020000, "750GX" },
688     { 0xffff0000, 0x00080000, "740/750" },
689     { 0xffffffff, 0x000c1101, "7400 (1.1)" },
690     { 0xffff0000, 0x000c0000, "7400" },
691     { 0xffff0000, 0x800c0000, "7410" },
692     { 0xffffffff, 0x80000200, "7450" },
693     { 0xffffffff, 0x80000201, "7450" },
694     { 0xffff0000, 0x80000000, "7450" },
695     { 0xffffff00, 0x80010100, "7455" },
696     { 0xffffffff, 0x80010200, "7455" },
697     { 0xffff0000, 0x80010000, "7455" },
698     { 0xffff0000, 0x80020000, "7457" },
699     { 0xffff0000, 0x80030000, "7447A" },
700     { 0x7fff0000, 0x00810000, "82xx" },
701     { 0x7fff0000, 0x00820000, "8280" },
702     { 0xffff0000, 0x00400000, "Power3 (630)" },
703     { 0xffff0000, 0x00410000, "Power3 (630+)" },
704     { 0xffff0000, 0x00360000, "I-star" },
705     { 0xffff0000, 0x00370000, "S-star" },
706     { 0xffff0000, 0x00350000, "Power4" },
707     { 0xffff0000, 0x00390000, "PPC970" },
708     { 0, 0, 0 }
709     };
710    
711 cebix 1.1 char line[256];
712     while(fgets(line, 255, proc_file)) {
713     // Read line
714     int len = strlen(line);
715     if (len == 0)
716     continue;
717     line[len-1] = 0;
718    
719     // Parse line
720     int i;
721     char value[256];
722 gbeauche 1.29 if (sscanf(line, "cpu : %[0-9A-Za-a]", value) == 1) {
723 gbeauche 1.50 // Search by name
724     const char *cpu_name = NULL;
725     for (int i = 0; cpu_specs[i].pvr_mask != 0; i++) {
726     if (strcmp(cpu_specs[i].cpu_name, value) == 0) {
727     cpu_name = cpu_specs[i].cpu_name;
728     PVR = cpu_specs[i].pvr_value;
729     break;
730     }
731     }
732     if (cpu_name == NULL)
733     printf("WARNING: Unknown CPU type '%s', assuming 604\n", value);
734 cebix 1.1 else
735 gbeauche 1.50 printf("Found a PowerPC %s processor\n", cpu_name);
736 cebix 1.1 }
737     if (sscanf(line, "clock : %dMHz", &i) == 1)
738     CPUClockSpeed = BusClockSpeed = i * 1000000;
739     }
740     fclose(proc_file);
741     } else {
742     sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
743     WarningAlert(str);
744     }
745 gbeauche 1.34
746     // Get actual bus frequency
747     proc_file = fopen("/proc/device-tree/clock-frequency", "r");
748     if (proc_file) {
749     union { uint8 b[4]; uint32 l; } value;
750     if (fread(value.b, sizeof(value), 1, proc_file) == 1)
751     BusClockSpeed = value.l;
752     fclose(proc_file);
753     }
754 gbeauche 1.47
755     // Get actual timebase frequency
756     TimebaseSpeed = BusClockSpeed / 4;
757     DIR *cpus_dir;
758     if ((cpus_dir = opendir("/proc/device-tree/cpus")) != NULL) {
759     struct dirent *cpu_entry;
760     while ((cpu_entry = readdir(cpus_dir)) != NULL) {
761     if (strstr(cpu_entry->d_name, "PowerPC,") == cpu_entry->d_name) {
762     char timebase_freq_node[256];
763     sprintf(timebase_freq_node, "/proc/device-tree/cpus/%s/timebase-frequency", cpu_entry->d_name);
764     proc_file = fopen(timebase_freq_node, "r");
765     if (proc_file) {
766     union { uint8 b[4]; uint32 l; } value;
767     if (fread(value.b, sizeof(value), 1, proc_file) == 1)
768     TimebaseSpeed = value.l;
769     fclose(proc_file);
770     }
771     }
772     }
773     closedir(cpus_dir);
774     }
775 cebix 1.1 #endif
776 gbeauche 1.49 // Remap any newer G4/G5 processor to plain G4 for compatibility
777     switch (PVR >> 16) {
778     case 0x8000: // 7450
779     case 0x8001: // 7455
780     case 0x8002: // 7457
781     case 0x0039: // 970
782     PVR = 0x000c0000; // 7400
783     break;
784     }
785 cebix 1.1 D(bug("PVR: %08x (assumed)\n", PVR));
786    
787     // Init system routines
788     SysInit();
789    
790     // Show preferences editor
791     if (!PrefsFindBool("nogui"))
792     if (!PrefsEditor())
793     goto quit;
794    
795     #if !EMULATED_PPC
796     // Check some things
797     paranoia_check();
798     #endif
799    
800     // Open /dev/zero
801     zero_fd = open("/dev/zero", O_RDWR);
802     if (zero_fd < 0) {
803     sprintf(str, GetString(STR_NO_DEV_ZERO_ERR), strerror(errno));
804     ErrorAlert(str);
805     goto quit;
806     }
807    
808 gbeauche 1.26 #ifndef PAGEZERO_HACK
809 cebix 1.1 // Create Low Memory area (0x0000..0x3000)
810 gbeauche 1.53 if (vm_mac_acquire(0, 0x3000) < 0) {
811 cebix 1.1 sprintf(str, GetString(STR_LOW_MEM_MMAP_ERR), strerror(errno));
812     ErrorAlert(str);
813     goto quit;
814     }
815     lm_area_mapped = true;
816 gbeauche 1.26 #endif
817 cebix 1.1
818     // Create areas for Kernel Data
819 gbeauche 1.53 if (!kernel_data_init())
820 cebix 1.1 goto quit;
821 gbeauche 1.53 kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
822 cebix 1.1 emulator_data = &kernel_data->ed;
823 gbeauche 1.15 KernelDataAddr = KERNEL_DATA_BASE;
824 gbeauche 1.52 D(bug("Kernel Data at %p (%08x)\n", kernel_data, KERNEL_DATA_BASE));
825     D(bug("Emulator Data at %p (%08x)\n", emulator_data, KERNEL_DATA_BASE + offsetof(KernelData, ed)));
826 cebix 1.1
827 gbeauche 1.36 // Create area for DR Cache
828 gbeauche 1.53 if (vm_mac_acquire(DR_EMULATOR_BASE, DR_EMULATOR_SIZE) < 0) {
829 gbeauche 1.36 sprintf(str, GetString(STR_DR_EMULATOR_MMAP_ERR), strerror(errno));
830     ErrorAlert(str);
831     goto quit;
832     }
833     dr_emulator_area_mapped = true;
834 gbeauche 1.53 if (vm_mac_acquire(DR_CACHE_BASE, DR_CACHE_SIZE) < 0) {
835 gbeauche 1.36 sprintf(str, GetString(STR_DR_CACHE_MMAP_ERR), strerror(errno));
836     ErrorAlert(str);
837     goto quit;
838     }
839     dr_cache_area_mapped = true;
840 gbeauche 1.38 #if !EMULATED_PPC
841     if (vm_protect((char *)DR_CACHE_BASE, DR_CACHE_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
842     sprintf(str, GetString(STR_DR_CACHE_MMAP_ERR), strerror(errno));
843     ErrorAlert(str);
844     goto quit;
845     }
846     #endif
847 gbeauche 1.36 DRCacheAddr = DR_CACHE_BASE;
848     D(bug("DR Cache at %p\n", DRCacheAddr));
849    
850 gbeauche 1.8 // Create area for SheepShaver data
851 gbeauche 1.15 if (!SheepMem::Init()) {
852 gbeauche 1.8 sprintf(str, GetString(STR_SHEEP_MEM_MMAP_ERR), strerror(errno));
853     ErrorAlert(str);
854     goto quit;
855     }
856    
857 cebix 1.1 // Create area for Mac ROM
858 gbeauche 1.53 if (vm_mac_acquire(ROM_BASE, ROM_AREA_SIZE) < 0) {
859 cebix 1.1 sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
860     ErrorAlert(str);
861     goto quit;
862     }
863 gbeauche 1.53 ROMBaseHost = Mac2HostAddr(ROM_BASE);
864 gbeauche 1.27 #if !EMULATED_PPC
865 gbeauche 1.52 if (vm_protect(ROMBaseHost, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
866 gbeauche 1.4 sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
867     ErrorAlert(str);
868     goto quit;
869     }
870     #endif
871 cebix 1.1 rom_area_mapped = true;
872 gbeauche 1.52 D(bug("ROM area at %p (%08x)\n", ROMBaseHost, ROM_BASE));
873 cebix 1.1
874     // Create area for Mac RAM
875     RAMSize = PrefsFindInt32("ramsize");
876     if (RAMSize < 8*1024*1024) {
877     WarningAlert(GetString(STR_SMALL_RAM_WARN));
878     RAMSize = 8*1024*1024;
879     }
880    
881 gbeauche 1.53 if (vm_mac_acquire(RAM_BASE, RAMSize) < 0) {
882 cebix 1.1 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
883     ErrorAlert(str);
884     goto quit;
885     }
886 gbeauche 1.53 RAMBaseHost = Mac2HostAddr(RAM_BASE);
887 gbeauche 1.4 #if !EMULATED_PPC
888 gbeauche 1.52 if (vm_protect(RAMBaseHost, RAMSize, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
889 gbeauche 1.4 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
890     ErrorAlert(str);
891     goto quit;
892     }
893     #endif
894 gbeauche 1.8 RAMBase = RAM_BASE;
895 cebix 1.1 ram_area_mapped = true;
896 gbeauche 1.52 D(bug("RAM area at %p (%08x)\n", RAMBaseHost, RAMBase));
897 cebix 1.1
898     if (RAMBase > ROM_BASE) {
899     ErrorAlert(GetString(STR_RAM_HIGHER_THAN_ROM_ERR));
900     goto quit;
901     }
902    
903     // Load Mac ROM
904     rom_path = PrefsFindString("rom");
905     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME, O_RDONLY);
906     if (rom_fd < 0) {
907     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME2, O_RDONLY);
908     if (rom_fd < 0) {
909     ErrorAlert(GetString(STR_NO_ROM_FILE_ERR));
910     goto quit;
911     }
912     }
913     printf(GetString(STR_READING_ROM_FILE));
914     rom_size = lseek(rom_fd, 0, SEEK_END);
915     lseek(rom_fd, 0, SEEK_SET);
916     rom_tmp = new uint8[ROM_SIZE];
917     actual = read(rom_fd, (void *)rom_tmp, ROM_SIZE);
918     close(rom_fd);
919 gbeauche 1.3
920     // Decode Mac ROM
921     if (!DecodeROM(rom_tmp, actual)) {
922     if (rom_size != 4*1024*1024) {
923 cebix 1.1 ErrorAlert(GetString(STR_ROM_SIZE_ERR));
924     goto quit;
925     } else {
926     ErrorAlert(GetString(STR_ROM_FILE_READ_ERR));
927     goto quit;
928     }
929     }
930 gbeauche 1.3 delete[] rom_tmp;
931 cebix 1.1
932 gbeauche 1.56 // Initialize everything
933     if (!InitAll())
934 cebix 1.1 goto quit;
935 gbeauche 1.56 D(bug("Initialization complete\n"));
936 cebix 1.1
937     // Clear caches (as we loaded and patched code) and write protect ROM
938     #if !EMULATED_PPC
939 gbeauche 1.57 flush_icache_range(ROM_BASE, ROM_BASE + ROM_AREA_SIZE);
940 cebix 1.1 #endif
941 gbeauche 1.52 vm_protect(ROMBaseHost, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_EXECUTE);
942 cebix 1.1
943     // Start 60Hz thread
944 gbeauche 1.40 tick_thread_cancel = false;
945 cebix 1.1 tick_thread_active = (pthread_create(&tick_thread, NULL, tick_func, NULL) == 0);
946     D(bug("Tick thread installed (%ld)\n", tick_thread));
947    
948     // Start NVRAM watchdog thread
949     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
950 gbeauche 1.40 nvram_thread_cancel = false;
951 cebix 1.1 nvram_thread_active = (pthread_create(&nvram_thread, NULL, nvram_func, NULL) == 0);
952     D(bug("NVRAM thread installed (%ld)\n", nvram_thread));
953    
954     #if !EMULATED_PPC
955     // Install SIGILL handler
956     sigemptyset(&sigill_action.sa_mask); // Block interrupts during ILL handling
957     sigaddset(&sigill_action.sa_mask, SIGUSR2);
958 gbeauche 1.26 sigill_action.sa_sigaction = sigill_handler;
959     sigill_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
960     #ifdef HAVE_SIGNAL_SA_RESTORER
961 cebix 1.1 sigill_action.sa_restorer = NULL;
962 gbeauche 1.26 #endif
963 cebix 1.1 if (sigaction(SIGILL, &sigill_action, NULL) < 0) {
964     sprintf(str, GetString(STR_SIGILL_INSTALL_ERR), strerror(errno));
965     ErrorAlert(str);
966     goto quit;
967     }
968 gbeauche 1.6 #endif
969 cebix 1.1
970 gbeauche 1.26 #if !EMULATED_PPC
971 cebix 1.1 // Install interrupt signal handler
972     sigemptyset(&sigusr2_action.sa_mask);
973 gbeauche 1.26 sigusr2_action.sa_sigaction = sigusr2_handler;
974     sigusr2_action.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
975     #ifdef HAVE_SIGNAL_SA_RESTORER
976     sigusr2_action.sa_restorer = NULL;
977 gbeauche 1.8 #endif
978 cebix 1.1 if (sigaction(SIGUSR2, &sigusr2_action, NULL) < 0) {
979     sprintf(str, GetString(STR_SIGUSR2_INSTALL_ERR), strerror(errno));
980     ErrorAlert(str);
981     goto quit;
982     }
983 gbeauche 1.26 #endif
984 cebix 1.1
985     // Get my thread ID and execute MacOS thread function
986     emul_thread = pthread_self();
987     D(bug("MacOS thread is %ld\n", emul_thread));
988     emul_func(NULL);
989    
990     quit:
991     Quit();
992     return 0;
993     }
994    
995    
996     /*
997     * Cleanup and quit
998     */
999    
1000     static void Quit(void)
1001     {
1002 gbeauche 1.13 #if EMULATED_PPC
1003     // Exit PowerPC emulation
1004     exit_emul_ppc();
1005     #endif
1006    
1007 cebix 1.1 // Stop 60Hz thread
1008     if (tick_thread_active) {
1009 gbeauche 1.40 tick_thread_cancel = true;
1010 cebix 1.1 pthread_cancel(tick_thread);
1011     pthread_join(tick_thread, NULL);
1012     }
1013    
1014     // Stop NVRAM watchdog thread
1015     if (nvram_thread_active) {
1016 gbeauche 1.40 nvram_thread_cancel = true;
1017 cebix 1.1 pthread_cancel(nvram_thread);
1018     pthread_join(nvram_thread, NULL);
1019     }
1020    
1021     #if !EMULATED_PPC
1022 gbeauche 1.23 // Uninstall SIGSEGV and SIGBUS handlers
1023 cebix 1.1 sigemptyset(&sigsegv_action.sa_mask);
1024     sigsegv_action.sa_handler = SIG_DFL;
1025     sigsegv_action.sa_flags = 0;
1026     sigaction(SIGSEGV, &sigsegv_action, NULL);
1027 gbeauche 1.23 sigaction(SIGBUS, &sigsegv_action, NULL);
1028 cebix 1.1
1029     // Uninstall SIGILL handler
1030     sigemptyset(&sigill_action.sa_mask);
1031     sigill_action.sa_handler = SIG_DFL;
1032     sigill_action.sa_flags = 0;
1033     sigaction(SIGILL, &sigill_action, NULL);
1034 gbeauche 1.33
1035     // Delete stacks for signal handlers
1036     for (int i = 0; i < SIG_STACK_COUNT; i++) {
1037     void *sig_stack = sig_stacks[i].ss_sp;
1038     if (sig_stack)
1039     free(sig_stack);
1040     }
1041 cebix 1.1 #endif
1042    
1043 gbeauche 1.56 // Deinitialize everything
1044     ExitAll();
1045 gbeauche 1.24
1046 gbeauche 1.15 // Delete SheepShaver globals
1047     SheepMem::Exit();
1048    
1049 cebix 1.1 // Delete RAM area
1050     if (ram_area_mapped)
1051 gbeauche 1.53 vm_mac_release(RAM_BASE, RAMSize);
1052 cebix 1.1
1053     // Delete ROM area
1054     if (rom_area_mapped)
1055 gbeauche 1.53 vm_mac_release(ROM_BASE, ROM_AREA_SIZE);
1056 cebix 1.1
1057 gbeauche 1.36 // Delete DR cache areas
1058     if (dr_emulator_area_mapped)
1059 gbeauche 1.53 vm_mac_release(DR_EMULATOR_BASE, DR_EMULATOR_SIZE);
1060 gbeauche 1.36 if (dr_cache_area_mapped)
1061 gbeauche 1.53 vm_mac_release(DR_CACHE_BASE, DR_CACHE_SIZE);
1062 gbeauche 1.36
1063 cebix 1.1 // Delete Kernel Data area
1064 gbeauche 1.53 kernel_data_exit();
1065 cebix 1.1
1066     // Delete Low Memory area
1067     if (lm_area_mapped)
1068 gbeauche 1.53 vm_mac_release(0, 0x3000);
1069 cebix 1.1
1070     // Close /dev/zero
1071     if (zero_fd > 0)
1072     close(zero_fd);
1073    
1074     // Exit system routines
1075     SysExit();
1076    
1077     // Exit preferences
1078     PrefsExit();
1079    
1080     #ifdef ENABLE_MON
1081     // Exit mon
1082     mon_exit();
1083     #endif
1084    
1085     // Close X11 server connection
1086 gbeauche 1.42 #ifndef USE_SDL_VIDEO
1087 cebix 1.1 if (x_display)
1088     XCloseDisplay(x_display);
1089 gbeauche 1.42 #endif
1090 cebix 1.1
1091     exit(0);
1092     }
1093    
1094    
1095     /*
1096 gbeauche 1.53 * Initialize Kernel Data segments
1097     */
1098    
1099     #if defined(__CYGWIN__)
1100     #define WIN32_LEAN_AND_MEAN
1101     #include <windows.h>
1102    
1103     static HANDLE kernel_handle; // Shared memory handle for Kernel Data
1104     static DWORD allocation_granule; // Minimum size of allocateable are (64K)
1105     static DWORD kernel_area_size; // Size of Kernel Data area
1106     #endif
1107    
1108     static bool kernel_data_init(void)
1109     {
1110 gbeauche 1.54 char str[256];
1111 gbeauche 1.53 #ifdef _WIN32
1112     SYSTEM_INFO si;
1113     GetSystemInfo(&si);
1114     allocation_granule = si.dwAllocationGranularity;
1115     kernel_area_size = (KERNEL_AREA_SIZE + allocation_granule - 1) & -allocation_granule;
1116    
1117     char rcs[10];
1118     LPVOID kernel_addr;
1119     kernel_handle = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, kernel_area_size, NULL);
1120     if (kernel_handle == NULL) {
1121     sprintf(rcs, "%d", GetLastError());
1122     sprintf(str, GetString(STR_KD_SHMGET_ERR), rcs);
1123     ErrorAlert(str);
1124     return false;
1125     }
1126     kernel_addr = (LPVOID)Mac2HostAddr(KERNEL_DATA_BASE & -allocation_granule);
1127     if (MapViewOfFileEx(kernel_handle, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, kernel_area_size, kernel_addr) != kernel_addr) {
1128     sprintf(rcs, "%d", GetLastError());
1129     sprintf(str, GetString(STR_KD_SHMAT_ERR), rcs);
1130     ErrorAlert(str);
1131     return false;
1132     }
1133     kernel_addr = (LPVOID)Mac2HostAddr(KERNEL_DATA2_BASE & -allocation_granule);
1134     if (MapViewOfFileEx(kernel_handle, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, kernel_area_size, kernel_addr) != kernel_addr) {
1135     sprintf(rcs, "%d", GetLastError());
1136     sprintf(str, GetString(STR_KD2_SHMAT_ERR), rcs);
1137     ErrorAlert(str);
1138     return false;
1139     }
1140     #else
1141     kernel_area = shmget(IPC_PRIVATE, KERNEL_AREA_SIZE, 0600);
1142     if (kernel_area == -1) {
1143     sprintf(str, GetString(STR_KD_SHMGET_ERR), strerror(errno));
1144     ErrorAlert(str);
1145     return false;
1146     }
1147     if (shmat(kernel_area, Mac2HostAddr(KERNEL_DATA_BASE), 0) < 0) {
1148     sprintf(str, GetString(STR_KD_SHMAT_ERR), strerror(errno));
1149     ErrorAlert(str);
1150     return false;
1151     }
1152     if (shmat(kernel_area, Mac2HostAddr(KERNEL_DATA2_BASE), 0) < 0) {
1153     sprintf(str, GetString(STR_KD2_SHMAT_ERR), strerror(errno));
1154     ErrorAlert(str);
1155     return false;
1156     }
1157     #endif
1158     return true;
1159     }
1160    
1161    
1162     /*
1163     * Deallocate Kernel Data segments
1164     */
1165    
1166     static void kernel_data_exit(void)
1167     {
1168     #ifdef _WIN32
1169     if (kernel_handle) {
1170     UnmapViewOfFile(Mac2HostAddr(KERNEL_DATA_BASE & -allocation_granule));
1171     UnmapViewOfFile(Mac2HostAddr(KERNEL_DATA2_BASE & -allocation_granule));
1172     CloseHandle(kernel_handle);
1173     }
1174     #else
1175     if (kernel_area >= 0) {
1176     shmdt(Mac2HostAddr(KERNEL_DATA_BASE));
1177     shmdt(Mac2HostAddr(KERNEL_DATA2_BASE));
1178     shmctl(kernel_area, IPC_RMID, NULL);
1179     }
1180     #endif
1181     }
1182    
1183    
1184     /*
1185 cebix 1.1 * Jump into Mac ROM, start 680x0 emulator
1186     */
1187    
1188     #if EMULATED_PPC
1189     void jump_to_rom(uint32 entry)
1190     {
1191     init_emul_ppc();
1192     emul_ppc(entry);
1193     }
1194     #endif
1195    
1196    
1197     /*
1198     * Emulator thread function
1199     */
1200    
1201     static void *emul_func(void *arg)
1202     {
1203     // We're now ready to receive signals
1204     ready_for_signals = true;
1205    
1206     // Decrease priority, so more time-critical things like audio will work better
1207     nice(1);
1208    
1209     // Jump to ROM boot routine
1210     D(bug("Jumping to ROM\n"));
1211     #if EMULATED_PPC
1212     jump_to_rom(ROM_BASE + 0x310000);
1213     #else
1214     jump_to_rom(ROM_BASE + 0x310000, (uint32)emulator_data);
1215     #endif
1216     D(bug("Returned from ROM\n"));
1217    
1218     // We're no longer ready to receive signals
1219     ready_for_signals = false;
1220     return NULL;
1221     }
1222    
1223    
1224     #if !EMULATED_PPC
1225     /*
1226     * Execute 68k subroutine (must be ended with RTS)
1227     * This must only be called by the emul_thread when in EMUL_OP mode
1228     * r->a[7] is unused, the routine runs on the caller's stack
1229     */
1230    
1231     void Execute68k(uint32 pc, M68kRegisters *r)
1232     {
1233     #if SAFE_EXEC_68K
1234     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
1235     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
1236     if (!pthread_equal(pthread_self(), emul_thread))
1237     printf("FATAL: Execute68k() not called from emul_thread\n");
1238     #endif
1239     execute_68k(pc, r);
1240     }
1241    
1242    
1243     /*
1244     * Execute 68k A-Trap from EMUL_OP routine
1245     * r->a[7] is unused, the routine runs on the caller's stack
1246     */
1247    
1248     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1249     {
1250     uint16 proc[2] = {trap, M68K_RTS};
1251     Execute68k((uint32)proc, r);
1252     }
1253 gbeauche 1.7 #endif
1254 cebix 1.1
1255    
1256     /*
1257     * Quit emulator (cause return from jump_to_rom)
1258     */
1259    
1260     void QuitEmulator(void)
1261     {
1262     #if EMULATED_PPC
1263     Quit();
1264     #else
1265     quit_emulator();
1266     #endif
1267     }
1268    
1269    
1270     /*
1271     * Dump 68k registers
1272     */
1273    
1274     void Dump68kRegs(M68kRegisters *r)
1275     {
1276     // Display 68k registers
1277     for (int i=0; i<8; i++) {
1278     printf("d%d: %08x", i, r->d[i]);
1279     if (i == 3 || i == 7)
1280     printf("\n");
1281     else
1282     printf(", ");
1283     }
1284     for (int i=0; i<8; i++) {
1285     printf("a%d: %08x", i, r->a[i]);
1286     if (i == 3 || i == 7)
1287     printf("\n");
1288     else
1289     printf(", ");
1290     }
1291     }
1292    
1293    
1294     /*
1295     * Make code executable
1296     */
1297    
1298 gbeauche 1.52 void MakeExecutable(int dummy, uint32 start, uint32 length)
1299 cebix 1.1 {
1300 gbeauche 1.52 if ((start >= ROM_BASE) && (start < (ROM_BASE + ROM_SIZE)))
1301 cebix 1.1 return;
1302 gbeauche 1.9 #if EMULATED_PPC
1303 gbeauche 1.52 FlushCodeCache(start, start + length);
1304 gbeauche 1.9 #else
1305 gbeauche 1.57 flush_icache_range(start, start + length);
1306 cebix 1.1 #endif
1307     }
1308    
1309    
1310     /*
1311     * NVRAM watchdog thread (saves NVRAM every minute)
1312     */
1313    
1314 gbeauche 1.40 static void nvram_watchdog(void)
1315     {
1316     if (memcmp(last_xpram, XPRAM, XPRAM_SIZE)) {
1317     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
1318     SaveXPRAM();
1319     }
1320     }
1321    
1322 cebix 1.1 static void *nvram_func(void *arg)
1323     {
1324 gbeauche 1.40 while (!nvram_thread_cancel) {
1325     for (int i=0; i<60 && !nvram_thread_cancel; i++)
1326     Delay_usec(999999); // Only wait 1 second so we quit promptly when nvram_thread_cancel becomes true
1327     nvram_watchdog();
1328 cebix 1.1 }
1329     return NULL;
1330     }
1331    
1332    
1333     /*
1334     * 60Hz thread (really 60.15Hz)
1335     */
1336    
1337     static void *tick_func(void *arg)
1338     {
1339     int tick_counter = 0;
1340 gbeauche 1.40 uint64 start = GetTicks_usec();
1341     int64 ticks = 0;
1342     uint64 next = GetTicks_usec();
1343 cebix 1.1
1344 gbeauche 1.40 while (!tick_thread_cancel) {
1345 cebix 1.1
1346     // Wait
1347 gbeauche 1.40 next += 16625;
1348     int64 delay = next - GetTicks_usec();
1349     if (delay > 0)
1350     Delay_usec(delay);
1351     else if (delay < -16625)
1352     next = GetTicks_usec();
1353     ticks++;
1354 cebix 1.1
1355     #if !EMULATED_PPC
1356     // Did we crash?
1357     if (emul_thread_fatal) {
1358    
1359     // Yes, dump registers
1360 gbeauche 1.26 sigregs *r = &sigsegv_regs;
1361 cebix 1.1 char str[256];
1362 gbeauche 1.23 if (crash_reason == NULL)
1363     crash_reason = "SIGSEGV";
1364     sprintf(str, "%s\n"
1365 cebix 1.1 " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1366     " xer %08lx cr %08lx \n"
1367     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1368     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1369     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1370     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1371     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1372     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1373     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1374     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1375 gbeauche 1.23 crash_reason,
1376 cebix 1.1 r->nip, r->link, r->ctr, r->msr,
1377     r->xer, r->ccr,
1378     r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
1379     r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
1380     r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
1381     r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
1382     r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
1383     r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
1384     r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
1385     r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
1386     printf(str);
1387     VideoQuitFullScreen();
1388    
1389     #ifdef ENABLE_MON
1390     // Start up mon in real-mode
1391     printf("Welcome to the sheep factory.\n");
1392     char *arg[4] = {"mon", "-m", "-r", NULL};
1393     mon(3, arg);
1394     #endif
1395     return NULL;
1396     }
1397     #endif
1398    
1399     // Pseudo Mac 1Hz interrupt, update local time
1400     if (++tick_counter > 60) {
1401     tick_counter = 0;
1402     WriteMacInt32(0x20c, TimerDateTime());
1403     }
1404    
1405     // Trigger 60Hz interrupt
1406     if (ReadMacInt32(XLM_IRQ_NEST) == 0) {
1407     SetInterruptFlag(INTFLAG_VIA);
1408     TriggerInterrupt();
1409     }
1410     }
1411 gbeauche 1.40
1412     uint64 end = GetTicks_usec();
1413     D(bug("%Ld ticks in %Ld usec = %f ticks/sec\n", ticks, end - start, ticks * 1000000.0 / (end - start)));
1414 cebix 1.1 return NULL;
1415     }
1416    
1417    
1418     /*
1419 cebix 1.2 * Pthread configuration
1420     */
1421    
1422     void Set_pthread_attr(pthread_attr_t *attr, int priority)
1423     {
1424 gbeauche 1.14 #ifdef HAVE_PTHREADS
1425     pthread_attr_init(attr);
1426     #if defined(_POSIX_THREAD_PRIORITY_SCHEDULING)
1427     // Some of these only work for superuser
1428     if (geteuid() == 0) {
1429     pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
1430     pthread_attr_setschedpolicy(attr, SCHED_FIFO);
1431     struct sched_param fifo_param;
1432     fifo_param.sched_priority = ((sched_get_priority_min(SCHED_FIFO) +
1433     sched_get_priority_max(SCHED_FIFO)) / 2 +
1434     priority);
1435     pthread_attr_setschedparam(attr, &fifo_param);
1436     }
1437     if (pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM) != 0) {
1438     #ifdef PTHREAD_SCOPE_BOUND_NP
1439     // If system scope is not available (eg. we're not running
1440     // with CAP_SCHED_MGT capability on an SGI box), try bound
1441     // scope. It exposes pthread scheduling to the kernel,
1442     // without setting realtime priority.
1443     pthread_attr_setscope(attr, PTHREAD_SCOPE_BOUND_NP);
1444     #endif
1445     }
1446     #endif
1447     #endif
1448 cebix 1.2 }
1449    
1450    
1451     /*
1452 cebix 1.1 * Mutexes
1453     */
1454    
1455 gbeauche 1.7 #ifdef HAVE_PTHREADS
1456    
1457     struct B2_mutex {
1458     B2_mutex() {
1459     pthread_mutexattr_t attr;
1460     pthread_mutexattr_init(&attr);
1461     // Initialize the mutex for priority inheritance --
1462     // required for accurate timing.
1463 gbeauche 1.53 #if defined(HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL) && !defined(__CYGWIN__)
1464 gbeauche 1.7 pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
1465     #endif
1466     #if defined(HAVE_PTHREAD_MUTEXATTR_SETTYPE) && defined(PTHREAD_MUTEX_NORMAL)
1467     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1468     #endif
1469     #ifdef HAVE_PTHREAD_MUTEXATTR_SETPSHARED
1470     pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_PRIVATE);
1471     #endif
1472     pthread_mutex_init(&m, &attr);
1473     pthread_mutexattr_destroy(&attr);
1474     }
1475     ~B2_mutex() {
1476     pthread_mutex_trylock(&m); // Make sure it's locked before
1477     pthread_mutex_unlock(&m); // unlocking it.
1478     pthread_mutex_destroy(&m);
1479     }
1480     pthread_mutex_t m;
1481     };
1482    
1483     B2_mutex *B2_create_mutex(void)
1484     {
1485     return new B2_mutex;
1486     }
1487    
1488     void B2_lock_mutex(B2_mutex *mutex)
1489     {
1490     pthread_mutex_lock(&mutex->m);
1491     }
1492    
1493     void B2_unlock_mutex(B2_mutex *mutex)
1494     {
1495     pthread_mutex_unlock(&mutex->m);
1496     }
1497    
1498     void B2_delete_mutex(B2_mutex *mutex)
1499     {
1500     delete mutex;
1501     }
1502    
1503     #else
1504    
1505 cebix 1.1 struct B2_mutex {
1506     int dummy;
1507     };
1508    
1509     B2_mutex *B2_create_mutex(void)
1510     {
1511     return new B2_mutex;
1512     }
1513    
1514     void B2_lock_mutex(B2_mutex *mutex)
1515     {
1516     }
1517    
1518     void B2_unlock_mutex(B2_mutex *mutex)
1519     {
1520     }
1521    
1522     void B2_delete_mutex(B2_mutex *mutex)
1523     {
1524     delete mutex;
1525     }
1526    
1527 gbeauche 1.7 #endif
1528    
1529 cebix 1.1
1530     /*
1531     * Trigger signal USR2 from another thread
1532     */
1533    
1534 gbeauche 1.35 #if !EMULATED_PPC
1535 cebix 1.1 void TriggerInterrupt(void)
1536     {
1537     if (ready_for_signals)
1538     pthread_kill(emul_thread, SIGUSR2);
1539     }
1540 gbeauche 1.7 #endif
1541 cebix 1.1
1542    
1543     /*
1544     * Interrupt flags (must be handled atomically!)
1545     */
1546    
1547     volatile uint32 InterruptFlags = 0;
1548    
1549     void SetInterruptFlag(uint32 flag)
1550     {
1551     atomic_or((int *)&InterruptFlags, flag);
1552     }
1553    
1554     void ClearInterruptFlag(uint32 flag)
1555     {
1556     atomic_and((int *)&InterruptFlags, ~flag);
1557     }
1558    
1559    
1560     /*
1561     * Disable interrupts
1562     */
1563    
1564     void DisableInterrupt(void)
1565     {
1566 gbeauche 1.41 #if EMULATED_PPC
1567     WriteMacInt32(XLM_IRQ_NEST, int32(ReadMacInt32(XLM_IRQ_NEST)) + 1);
1568     #else
1569 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, 1);
1570 gbeauche 1.41 #endif
1571 cebix 1.1 }
1572    
1573    
1574     /*
1575     * Enable interrupts
1576     */
1577    
1578     void EnableInterrupt(void)
1579     {
1580 gbeauche 1.41 #if EMULATED_PPC
1581     WriteMacInt32(XLM_IRQ_NEST, int32(ReadMacInt32(XLM_IRQ_NEST)) - 1);
1582     #else
1583 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, -1);
1584 gbeauche 1.41 #endif
1585 cebix 1.1 }
1586    
1587    
1588     /*
1589     * USR2 handler
1590     */
1591    
1592 gbeauche 1.35 #if !EMULATED_PPC
1593 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp)
1594 cebix 1.1 {
1595 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1596 cebix 1.1
1597 gbeauche 1.42 #ifdef USE_SDL_VIDEO
1598     // We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
1599     SDL_PumpEvents();
1600     #endif
1601    
1602 cebix 1.1 // Do nothing if interrupts are disabled
1603     if (*(int32 *)XLM_IRQ_NEST > 0)
1604     return;
1605    
1606 gbeauche 1.60 #ifdef SYSTEM_CLOBBERS_R2
1607     // Restore pointer to Thread Local Storage
1608     set_r2(TOC);
1609     #endif
1610     #ifdef SYSTEM_CLOBBERS_R13
1611     // Restore pointer to .sdata section
1612     set_r13(R13);
1613     #endif
1614    
1615 cebix 1.1 // Disable MacOS stack sniffer
1616     WriteMacInt32(0x110, 0);
1617    
1618     // Interrupt action depends on current run mode
1619     switch (ReadMacInt32(XLM_RUN_MODE)) {
1620     case MODE_68K:
1621     // 68k emulator active, trigger 68k interrupt level 1
1622     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1623 gbeauche 1.26 r->cr() |= ntohl(kernel_data->v[0x674 >> 2]);
1624 cebix 1.1 break;
1625    
1626     #if INTERRUPTS_IN_NATIVE_MODE
1627     case MODE_NATIVE:
1628     // 68k emulator inactive, in nanokernel?
1629 gbeauche 1.26 if (r->gpr(1) != KernelDataAddr) {
1630 gbeauche 1.33
1631     // Set extra stack for nested interrupts
1632     sig_stack_acquire();
1633    
1634 cebix 1.1 // Prepare for 68k interrupt level 1
1635     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1636     WriteMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc) | ntohl(kernel_data->v[0x674 >> 2]));
1637    
1638     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1639 gbeauche 1.33 DisableInterrupt();
1640 cebix 1.1 if (ROMType == ROMTYPE_NEWWORLD)
1641     ppc_interrupt(ROM_BASE + 0x312b1c, KernelDataAddr);
1642     else
1643     ppc_interrupt(ROM_BASE + 0x312a3c, KernelDataAddr);
1644 gbeauche 1.33
1645     // Reset normal signal stack
1646     sig_stack_release();
1647 cebix 1.1 }
1648     break;
1649     #endif
1650    
1651     #if INTERRUPTS_IN_EMUL_OP_MODE
1652     case MODE_EMUL_OP:
1653     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1654     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1655    
1656     // Set extra stack for SIGSEGV handler
1657 gbeauche 1.33 sig_stack_acquire();
1658 cebix 1.1 #if 1
1659     // Execute full 68k interrupt routine
1660     M68kRegisters r;
1661     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1662     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1663     static const uint16 proc[] = {
1664     0x3f3c, 0x0000, // move.w #$0000,-(sp) (fake format word)
1665     0x487a, 0x000a, // pea @1(pc) (return address)
1666     0x40e7, // move sr,-(sp) (saved SR)
1667     0x2078, 0x0064, // move.l $64,a0
1668     0x4ed0, // jmp (a0)
1669     M68K_RTS // @1
1670     };
1671     Execute68k((uint32)proc, &r);
1672     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1673     #else
1674     // Only update cursor
1675     if (HasMacStarted()) {
1676     if (InterruptFlags & INTFLAG_VIA) {
1677     ClearInterruptFlag(INTFLAG_VIA);
1678     ADBInterrupt();
1679 gbeauche 1.17 ExecuteNative(NATIVE_VIDEO_VBL);
1680 cebix 1.1 }
1681     }
1682     #endif
1683     // Reset normal signal stack
1684 gbeauche 1.33 sig_stack_release();
1685 cebix 1.1 }
1686     break;
1687     #endif
1688     }
1689     }
1690 gbeauche 1.8 #endif
1691 cebix 1.1
1692    
1693     /*
1694     * SIGSEGV handler
1695     */
1696    
1697 gbeauche 1.8 #if !EMULATED_PPC
1698 gbeauche 1.26 static void sigsegv_handler(int sig, siginfo_t *sip, void *scp)
1699 cebix 1.1 {
1700 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1701 gbeauche 1.5
1702     // Get effective address
1703 gbeauche 1.26 uint32 addr = r->dar();
1704 gbeauche 1.5
1705 gbeauche 1.60 #ifdef SYSTEM_CLOBBERS_R2
1706     // Restore pointer to Thread Local Storage
1707     set_r2(TOC);
1708     #endif
1709     #ifdef SYSTEM_CLOBBERS_R13
1710     // Restore pointer to .sdata section
1711     set_r13(R13);
1712     #endif
1713    
1714 gbeauche 1.5 #if ENABLE_VOSF
1715     // Handle screen fault.
1716     extern bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction);
1717 gbeauche 1.26 if (Screen_fault_handler((sigsegv_address_t)addr, (sigsegv_address_t)r->pc()))
1718 gbeauche 1.5 return;
1719     #endif
1720    
1721 cebix 1.1 num_segv++;
1722    
1723 gbeauche 1.37 // Fault in Mac ROM or RAM or DR Cache?
1724     bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize)) || (r->pc() >= DR_CACHE_BASE && r->pc() < (DR_CACHE_BASE + DR_CACHE_SIZE));
1725 cebix 1.1 if (mac_fault) {
1726    
1727     // "VM settings" during MacOS 8 installation
1728 gbeauche 1.26 if (r->pc() == ROM_BASE + 0x488160 && r->gpr(20) == 0xf8000000) {
1729     r->pc() += 4;
1730     r->gpr(8) = 0;
1731 cebix 1.1 return;
1732    
1733     // MacOS 8.5 installation
1734 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x488140 && r->gpr(16) == 0xf8000000) {
1735     r->pc() += 4;
1736     r->gpr(8) = 0;
1737 cebix 1.1 return;
1738    
1739     // MacOS 8 serial drivers on startup
1740 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48e080 && (r->gpr(8) == 0xf3012002 || r->gpr(8) == 0xf3012000)) {
1741     r->pc() += 4;
1742     r->gpr(8) = 0;
1743 cebix 1.1 return;
1744    
1745     // MacOS 8.1 serial drivers on startup
1746 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48c5e0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1747     r->pc() += 4;
1748 cebix 1.1 return;
1749 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x4a10a0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1750     r->pc() += 4;
1751 cebix 1.1 return;
1752 gbeauche 1.37
1753     // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
1754     } else if ((r->pc() - DR_CACHE_BASE) < DR_CACHE_SIZE && (r->gpr(16) == 0xf3012002 || r->gpr(16) == 0xf3012000)) {
1755     r->pc() += 4;
1756     return;
1757     } else if ((r->pc() - DR_CACHE_BASE) < DR_CACHE_SIZE && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1758     r->pc() += 4;
1759     return;
1760 cebix 1.1 }
1761    
1762 gbeauche 1.5 // Get opcode and divide into fields
1763 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1764 gbeauche 1.5 uint32 primop = opcode >> 26;
1765     uint32 exop = (opcode >> 1) & 0x3ff;
1766     uint32 ra = (opcode >> 16) & 0x1f;
1767     uint32 rb = (opcode >> 11) & 0x1f;
1768     uint32 rd = (opcode >> 21) & 0x1f;
1769     int32 imm = (int16)(opcode & 0xffff);
1770    
1771 cebix 1.1 // Analyze opcode
1772     enum {
1773     TYPE_UNKNOWN,
1774     TYPE_LOAD,
1775     TYPE_STORE
1776     } transfer_type = TYPE_UNKNOWN;
1777     enum {
1778     SIZE_UNKNOWN,
1779     SIZE_BYTE,
1780     SIZE_HALFWORD,
1781     SIZE_WORD
1782     } transfer_size = SIZE_UNKNOWN;
1783     enum {
1784     MODE_UNKNOWN,
1785     MODE_NORM,
1786     MODE_U,
1787     MODE_X,
1788     MODE_UX
1789     } addr_mode = MODE_UNKNOWN;
1790     switch (primop) {
1791     case 31:
1792     switch (exop) {
1793     case 23: // lwzx
1794     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1795     case 55: // lwzux
1796     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1797     case 87: // lbzx
1798     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1799     case 119: // lbzux
1800     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1801     case 151: // stwx
1802     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1803     case 183: // stwux
1804     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1805     case 215: // stbx
1806     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1807     case 247: // stbux
1808     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1809     case 279: // lhzx
1810     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1811     case 311: // lhzux
1812     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1813     case 343: // lhax
1814     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1815     case 375: // lhaux
1816     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1817     case 407: // sthx
1818     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1819     case 439: // sthux
1820     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1821     }
1822     break;
1823    
1824     case 32: // lwz
1825     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1826     case 33: // lwzu
1827     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1828     case 34: // lbz
1829     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1830     case 35: // lbzu
1831     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1832     case 36: // stw
1833     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1834     case 37: // stwu
1835     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1836     case 38: // stb
1837     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1838     case 39: // stbu
1839     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1840     case 40: // lhz
1841     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1842     case 41: // lhzu
1843     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1844     case 42: // lha
1845     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1846     case 43: // lhau
1847     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1848     case 44: // sth
1849     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1850     case 45: // sthu
1851     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1852 gbeauche 1.23 #if EMULATE_UNALIGNED_LOADSTORE_MULTIPLE
1853     case 46: // lmw
1854 gbeauche 1.27 if ((addr % 4) != 0) {
1855     uint32 ea = addr;
1856 gbeauche 1.26 D(bug("WARNING: unaligned lmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1857 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1858 gbeauche 1.26 r->gpr(i) = ReadMacInt32(ea);
1859 gbeauche 1.23 ea += 4;
1860     }
1861 gbeauche 1.26 r->pc() += 4;
1862 gbeauche 1.23 goto rti;
1863     }
1864     break;
1865     case 47: // stmw
1866 gbeauche 1.27 if ((addr % 4) != 0) {
1867     uint32 ea = addr;
1868 gbeauche 1.26 D(bug("WARNING: unaligned stmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1869 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1870 gbeauche 1.26 WriteMacInt32(ea, r->gpr(i));
1871 gbeauche 1.23 ea += 4;
1872     }
1873 gbeauche 1.26 r->pc() += 4;
1874 gbeauche 1.23 goto rti;
1875     }
1876     break;
1877     #endif
1878 cebix 1.1 }
1879    
1880 gbeauche 1.31 // Ignore ROM writes (including to the zero page, which is read-only)
1881     if (transfer_type == TYPE_STORE &&
1882     ((addr >= ROM_BASE && addr < ROM_BASE + ROM_SIZE) ||
1883     (addr >= SheepMem::ZeroPage() && addr < SheepMem::ZeroPage() + SheepMem::PageSize()))) {
1884 gbeauche 1.26 // D(bug("WARNING: %s write access to ROM at %08lx, pc %08lx\n", transfer_size == SIZE_BYTE ? "Byte" : transfer_size == SIZE_HALFWORD ? "Halfword" : "Word", addr, r->pc()));
1885 cebix 1.1 if (addr_mode == MODE_U || addr_mode == MODE_UX)
1886 gbeauche 1.26 r->gpr(ra) = addr;
1887     r->pc() += 4;
1888 cebix 1.1 goto rti;
1889     }
1890    
1891     // Ignore illegal memory accesses?
1892     if (PrefsFindBool("ignoresegv")) {
1893     if (addr_mode == MODE_U || addr_mode == MODE_UX)
1894 gbeauche 1.26 r->gpr(ra) = addr;
1895 cebix 1.1 if (transfer_type == TYPE_LOAD)
1896 gbeauche 1.26 r->gpr(rd) = 0;
1897     r->pc() += 4;
1898 cebix 1.1 goto rti;
1899     }
1900    
1901     // In GUI mode, show error alert
1902     if (!PrefsFindBool("nogui")) {
1903     char str[256];
1904     if (transfer_type == TYPE_LOAD || transfer_type == TYPE_STORE)
1905 gbeauche 1.26 sprintf(str, GetString(STR_MEM_ACCESS_ERR), transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_HALFWORD ? "halfword" : "word", transfer_type == TYPE_LOAD ? GetString(STR_MEM_ACCESS_READ) : GetString(STR_MEM_ACCESS_WRITE), addr, r->pc(), r->gpr(24), r->gpr(1));
1906 cebix 1.1 else
1907 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
1908 cebix 1.1 ErrorAlert(str);
1909     QuitEmulator();
1910     return;
1911     }
1912     }
1913    
1914     // For all other errors, jump into debugger (sort of...)
1915 gbeauche 1.23 crash_reason = (sig == SIGBUS) ? "SIGBUS" : "SIGSEGV";
1916 cebix 1.1 if (!ready_for_signals) {
1917 gbeauche 1.23 printf("%s\n");
1918 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
1919 cebix 1.1 printf(
1920     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1921     " xer %08lx cr %08lx \n"
1922     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1923     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1924     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1925     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1926     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1927     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1928     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1929     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1930 gbeauche 1.23 crash_reason,
1931 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
1932     r->xer(), r->cr(),
1933     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
1934     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
1935     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
1936     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
1937     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
1938     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
1939     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
1940     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
1941 cebix 1.1 exit(1);
1942     QuitEmulator();
1943     return;
1944     } else {
1945     // We crashed. Save registers, tell tick thread and loop forever
1946 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
1947 cebix 1.1 emul_thread_fatal = true;
1948     for (;;) ;
1949     }
1950     rti:;
1951     }
1952    
1953    
1954     /*
1955     * SIGILL handler
1956     */
1957    
1958 gbeauche 1.26 static void sigill_handler(int sig, siginfo_t *sip, void *scp)
1959 cebix 1.1 {
1960 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1961 cebix 1.1 char str[256];
1962    
1963 gbeauche 1.60 #ifdef SYSTEM_CLOBBERS_R2
1964     // Restore pointer to Thread Local Storage
1965     set_r2(TOC);
1966     #endif
1967     #ifdef SYSTEM_CLOBBERS_R13
1968     // Restore pointer to .sdata section
1969     set_r13(R13);
1970     #endif
1971    
1972 cebix 1.1 // Fault in Mac ROM or RAM?
1973 gbeauche 1.26 bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
1974 cebix 1.1 if (mac_fault) {
1975    
1976     // Get opcode and divide into fields
1977 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1978 cebix 1.1 uint32 primop = opcode >> 26;
1979     uint32 exop = (opcode >> 1) & 0x3ff;
1980     uint32 ra = (opcode >> 16) & 0x1f;
1981     uint32 rb = (opcode >> 11) & 0x1f;
1982     uint32 rd = (opcode >> 21) & 0x1f;
1983     int32 imm = (int16)(opcode & 0xffff);
1984    
1985     switch (primop) {
1986     case 9: // POWER instructions
1987     case 22:
1988 gbeauche 1.26 power_inst: sprintf(str, GetString(STR_POWER_INSTRUCTION_ERR), r->pc(), r->gpr(1), opcode);
1989 cebix 1.1 ErrorAlert(str);
1990     QuitEmulator();
1991     return;
1992    
1993     case 31:
1994     switch (exop) {
1995     case 83: // mfmsr
1996 gbeauche 1.26 r->gpr(rd) = 0xf072;
1997     r->pc() += 4;
1998 cebix 1.1 goto rti;
1999    
2000     case 210: // mtsr
2001     case 242: // mtsrin
2002     case 306: // tlbie
2003 gbeauche 1.26 r->pc() += 4;
2004 cebix 1.1 goto rti;
2005    
2006     case 339: { // mfspr
2007     int spr = ra | (rb << 5);
2008     switch (spr) {
2009     case 0: // MQ
2010     case 22: // DEC
2011     case 952: // MMCR0
2012     case 953: // PMC1
2013     case 954: // PMC2
2014     case 955: // SIA
2015     case 956: // MMCR1
2016     case 957: // PMC3
2017     case 958: // PMC4
2018     case 959: // SDA
2019 gbeauche 1.26 r->pc() += 4;
2020 cebix 1.1 goto rti;
2021     case 25: // SDR1
2022 gbeauche 1.26 r->gpr(rd) = 0xdead001f;
2023     r->pc() += 4;
2024 cebix 1.1 goto rti;
2025     case 287: // PVR
2026 gbeauche 1.26 r->gpr(rd) = PVR;
2027     r->pc() += 4;
2028 cebix 1.1 goto rti;
2029     }
2030     break;
2031     }
2032    
2033     case 467: { // mtspr
2034     int spr = ra | (rb << 5);
2035     switch (spr) {
2036     case 0: // MQ
2037     case 22: // DEC
2038     case 275: // SPRG3
2039     case 528: // IBAT0U
2040     case 529: // IBAT0L
2041     case 530: // IBAT1U
2042     case 531: // IBAT1L
2043     case 532: // IBAT2U
2044     case 533: // IBAT2L
2045     case 534: // IBAT3U
2046     case 535: // IBAT3L
2047     case 536: // DBAT0U
2048     case 537: // DBAT0L
2049     case 538: // DBAT1U
2050     case 539: // DBAT1L
2051     case 540: // DBAT2U
2052     case 541: // DBAT2L
2053     case 542: // DBAT3U
2054     case 543: // DBAT3L
2055     case 952: // MMCR0
2056     case 953: // PMC1
2057     case 954: // PMC2
2058     case 955: // SIA
2059     case 956: // MMCR1
2060     case 957: // PMC3
2061     case 958: // PMC4
2062     case 959: // SDA
2063 gbeauche 1.26 r->pc() += 4;
2064 cebix 1.1 goto rti;
2065     }
2066     break;
2067     }
2068    
2069     case 29: case 107: case 152: case 153: // POWER instructions
2070     case 184: case 216: case 217: case 248:
2071     case 264: case 277: case 331: case 360:
2072     case 363: case 488: case 531: case 537:
2073     case 541: case 664: case 665: case 696:
2074     case 728: case 729: case 760: case 920:
2075     case 921: case 952:
2076     goto power_inst;
2077     }
2078     }
2079    
2080     // In GUI mode, show error alert
2081     if (!PrefsFindBool("nogui")) {
2082 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
2083 cebix 1.1 ErrorAlert(str);
2084     QuitEmulator();
2085     return;
2086     }
2087     }
2088    
2089     // For all other errors, jump into debugger (sort of...)
2090 gbeauche 1.23 crash_reason = "SIGILL";
2091 cebix 1.1 if (!ready_for_signals) {
2092 gbeauche 1.23 printf("%s\n");
2093 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
2094 cebix 1.1 printf(
2095     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
2096     " xer %08lx cr %08lx \n"
2097     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
2098     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
2099     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
2100     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
2101     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
2102     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
2103     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
2104     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
2105 gbeauche 1.23 crash_reason,
2106 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
2107     r->xer(), r->cr(),
2108     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
2109     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
2110     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
2111     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
2112     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
2113     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
2114     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
2115     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
2116 cebix 1.1 exit(1);
2117     QuitEmulator();
2118     return;
2119     } else {
2120     // We crashed. Save registers, tell tick thread and loop forever
2121 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
2122 cebix 1.1 emul_thread_fatal = true;
2123     for (;;) ;
2124     }
2125     rti:;
2126     }
2127     #endif
2128 gbeauche 1.15
2129    
2130     /*
2131     * Helpers to share 32-bit addressable data with MacOS
2132     */
2133    
2134     bool SheepMem::Init(void)
2135     {
2136 gbeauche 1.31 // Size of a native page
2137     page_size = getpagesize();
2138 gbeauche 1.20
2139     // Allocate SheepShaver globals
2140 gbeauche 1.53 proc = base;
2141     if (vm_mac_acquire(base, size) < 0)
2142 gbeauche 1.15 return false;
2143 gbeauche 1.18
2144 gbeauche 1.53 // Allocate page with all bits set to 0, right in the middle
2145     // This is also used to catch undesired overlaps between proc and data areas
2146     zero_page = proc + (size / 2);
2147     Mac_memset(zero_page, 0, page_size);
2148     if (vm_protect(Mac2HostAddr(zero_page), page_size, VM_PAGE_READ) < 0)
2149 gbeauche 1.18 return false;
2150    
2151 gbeauche 1.20 #if EMULATED_PPC
2152     // Allocate alternate stack for PowerPC interrupt routine
2153 gbeauche 1.53 sig_stack = base + size;
2154     if (vm_mac_acquire(sig_stack, SIG_STACK_SIZE) < 0)
2155 gbeauche 1.20 return false;
2156     #endif
2157    
2158 gbeauche 1.53 data = base + size;
2159 gbeauche 1.15 return true;
2160     }
2161    
2162     void SheepMem::Exit(void)
2163     {
2164 gbeauche 1.53 if (data) {
2165 gbeauche 1.20 // Delete SheepShaver globals
2166 gbeauche 1.53 vm_mac_release(base, size);
2167 gbeauche 1.20
2168     #if EMULATED_PPC
2169     // Delete alternate stack for PowerPC interrupt routine
2170 gbeauche 1.53 vm_mac_release(sig_stack, SIG_STACK_SIZE);
2171 gbeauche 1.20 #endif
2172 gbeauche 1.18 }
2173 gbeauche 1.15 }
2174 cebix 1.1
2175    
2176     /*
2177     * Display alert
2178     */
2179    
2180     #ifdef ENABLE_GTK
2181     static void dl_destroyed(void)
2182     {
2183     gtk_main_quit();
2184     }
2185    
2186     static void dl_quit(GtkWidget *dialog)
2187     {
2188     gtk_widget_destroy(dialog);
2189     }
2190    
2191     void display_alert(int title_id, int prefix_id, int button_id, const char *text)
2192     {
2193     char str[256];
2194     sprintf(str, GetString(prefix_id), text);
2195    
2196     GtkWidget *dialog = gtk_dialog_new();
2197     gtk_window_set_title(GTK_WINDOW(dialog), GetString(title_id));
2198     gtk_container_border_width(GTK_CONTAINER(dialog), 5);
2199     gtk_widget_set_uposition(GTK_WIDGET(dialog), 100, 150);
2200     gtk_signal_connect(GTK_OBJECT(dialog), "destroy", GTK_SIGNAL_FUNC(dl_destroyed), NULL);
2201    
2202     GtkWidget *label = gtk_label_new(str);
2203     gtk_widget_show(label);
2204     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->vbox), label, TRUE, TRUE, 0);
2205    
2206     GtkWidget *button = gtk_button_new_with_label(GetString(button_id));
2207     gtk_widget_show(button);
2208     gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(dl_quit), GTK_OBJECT(dialog));
2209     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->action_area), button, FALSE, FALSE, 0);
2210     GTK_WIDGET_SET_FLAGS(button, GTK_CAN_DEFAULT);
2211     gtk_widget_grab_default(button);
2212     gtk_widget_show(dialog);
2213    
2214     gtk_main();
2215     }
2216     #endif
2217    
2218    
2219     /*
2220     * Display error alert
2221     */
2222    
2223     void ErrorAlert(const char *text)
2224     {
2225 gbeauche 1.42 #if defined(ENABLE_GTK) && !defined(USE_SDL_VIDEO)
2226 cebix 1.1 if (PrefsFindBool("nogui") || x_display == NULL) {
2227     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2228     return;
2229     }
2230     VideoQuitFullScreen();
2231     display_alert(STR_ERROR_ALERT_TITLE, STR_GUI_ERROR_PREFIX, STR_QUIT_BUTTON, text);
2232     #else
2233     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2234     #endif
2235     }
2236    
2237    
2238     /*
2239     * Display warning alert
2240     */
2241    
2242     void WarningAlert(const char *text)
2243     {
2244 gbeauche 1.42 #if defined(ENABLE_GTK) && !defined(USE_SDL_VIDEO)
2245 cebix 1.1 if (PrefsFindBool("nogui") || x_display == NULL) {
2246     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2247     return;
2248     }
2249     display_alert(STR_WARNING_ALERT_TITLE, STR_GUI_WARNING_PREFIX, STR_OK_BUTTON, text);
2250     #else
2251     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2252     #endif
2253     }
2254    
2255    
2256     /*
2257     * Display choice alert
2258     */
2259    
2260     bool ChoiceAlert(const char *text, const char *pos, const char *neg)
2261     {
2262     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2263     return false; //!!
2264     }