ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/SheepShaver/src/Unix/main_unix.cpp
Revision: 1.32
Committed: 2004-04-06T19:47:56Z (20 years, 5 months ago) by gbeauche
Branch: MAIN
Changes since 1.31: +30 -0 lines
Log Message:
Load XPRAM default values if signature not found. i.e. don't hang on first
boot.

File Contents

# User Rev Content
1 cebix 1.1 /*
2     * main_unix.cpp - Emulation core, Unix implementation
3     *
4 cebix 1.25 * SheepShaver (C) 1997-2004 Christian Bauer and Marc Hellwig
5 cebix 1.1 *
6     * This program is free software; you can redistribute it and/or modify
7     * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation; either version 2 of the License, or
9     * (at your option) any later version.
10     *
11     * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15     *
16     * You should have received a copy of the GNU General Public License
17     * along with this program; if not, write to the Free Software
18     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19     */
20    
21     /*
22     * NOTES:
23     *
24     * See main_beos.cpp for a description of the three operating modes.
25     *
26     * In addition to that, we have to handle the fact that the MacOS ABI
27     * is slightly different from the SysV ABI used by Linux:
28     * - Stack frames are different (e.g. LR is stored in 8(r1) under
29     * MacOS, but in 4(r1) under Linux)
30     * - There is no TOC under Linux; r2 is free for the user
31     * - r13 is used as a small data pointer under Linux (but appearently
32     * it is not used this way? To be sure, we specify -msdata=none
33     * in the Makefile)
34     * - As there is no TOC, there are also no TVECTs under Linux;
35     * function pointers point directly to the function code
36     * The Execute*() functions have to account for this. Additionally, we
37     * cannot simply call MacOS functions by getting their TVECT and jumping
38     * to it. Such calls are done via the call_macos*() functions in
39     * asm_linux.S that create a MacOS stack frame, load the TOC pointer
40     * and put the arguments into the right registers.
41     *
42     * As on the BeOS, we have to specify an alternate signal stack because
43     * interrupts (and, under Linux, Low Memory accesses) may occur when r1
44     * is pointing to the Kernel Data or to Low Memory. There is one
45     * problem, however, due to the alternate signal stack being global to
46     * all signal handlers. Consider the following scenario:
47     * - The main thread is executing some native PPC MacOS code in
48     * MODE_NATIVE, running on the MacOS stack (somewhere in the Mac RAM).
49     * - A SIGUSR2 interrupt occurs. The kernel switches to the signal
50     * stack and starts executing the SIGUSR2 signal handler.
51     * - The signal handler sees the MODE_NATIVE and calls ppc_interrupt()
52     * to handle a native interrupt.
53     * - ppc_interrupt() sets r1 to point to the Kernel Data and jumps to
54     * the nanokernel.
55     * - The nanokernel accesses a Low Memory global (most likely one of
56     * the XLMs), a SIGSEGV occurs.
57     * - The kernel sees that r1 does not point to the signal stack and
58     * switches to the signal stack again, thus overwriting the data that
59     * the SIGUSR2 handler put there.
60     * The same problem arises when calling ExecutePPC() inside the MODE_EMUL_OP
61     * interrupt handler.
62     *
63     * The solution is to set the signal stack to a second, "extra" stack
64     * inside the SIGUSR2 handler before entering the Nanokernel or calling
65     * ExecutePPC (or any function that might cause a mode switch). The signal
66     * stack is restored before exiting the SIGUSR2 handler.
67     *
68     * TODO:
69     * check if SIGSEGV handler works for all registers (including FP!)
70     */
71    
72     #include <unistd.h>
73     #include <fcntl.h>
74     #include <time.h>
75     #include <errno.h>
76     #include <stdio.h>
77     #include <stdlib.h>
78     #include <string.h>
79     #include <pthread.h>
80     #include <sys/mman.h>
81     #include <sys/ipc.h>
82     #include <sys/shm.h>
83     #include <signal.h>
84    
85     #include "sysdeps.h"
86     #include "main.h"
87     #include "version.h"
88     #include "prefs.h"
89     #include "prefs_editor.h"
90     #include "cpu_emulation.h"
91     #include "emul_op.h"
92     #include "xlowmem.h"
93     #include "xpram.h"
94     #include "timer.h"
95     #include "adb.h"
96     #include "sony.h"
97     #include "disk.h"
98     #include "cdrom.h"
99     #include "scsi.h"
100     #include "video.h"
101     #include "audio.h"
102     #include "ether.h"
103     #include "serial.h"
104     #include "clip.h"
105     #include "extfs.h"
106     #include "sys.h"
107     #include "macos_util.h"
108     #include "rom_patches.h"
109     #include "user_strings.h"
110 gbeauche 1.4 #include "vm_alloc.h"
111 gbeauche 1.5 #include "sigsegv.h"
112 gbeauche 1.15 #include "thunks.h"
113 cebix 1.1
114     #define DEBUG 0
115     #include "debug.h"
116    
117    
118     #include <X11/Xlib.h>
119    
120     #ifdef ENABLE_GTK
121     #include <gtk/gtk.h>
122     #endif
123    
124     #ifdef ENABLE_XF86_DGA
125     #include <X11/Xlib.h>
126     #include <X11/Xutil.h>
127     #include <X11/extensions/xf86dga.h>
128     #endif
129    
130     #ifdef ENABLE_MON
131     #include "mon.h"
132     #endif
133    
134    
135 gbeauche 1.23 // Enable emulation of unaligned lmw/stmw?
136     #define EMULATE_UNALIGNED_LOADSTORE_MULTIPLE 1
137    
138 cebix 1.1 // Enable Execute68k() safety checks?
139     #define SAFE_EXEC_68K 0
140    
141     // Interrupts in EMUL_OP mode?
142     #define INTERRUPTS_IN_EMUL_OP_MODE 1
143    
144     // Interrupts in native mode?
145     #define INTERRUPTS_IN_NATIVE_MODE 1
146    
147    
148     // Constants
149     const char ROM_FILE_NAME[] = "ROM";
150     const char ROM_FILE_NAME2[] = "Mac OS ROM";
151    
152 gbeauche 1.15 const uintptr RAM_BASE = 0x20000000; // Base address of RAM
153 cebix 1.1 const uint32 SIG_STACK_SIZE = 0x10000; // Size of signal stack
154    
155    
156     #if !EMULATED_PPC
157 gbeauche 1.26 struct sigregs {
158     uint32 nip;
159     uint32 link;
160     uint32 ctr;
161     uint32 msr;
162     uint32 xer;
163     uint32 ccr;
164     uint32 gpr[32];
165     };
166 cebix 1.1
167 gbeauche 1.26 #if defined(__linux__)
168 gbeauche 1.28 #include <sys/ucontext.h>
169     #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext.regs))
170    
171 gbeauche 1.26 struct machine_regs : public pt_regs
172     {
173     u_long & cr() { return pt_regs::ccr; }
174     uint32 cr() const { return pt_regs::ccr; }
175     uint32 lr() const { return pt_regs::link; }
176     uint32 ctr() const { return pt_regs::ctr; }
177     uint32 xer() const { return pt_regs::xer; }
178     uint32 msr() const { return pt_regs::msr; }
179     uint32 dar() const { return pt_regs::dar; }
180     u_long & pc() { return pt_regs::nip; }
181     uint32 pc() const { return pt_regs::nip; }
182     u_long & gpr(int i) { return pt_regs::gpr[i]; }
183     uint32 gpr(int i) const { return pt_regs::gpr[i]; }
184 cebix 1.1 };
185 gbeauche 1.28 #endif
186    
187     #if defined(__APPLE__) && defined(__MACH__)
188     #include <sys/signal.h>
189     extern "C" int sigaltstack(const struct sigaltstack *ss, struct sigaltstack *oss);
190 gbeauche 1.26
191     #include <sys/ucontext.h>
192 gbeauche 1.28 #define MACHINE_REGISTERS(scp) ((machine_regs *)(((ucontext_t *)scp)->uc_mcontext))
193 gbeauche 1.26
194     struct machine_regs : public mcontext
195     {
196     uint32 & cr() { return ss.cr; }
197     uint32 cr() const { return ss.cr; }
198     uint32 lr() const { return ss.lr; }
199     uint32 ctr() const { return ss.ctr; }
200     uint32 xer() const { return ss.xer; }
201     uint32 msr() const { return ss.srr1; }
202     uint32 dar() const { return es.dar; }
203     uint32 & pc() { return ss.srr0; }
204     uint32 pc() const { return ss.srr0; }
205     uint32 & gpr(int i) { return (&ss.r0)[i]; }
206     uint32 gpr(int i) const { return (&ss.r0)[i]; }
207     };
208     #endif
209    
210     static void build_sigregs(sigregs *srp, machine_regs *mrp)
211     {
212     srp->nip = mrp->pc();
213     srp->link = mrp->lr();
214     srp->ctr = mrp->ctr();
215     srp->msr = mrp->msr();
216     srp->xer = mrp->xer();
217     srp->ccr = mrp->cr();
218     for (int i = 0; i < 32; i++)
219     srp->gpr[i] = mrp->gpr(i);
220     }
221 cebix 1.1 #endif
222    
223    
224     // Global variables (exported)
225     #if !EMULATED_PPC
226     void *TOC; // Small data pointer (r13)
227     #endif
228     uint32 RAMBase; // Base address of Mac RAM
229     uint32 RAMSize; // Size of Mac RAM
230     uint32 KernelDataAddr; // Address of Kernel Data
231     uint32 BootGlobsAddr; // Address of BootGlobs structure at top of Mac RAM
232     uint32 PVR; // Theoretical PVR
233     int64 CPUClockSpeed; // Processor clock speed (Hz)
234     int64 BusClockSpeed; // Bus clock speed (Hz)
235    
236    
237     // Global variables
238 gbeauche 1.11 char *x_display_name = NULL; // X11 display name
239 cebix 1.1 Display *x_display = NULL; // X11 display handle
240 gbeauche 1.21 #ifdef X11_LOCK_TYPE
241     X11_LOCK_TYPE x_display_lock = X11_LOCK_INIT; // X11 display lock
242     #endif
243 cebix 1.1
244     static int zero_fd = 0; // FD of /dev/zero
245     static bool lm_area_mapped = false; // Flag: Low Memory area mmap()ped
246     static int kernel_area = -1; // SHM ID of Kernel Data area
247     static bool rom_area_mapped = false; // Flag: Mac ROM mmap()ped
248     static bool ram_area_mapped = false; // Flag: Mac RAM mmap()ped
249     static KernelData *kernel_data; // Pointer to Kernel Data
250     static EmulatorData *emulator_data;
251    
252     static uint8 last_xpram[XPRAM_SIZE]; // Buffer for monitoring XPRAM changes
253    
254     static bool nvram_thread_active = false; // Flag: NVRAM watchdog installed
255     static pthread_t nvram_thread; // NVRAM watchdog
256     static bool tick_thread_active = false; // Flag: MacOS thread installed
257     static pthread_t tick_thread; // 60Hz thread
258     static pthread_t emul_thread; // MacOS thread
259    
260     static bool ready_for_signals = false; // Handler installed, signals can be sent
261     static int64 num_segv = 0; // Number of handled SEGV signals
262    
263 gbeauche 1.6 static struct sigaction sigusr2_action; // Interrupt signal (of emulator thread)
264 gbeauche 1.20 #if EMULATED_PPC
265     static uintptr sig_stack = 0; // Stack for PowerPC interrupt routine
266     #else
267 cebix 1.1 static struct sigaction sigsegv_action; // Data access exception signal (of emulator thread)
268     static struct sigaction sigill_action; // Illegal instruction signal (of emulator thread)
269     static void *sig_stack = NULL; // Stack for signal handlers
270     static void *extra_stack = NULL; // Stack for SIGSEGV inside interrupt handler
271     static bool emul_thread_fatal = false; // Flag: MacOS thread crashed, tick thread shall dump debug output
272     static sigregs sigsegv_regs; // Register dump when crashed
273 gbeauche 1.23 static const char *crash_reason = NULL; // Reason of the crash (SIGSEGV, SIGBUS, SIGILL)
274 cebix 1.1 #endif
275    
276 gbeauche 1.31 uint32 SheepMem::page_size; // Size of a native page
277 gbeauche 1.18 uintptr SheepMem::zero_page = 0; // Address of ro page filled in with zeros
278 gbeauche 1.15 uintptr SheepMem::base = 0x60000000; // Address of SheepShaver data
279     uintptr SheepMem::top = 0; // Top of SheepShaver data (stack like storage)
280    
281 cebix 1.1
282     // Prototypes
283     static void Quit(void);
284     static void *emul_func(void *arg);
285     static void *nvram_func(void *arg);
286     static void *tick_func(void *arg);
287 gbeauche 1.8 #if EMULATED_PPC
288     static void sigusr2_handler(int sig);
289 gbeauche 1.13 extern void emul_ppc(uint32 start);
290     extern void init_emul_ppc(void);
291     extern void exit_emul_ppc(void);
292 gbeauche 1.8 #else
293 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp);
294     static void sigsegv_handler(int sig, siginfo_t *sip, void *scp);
295     static void sigill_handler(int sig, siginfo_t *sip, void *scp);
296 cebix 1.1 #endif
297    
298    
299     // From asm_linux.S
300 gbeauche 1.12 #if !EMULATED_PPC
301 cebix 1.1 extern "C" void *get_toc(void);
302     extern "C" void *get_sp(void);
303     extern "C" void flush_icache_range(void *start, void *end);
304     extern "C" void jump_to_rom(uint32 entry, uint32 context);
305     extern "C" void quit_emulator(void);
306     extern "C" void execute_68k(uint32 pc, M68kRegisters *r);
307     extern "C" void ppc_interrupt(uint32 entry, uint32 kernel_data);
308     extern "C" int atomic_add(int *var, int v);
309     extern "C" int atomic_and(int *var, int v);
310     extern "C" int atomic_or(int *var, int v);
311     extern void paranoia_check(void);
312 gbeauche 1.12 #endif
313    
314    
315     #if EMULATED_PPC
316     /*
317 gbeauche 1.20 * Return signal stack base
318     */
319    
320     uintptr SignalStackBase(void)
321     {
322     return sig_stack + SIG_STACK_SIZE;
323     }
324    
325    
326     /*
327 gbeauche 1.12 * Atomic operations
328     */
329    
330     #if HAVE_SPINLOCKS
331     static spinlock_t atomic_ops_lock = SPIN_LOCK_UNLOCKED;
332     #else
333     #define spin_lock(LOCK)
334     #define spin_unlock(LOCK)
335     #endif
336    
337     int atomic_add(int *var, int v)
338     {
339     spin_lock(&atomic_ops_lock);
340     int ret = *var;
341     *var += v;
342     spin_unlock(&atomic_ops_lock);
343     return ret;
344     }
345    
346     int atomic_and(int *var, int v)
347     {
348     spin_lock(&atomic_ops_lock);
349     int ret = *var;
350     *var &= v;
351     spin_unlock(&atomic_ops_lock);
352     return ret;
353     }
354    
355     int atomic_or(int *var, int v)
356     {
357     spin_lock(&atomic_ops_lock);
358     int ret = *var;
359     *var |= v;
360     spin_unlock(&atomic_ops_lock);
361     return ret;
362     }
363 cebix 1.1 #endif
364    
365    
366     /*
367     * Main program
368     */
369    
370     static void usage(const char *prg_name)
371     {
372     printf("Usage: %s [OPTION...]\n", prg_name);
373     printf("\nUnix options:\n");
374     printf(" --display STRING\n X display to use\n");
375     PrefsPrintUsage();
376     exit(0);
377     }
378    
379     int main(int argc, char **argv)
380     {
381     char str[256];
382     uint32 *boot_globs;
383     int16 i16;
384     int rom_fd;
385     FILE *proc_file;
386     const char *rom_path;
387     uint32 rom_size, actual;
388     uint8 *rom_tmp;
389     time_t now, expire;
390    
391     // Initialize variables
392     RAMBase = 0;
393     tzset();
394    
395     // Print some info
396     printf(GetString(STR_ABOUT_TEXT1), VERSION_MAJOR, VERSION_MINOR);
397     printf(" %s\n", GetString(STR_ABOUT_TEXT2));
398    
399     #if !EMULATED_PPC
400     // Get TOC pointer
401     TOC = get_toc();
402     #endif
403    
404     #ifdef ENABLE_GTK
405     // Init GTK
406     gtk_set_locale();
407     gtk_init(&argc, &argv);
408     #endif
409    
410     // Read preferences
411     PrefsInit(argc, argv);
412    
413     // Parse command line arguments
414     for (int i=1; i<argc; i++) {
415     if (strcmp(argv[i], "--help") == 0) {
416     usage(argv[0]);
417     } else if (strcmp(argv[i], "--display") == 0) {
418     i++;
419     if (i < argc)
420     x_display_name = strdup(argv[i]);
421     } else if (argv[i][0] == '-') {
422     fprintf(stderr, "Unrecognized option '%s'\n", argv[i]);
423     usage(argv[0]);
424     }
425     }
426    
427     // Open display
428     x_display = XOpenDisplay(x_display_name);
429     if (x_display == NULL) {
430     char str[256];
431     sprintf(str, GetString(STR_NO_XSERVER_ERR), XDisplayName(x_display_name));
432     ErrorAlert(str);
433     goto quit;
434     }
435    
436     #if defined(ENABLE_XF86_DGA) && !defined(ENABLE_MON)
437     // Fork out, so we can return from fullscreen mode when things get ugly
438     XF86DGAForkApp(DefaultScreen(x_display));
439     #endif
440    
441     #ifdef ENABLE_MON
442     // Initialize mon
443     mon_init();
444     #endif
445    
446     // Get system info
447     PVR = 0x00040000; // Default: 604
448     CPUClockSpeed = 100000000; // Default: 100MHz
449     BusClockSpeed = 100000000; // Default: 100MHz
450 gbeauche 1.30 #if EMULATED_PPC
451     PVR = 0x000c0000; // Default: 7400 (with AltiVec)
452     #else
453 cebix 1.1 proc_file = fopen("/proc/cpuinfo", "r");
454     if (proc_file) {
455     char line[256];
456     while(fgets(line, 255, proc_file)) {
457     // Read line
458     int len = strlen(line);
459     if (len == 0)
460     continue;
461     line[len-1] = 0;
462    
463     // Parse line
464     int i;
465     char value[256];
466 gbeauche 1.29 if (sscanf(line, "cpu : %[0-9A-Za-a]", value) == 1) {
467 cebix 1.1 if (strcmp(value, "601") == 0)
468     PVR = 0x00010000;
469     else if (strcmp(value, "603") == 0)
470     PVR = 0x00030000;
471     else if (strcmp(value, "604") == 0)
472     PVR = 0x00040000;
473     else if (strcmp(value, "603e") == 0)
474     PVR = 0x00060000;
475     else if (strcmp(value, "603ev") == 0)
476     PVR = 0x00070000;
477     else if (strcmp(value, "604e") == 0)
478     PVR = 0x00090000;
479     else if (strcmp(value, "604ev5") == 0)
480     PVR = 0x000a0000;
481     else if (strcmp(value, "750") == 0)
482     PVR = 0x00080000;
483     else if (strcmp(value, "821") == 0)
484     PVR = 0x00320000;
485     else if (strcmp(value, "860") == 0)
486     PVR = 0x00500000;
487 gbeauche 1.29 else if (strcmp(value, "7400") == 0)
488 gbeauche 1.30 PVR = 0x000c0000;
489 gbeauche 1.29 else if (strcmp(value, "7410") == 0)
490     PVR = 0x800c0000;
491 cebix 1.1 else
492     printf("WARNING: Unknown CPU type '%s', assuming 604\n", value);
493     }
494     if (sscanf(line, "clock : %dMHz", &i) == 1)
495     CPUClockSpeed = BusClockSpeed = i * 1000000;
496     }
497     fclose(proc_file);
498     } else {
499     sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
500     WarningAlert(str);
501     }
502     #endif
503     D(bug("PVR: %08x (assumed)\n", PVR));
504    
505     // Init system routines
506     SysInit();
507    
508     // Show preferences editor
509     if (!PrefsFindBool("nogui"))
510     if (!PrefsEditor())
511     goto quit;
512    
513     #if !EMULATED_PPC
514     // Check some things
515     paranoia_check();
516     #endif
517    
518     // Open /dev/zero
519     zero_fd = open("/dev/zero", O_RDWR);
520     if (zero_fd < 0) {
521     sprintf(str, GetString(STR_NO_DEV_ZERO_ERR), strerror(errno));
522     ErrorAlert(str);
523     goto quit;
524     }
525    
526 gbeauche 1.26 #ifndef PAGEZERO_HACK
527 cebix 1.1 // Create Low Memory area (0x0000..0x3000)
528 gbeauche 1.4 if (vm_acquire_fixed((char *)0, 0x3000) < 0) {
529 cebix 1.1 sprintf(str, GetString(STR_LOW_MEM_MMAP_ERR), strerror(errno));
530     ErrorAlert(str);
531     goto quit;
532     }
533     lm_area_mapped = true;
534 gbeauche 1.26 #endif
535 cebix 1.1
536     // Create areas for Kernel Data
537     kernel_area = shmget(IPC_PRIVATE, KERNEL_AREA_SIZE, 0600);
538     if (kernel_area == -1) {
539     sprintf(str, GetString(STR_KD_SHMGET_ERR), strerror(errno));
540     ErrorAlert(str);
541     goto quit;
542     }
543     if (shmat(kernel_area, (void *)KERNEL_DATA_BASE, 0) < 0) {
544     sprintf(str, GetString(STR_KD_SHMAT_ERR), strerror(errno));
545     ErrorAlert(str);
546     goto quit;
547     }
548     if (shmat(kernel_area, (void *)KERNEL_DATA2_BASE, 0) < 0) {
549     sprintf(str, GetString(STR_KD2_SHMAT_ERR), strerror(errno));
550     ErrorAlert(str);
551     goto quit;
552     }
553 gbeauche 1.15 kernel_data = (KernelData *)KERNEL_DATA_BASE;
554 cebix 1.1 emulator_data = &kernel_data->ed;
555 gbeauche 1.15 KernelDataAddr = KERNEL_DATA_BASE;
556 cebix 1.1 D(bug("Kernel Data at %p, Emulator Data at %p\n", kernel_data, emulator_data));
557    
558 gbeauche 1.8 // Create area for SheepShaver data
559 gbeauche 1.15 if (!SheepMem::Init()) {
560 gbeauche 1.8 sprintf(str, GetString(STR_SHEEP_MEM_MMAP_ERR), strerror(errno));
561     ErrorAlert(str);
562     goto quit;
563     }
564    
565 cebix 1.1 // Create area for Mac ROM
566 gbeauche 1.4 if (vm_acquire_fixed((char *)ROM_BASE, ROM_AREA_SIZE) < 0) {
567 cebix 1.1 sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
568     ErrorAlert(str);
569     goto quit;
570     }
571 gbeauche 1.27 #if !EMULATED_PPC
572 gbeauche 1.4 if (vm_protect((char *)ROM_BASE, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
573     sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
574     ErrorAlert(str);
575     goto quit;
576     }
577     #endif
578 cebix 1.1 rom_area_mapped = true;
579     D(bug("ROM area at %08x\n", ROM_BASE));
580    
581     // Create area for Mac RAM
582     RAMSize = PrefsFindInt32("ramsize");
583     if (RAMSize < 8*1024*1024) {
584     WarningAlert(GetString(STR_SMALL_RAM_WARN));
585     RAMSize = 8*1024*1024;
586     }
587    
588 gbeauche 1.8 if (vm_acquire_fixed((char *)RAM_BASE, RAMSize) < 0) {
589 cebix 1.1 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
590     ErrorAlert(str);
591     goto quit;
592     }
593 gbeauche 1.4 #if !EMULATED_PPC
594 gbeauche 1.8 if (vm_protect((char *)RAM_BASE, RAMSize, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
595 gbeauche 1.4 sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
596     ErrorAlert(str);
597     goto quit;
598     }
599     #endif
600 gbeauche 1.8 RAMBase = RAM_BASE;
601 cebix 1.1 ram_area_mapped = true;
602     D(bug("RAM area at %08x\n", RAMBase));
603    
604     if (RAMBase > ROM_BASE) {
605     ErrorAlert(GetString(STR_RAM_HIGHER_THAN_ROM_ERR));
606     goto quit;
607     }
608    
609     // Load Mac ROM
610     rom_path = PrefsFindString("rom");
611     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME, O_RDONLY);
612     if (rom_fd < 0) {
613     rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME2, O_RDONLY);
614     if (rom_fd < 0) {
615     ErrorAlert(GetString(STR_NO_ROM_FILE_ERR));
616     goto quit;
617     }
618     }
619     printf(GetString(STR_READING_ROM_FILE));
620     rom_size = lseek(rom_fd, 0, SEEK_END);
621     lseek(rom_fd, 0, SEEK_SET);
622     rom_tmp = new uint8[ROM_SIZE];
623     actual = read(rom_fd, (void *)rom_tmp, ROM_SIZE);
624     close(rom_fd);
625 gbeauche 1.3
626     // Decode Mac ROM
627     if (!DecodeROM(rom_tmp, actual)) {
628     if (rom_size != 4*1024*1024) {
629 cebix 1.1 ErrorAlert(GetString(STR_ROM_SIZE_ERR));
630     goto quit;
631     } else {
632     ErrorAlert(GetString(STR_ROM_FILE_READ_ERR));
633     goto quit;
634     }
635     }
636 gbeauche 1.3 delete[] rom_tmp;
637 cebix 1.1
638     // Load NVRAM
639     XPRAMInit();
640    
641 gbeauche 1.32 // Load XPRAM default values if signature not found
642     if (XPRAM[0x130c] != 0x4e || XPRAM[0x130d] != 0x75
643     || XPRAM[0x130e] != 0x4d || XPRAM[0x130f] != 0x63) {
644     D(bug("Loading XPRAM default values\n"));
645     memset(XPRAM + 0x1300, 0, 0x100);
646     XPRAM[0x130c] = 0x4e; // "NuMc" signature
647     XPRAM[0x130d] = 0x75;
648     XPRAM[0x130e] = 0x4d;
649     XPRAM[0x130f] = 0x63;
650     XPRAM[0x1301] = 0x80; // InternalWaitFlags = DynWait (don't wait for SCSI devices upon bootup)
651     XPRAM[0x1310] = 0xa8; // Standard PRAM values
652     XPRAM[0x1311] = 0x00;
653     XPRAM[0x1312] = 0x00;
654     XPRAM[0x1313] = 0x22;
655     XPRAM[0x1314] = 0xcc;
656     XPRAM[0x1315] = 0x0a;
657     XPRAM[0x1316] = 0xcc;
658     XPRAM[0x1317] = 0x0a;
659     XPRAM[0x131c] = 0x00;
660     XPRAM[0x131d] = 0x02;
661     XPRAM[0x131e] = 0x63;
662     XPRAM[0x131f] = 0x00;
663     XPRAM[0x1308] = 0x13;
664     XPRAM[0x1309] = 0x88;
665     XPRAM[0x130a] = 0x00;
666     XPRAM[0x130b] = 0xcc;
667     XPRAM[0x1376] = 0x00; // OSDefault = MacOS
668     XPRAM[0x1377] = 0x01;
669     }
670    
671 cebix 1.1 // Set boot volume
672 cebix 1.10 i16 = PrefsFindInt32("bootdrive");
673 cebix 1.1 XPRAM[0x1378] = i16 >> 8;
674     XPRAM[0x1379] = i16 & 0xff;
675 cebix 1.10 i16 = PrefsFindInt32("bootdriver");
676 cebix 1.1 XPRAM[0x137a] = i16 >> 8;
677     XPRAM[0x137b] = i16 & 0xff;
678    
679     // Create BootGlobs at top of Mac memory
680     memset((void *)(RAMBase + RAMSize - 4096), 0, 4096);
681     BootGlobsAddr = RAMBase + RAMSize - 0x1c;
682     boot_globs = (uint32 *)BootGlobsAddr;
683     boot_globs[-5] = htonl(RAMBase + RAMSize); // MemTop
684     boot_globs[0] = htonl(RAMBase); // First RAM bank
685     boot_globs[1] = htonl(RAMSize);
686     boot_globs[2] = htonl((uint32)-1); // End of bank table
687    
688 gbeauche 1.15 // Init thunks
689     if (!ThunksInit())
690     goto quit;
691    
692 cebix 1.1 // Init drivers
693     SonyInit();
694     DiskInit();
695     CDROMInit();
696     SCSIInit();
697    
698     // Init external file system
699     ExtFSInit();
700    
701 gbeauche 1.22 // Init ADB
702     ADBInit();
703    
704 cebix 1.1 // Init audio
705     AudioInit();
706    
707     // Init network
708     EtherInit();
709    
710     // Init serial ports
711     SerialInit();
712    
713     // Init Time Manager
714     TimerInit();
715    
716     // Init clipboard
717     ClipInit();
718    
719     // Init video
720     if (!VideoInit())
721     goto quit;
722    
723     // Install ROM patches
724     if (!PatchROM()) {
725     ErrorAlert(GetString(STR_UNSUPPORTED_ROM_TYPE_ERR));
726     goto quit;
727     }
728    
729     // Clear caches (as we loaded and patched code) and write protect ROM
730     #if !EMULATED_PPC
731     MakeExecutable(0, (void *)ROM_BASE, ROM_AREA_SIZE);
732     #endif
733 gbeauche 1.4 vm_protect((char *)ROM_BASE, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_EXECUTE);
734 cebix 1.1
735     // Initialize Kernel Data
736     memset(kernel_data, 0, sizeof(KernelData));
737     if (ROMType == ROMTYPE_NEWWORLD) {
738 gbeauche 1.15 uintptr of_dev_tree = SheepMem::Reserve(4 * sizeof(uint32));
739     memset((void *)of_dev_tree, 0, 4 * sizeof(uint32));
740     uintptr vector_lookup_tbl = SheepMem::Reserve(128);
741     uintptr vector_mask_tbl = SheepMem::Reserve(64);
742 cebix 1.1 memset((uint8 *)kernel_data + 0xb80, 0x3d, 0x80);
743 gbeauche 1.15 memset((void *)vector_lookup_tbl, 0, 128);
744     memset((void *)vector_mask_tbl, 0, 64);
745 cebix 1.1 kernel_data->v[0xb80 >> 2] = htonl(ROM_BASE);
746 gbeauche 1.15 kernel_data->v[0xb84 >> 2] = htonl(of_dev_tree); // OF device tree base
747     kernel_data->v[0xb90 >> 2] = htonl(vector_lookup_tbl);
748     kernel_data->v[0xb94 >> 2] = htonl(vector_mask_tbl);
749 cebix 1.1 kernel_data->v[0xb98 >> 2] = htonl(ROM_BASE); // OpenPIC base
750     kernel_data->v[0xbb0 >> 2] = htonl(0); // ADB base
751     kernel_data->v[0xc20 >> 2] = htonl(RAMSize);
752     kernel_data->v[0xc24 >> 2] = htonl(RAMSize);
753     kernel_data->v[0xc30 >> 2] = htonl(RAMSize);
754     kernel_data->v[0xc34 >> 2] = htonl(RAMSize);
755     kernel_data->v[0xc38 >> 2] = htonl(0x00010020);
756     kernel_data->v[0xc3c >> 2] = htonl(0x00200001);
757     kernel_data->v[0xc40 >> 2] = htonl(0x00010000);
758     kernel_data->v[0xc50 >> 2] = htonl(RAMBase);
759     kernel_data->v[0xc54 >> 2] = htonl(RAMSize);
760     kernel_data->v[0xf60 >> 2] = htonl(PVR);
761     kernel_data->v[0xf64 >> 2] = htonl(CPUClockSpeed);
762     kernel_data->v[0xf68 >> 2] = htonl(BusClockSpeed);
763     kernel_data->v[0xf6c >> 2] = htonl(CPUClockSpeed);
764     } else {
765     kernel_data->v[0xc80 >> 2] = htonl(RAMSize);
766     kernel_data->v[0xc84 >> 2] = htonl(RAMSize);
767     kernel_data->v[0xc90 >> 2] = htonl(RAMSize);
768     kernel_data->v[0xc94 >> 2] = htonl(RAMSize);
769     kernel_data->v[0xc98 >> 2] = htonl(0x00010020);
770     kernel_data->v[0xc9c >> 2] = htonl(0x00200001);
771     kernel_data->v[0xca0 >> 2] = htonl(0x00010000);
772     kernel_data->v[0xcb0 >> 2] = htonl(RAMBase);
773     kernel_data->v[0xcb4 >> 2] = htonl(RAMSize);
774     kernel_data->v[0xf80 >> 2] = htonl(PVR);
775     kernel_data->v[0xf84 >> 2] = htonl(CPUClockSpeed);
776     kernel_data->v[0xf88 >> 2] = htonl(BusClockSpeed);
777     kernel_data->v[0xf8c >> 2] = htonl(CPUClockSpeed);
778     }
779    
780     // Initialize extra low memory
781     D(bug("Initializing Low Memory...\n"));
782     memset(NULL, 0, 0x3000);
783     WriteMacInt32(XLM_SIGNATURE, FOURCC('B','a','a','h')); // Signature to detect SheepShaver
784 gbeauche 1.15 WriteMacInt32(XLM_KERNEL_DATA, KernelDataAddr); // For trap replacement routines
785 cebix 1.1 WriteMacInt32(XLM_PVR, PVR); // Theoretical PVR
786     WriteMacInt32(XLM_BUS_CLOCK, BusClockSpeed); // For DriverServicesLib patch
787     WriteMacInt16(XLM_EXEC_RETURN_OPCODE, M68K_EXEC_RETURN); // For Execute68k() (RTS from the executed 68k code will jump here and end 68k mode)
788 gbeauche 1.18 WriteMacInt32(XLM_ZERO_PAGE, SheepMem::ZeroPage()); // Pointer to read-only page with all bits set to 0
789 gbeauche 1.17 #if !EMULATED_PPC
790     WriteMacInt32(XLM_TOC, (uint32)TOC); // TOC pointer of emulator
791     #endif
792     WriteMacInt32(XLM_ETHER_INIT, NativeFunction(NATIVE_ETHER_INIT)); // DLPI ethernet driver functions
793 gbeauche 1.15 WriteMacInt32(XLM_ETHER_TERM, NativeFunction(NATIVE_ETHER_TERM));
794     WriteMacInt32(XLM_ETHER_OPEN, NativeFunction(NATIVE_ETHER_OPEN));
795     WriteMacInt32(XLM_ETHER_CLOSE, NativeFunction(NATIVE_ETHER_CLOSE));
796     WriteMacInt32(XLM_ETHER_WPUT, NativeFunction(NATIVE_ETHER_WPUT));
797     WriteMacInt32(XLM_ETHER_RSRV, NativeFunction(NATIVE_ETHER_RSRV));
798     WriteMacInt32(XLM_VIDEO_DOIO, NativeFunction(NATIVE_VIDEO_DO_DRIVER_IO));
799 cebix 1.1 D(bug("Low Memory initialized\n"));
800    
801     // Start 60Hz thread
802     tick_thread_active = (pthread_create(&tick_thread, NULL, tick_func, NULL) == 0);
803     D(bug("Tick thread installed (%ld)\n", tick_thread));
804    
805     // Start NVRAM watchdog thread
806     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
807     nvram_thread_active = (pthread_create(&nvram_thread, NULL, nvram_func, NULL) == 0);
808     D(bug("NVRAM thread installed (%ld)\n", nvram_thread));
809    
810     #if !EMULATED_PPC
811     // Create and install stacks for signal handlers
812     sig_stack = malloc(SIG_STACK_SIZE);
813     D(bug("Signal stack at %p\n", sig_stack));
814     if (sig_stack == NULL) {
815     ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
816     goto quit;
817     }
818     extra_stack = malloc(SIG_STACK_SIZE);
819     D(bug("Extra stack at %p\n", extra_stack));
820     if (extra_stack == NULL) {
821     ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
822     goto quit;
823     }
824     struct sigaltstack new_stack;
825     new_stack.ss_sp = sig_stack;
826     new_stack.ss_flags = 0;
827     new_stack.ss_size = SIG_STACK_SIZE;
828     if (sigaltstack(&new_stack, NULL) < 0) {
829     sprintf(str, GetString(STR_SIGALTSTACK_ERR), strerror(errno));
830     ErrorAlert(str);
831     goto quit;
832     }
833     #endif
834    
835     #if !EMULATED_PPC
836 gbeauche 1.23 // Install SIGSEGV and SIGBUS handlers
837 cebix 1.1 sigemptyset(&sigsegv_action.sa_mask); // Block interrupts during SEGV handling
838     sigaddset(&sigsegv_action.sa_mask, SIGUSR2);
839 gbeauche 1.26 sigsegv_action.sa_sigaction = sigsegv_handler;
840     sigsegv_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
841     #ifdef HAVE_SIGNAL_SA_RESTORER
842 cebix 1.1 sigsegv_action.sa_restorer = NULL;
843 gbeauche 1.26 #endif
844 cebix 1.1 if (sigaction(SIGSEGV, &sigsegv_action, NULL) < 0) {
845     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
846     ErrorAlert(str);
847     goto quit;
848     }
849 gbeauche 1.23 if (sigaction(SIGBUS, &sigsegv_action, NULL) < 0) {
850     sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
851     ErrorAlert(str);
852     goto quit;
853     }
854 cebix 1.1
855     // Install SIGILL handler
856     sigemptyset(&sigill_action.sa_mask); // Block interrupts during ILL handling
857     sigaddset(&sigill_action.sa_mask, SIGUSR2);
858 gbeauche 1.26 sigill_action.sa_sigaction = sigill_handler;
859     sigill_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
860     #ifdef HAVE_SIGNAL_SA_RESTORER
861 cebix 1.1 sigill_action.sa_restorer = NULL;
862 gbeauche 1.26 #endif
863 cebix 1.1 if (sigaction(SIGILL, &sigill_action, NULL) < 0) {
864     sprintf(str, GetString(STR_SIGILL_INSTALL_ERR), strerror(errno));
865     ErrorAlert(str);
866     goto quit;
867     }
868 gbeauche 1.6 #endif
869 cebix 1.1
870 gbeauche 1.26 #if !EMULATED_PPC
871 cebix 1.1 // Install interrupt signal handler
872     sigemptyset(&sigusr2_action.sa_mask);
873 gbeauche 1.26 sigusr2_action.sa_sigaction = sigusr2_handler;
874     sigusr2_action.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
875     #ifdef HAVE_SIGNAL_SA_RESTORER
876     sigusr2_action.sa_restorer = NULL;
877 gbeauche 1.8 #endif
878 cebix 1.1 if (sigaction(SIGUSR2, &sigusr2_action, NULL) < 0) {
879     sprintf(str, GetString(STR_SIGUSR2_INSTALL_ERR), strerror(errno));
880     ErrorAlert(str);
881     goto quit;
882     }
883 gbeauche 1.26 #endif
884 cebix 1.1
885     // Get my thread ID and execute MacOS thread function
886     emul_thread = pthread_self();
887     D(bug("MacOS thread is %ld\n", emul_thread));
888     emul_func(NULL);
889    
890     quit:
891     Quit();
892     return 0;
893     }
894    
895    
896     /*
897     * Cleanup and quit
898     */
899    
900     static void Quit(void)
901     {
902 gbeauche 1.13 #if EMULATED_PPC
903     // Exit PowerPC emulation
904     exit_emul_ppc();
905     #endif
906    
907 cebix 1.1 // Stop 60Hz thread
908     if (tick_thread_active) {
909     pthread_cancel(tick_thread);
910     pthread_join(tick_thread, NULL);
911     }
912    
913     // Stop NVRAM watchdog thread
914     if (nvram_thread_active) {
915     pthread_cancel(nvram_thread);
916     pthread_join(nvram_thread, NULL);
917     }
918    
919     #if !EMULATED_PPC
920 gbeauche 1.23 // Uninstall SIGSEGV and SIGBUS handlers
921 cebix 1.1 sigemptyset(&sigsegv_action.sa_mask);
922     sigsegv_action.sa_handler = SIG_DFL;
923     sigsegv_action.sa_flags = 0;
924     sigaction(SIGSEGV, &sigsegv_action, NULL);
925 gbeauche 1.23 sigaction(SIGBUS, &sigsegv_action, NULL);
926 cebix 1.1
927     // Uninstall SIGILL handler
928     sigemptyset(&sigill_action.sa_mask);
929     sigill_action.sa_handler = SIG_DFL;
930     sigill_action.sa_flags = 0;
931     sigaction(SIGILL, &sigill_action, NULL);
932     #endif
933    
934     // Save NVRAM
935     XPRAMExit();
936    
937     // Exit clipboard
938     ClipExit();
939    
940     // Exit Time Manager
941     TimerExit();
942    
943     // Exit serial
944     SerialExit();
945    
946     // Exit network
947     EtherExit();
948    
949     // Exit audio
950     AudioExit();
951 gbeauche 1.22
952     // Exit ADB
953     ADBExit();
954 cebix 1.1
955     // Exit video
956     VideoExit();
957    
958     // Exit external file system
959     ExtFSExit();
960    
961     // Exit drivers
962     SCSIExit();
963     CDROMExit();
964     DiskExit();
965     SonyExit();
966    
967 gbeauche 1.24 // Delete thunks
968     ThunksExit();
969    
970 gbeauche 1.15 // Delete SheepShaver globals
971     SheepMem::Exit();
972    
973 cebix 1.1 // Delete RAM area
974     if (ram_area_mapped)
975 gbeauche 1.8 vm_release((char *)RAM_BASE, RAMSize);
976 cebix 1.1
977     // Delete ROM area
978     if (rom_area_mapped)
979 gbeauche 1.4 vm_release((char *)ROM_BASE, ROM_AREA_SIZE);
980 cebix 1.1
981     // Delete Kernel Data area
982     if (kernel_area >= 0) {
983     shmdt((void *)KERNEL_DATA_BASE);
984     shmdt((void *)KERNEL_DATA2_BASE);
985     shmctl(kernel_area, IPC_RMID, NULL);
986     }
987    
988     // Delete Low Memory area
989     if (lm_area_mapped)
990     munmap((char *)0x0000, 0x3000);
991    
992     // Close /dev/zero
993     if (zero_fd > 0)
994     close(zero_fd);
995    
996     // Exit system routines
997     SysExit();
998    
999     // Exit preferences
1000     PrefsExit();
1001    
1002     #ifdef ENABLE_MON
1003     // Exit mon
1004     mon_exit();
1005     #endif
1006    
1007     // Close X11 server connection
1008     if (x_display)
1009     XCloseDisplay(x_display);
1010    
1011     exit(0);
1012     }
1013    
1014    
1015     /*
1016     * Jump into Mac ROM, start 680x0 emulator
1017     */
1018    
1019     #if EMULATED_PPC
1020     void jump_to_rom(uint32 entry)
1021     {
1022     init_emul_ppc();
1023     emul_ppc(entry);
1024     }
1025     #endif
1026    
1027    
1028     /*
1029     * Emulator thread function
1030     */
1031    
1032     static void *emul_func(void *arg)
1033     {
1034     // We're now ready to receive signals
1035     ready_for_signals = true;
1036    
1037     // Decrease priority, so more time-critical things like audio will work better
1038     nice(1);
1039    
1040     // Jump to ROM boot routine
1041     D(bug("Jumping to ROM\n"));
1042     #if EMULATED_PPC
1043     jump_to_rom(ROM_BASE + 0x310000);
1044     #else
1045     jump_to_rom(ROM_BASE + 0x310000, (uint32)emulator_data);
1046     #endif
1047     D(bug("Returned from ROM\n"));
1048    
1049     // We're no longer ready to receive signals
1050     ready_for_signals = false;
1051     return NULL;
1052     }
1053    
1054    
1055     #if !EMULATED_PPC
1056     /*
1057     * Execute 68k subroutine (must be ended with RTS)
1058     * This must only be called by the emul_thread when in EMUL_OP mode
1059     * r->a[7] is unused, the routine runs on the caller's stack
1060     */
1061    
1062     void Execute68k(uint32 pc, M68kRegisters *r)
1063     {
1064     #if SAFE_EXEC_68K
1065     if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
1066     printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
1067     if (!pthread_equal(pthread_self(), emul_thread))
1068     printf("FATAL: Execute68k() not called from emul_thread\n");
1069     #endif
1070     execute_68k(pc, r);
1071     }
1072    
1073    
1074     /*
1075     * Execute 68k A-Trap from EMUL_OP routine
1076     * r->a[7] is unused, the routine runs on the caller's stack
1077     */
1078    
1079     void Execute68kTrap(uint16 trap, M68kRegisters *r)
1080     {
1081     uint16 proc[2] = {trap, M68K_RTS};
1082     Execute68k((uint32)proc, r);
1083     }
1084 gbeauche 1.7 #endif
1085 cebix 1.1
1086    
1087     /*
1088     * Quit emulator (cause return from jump_to_rom)
1089     */
1090    
1091     void QuitEmulator(void)
1092     {
1093     #if EMULATED_PPC
1094     Quit();
1095     #else
1096     quit_emulator();
1097     #endif
1098     }
1099    
1100    
1101     /*
1102     * Pause/resume emulator
1103     */
1104    
1105     void PauseEmulator(void)
1106     {
1107     pthread_kill(emul_thread, SIGSTOP);
1108     }
1109    
1110     void ResumeEmulator(void)
1111     {
1112     pthread_kill(emul_thread, SIGCONT);
1113     }
1114    
1115    
1116     /*
1117     * Dump 68k registers
1118     */
1119    
1120     void Dump68kRegs(M68kRegisters *r)
1121     {
1122     // Display 68k registers
1123     for (int i=0; i<8; i++) {
1124     printf("d%d: %08x", i, r->d[i]);
1125     if (i == 3 || i == 7)
1126     printf("\n");
1127     else
1128     printf(", ");
1129     }
1130     for (int i=0; i<8; i++) {
1131     printf("a%d: %08x", i, r->a[i]);
1132     if (i == 3 || i == 7)
1133     printf("\n");
1134     else
1135     printf(", ");
1136     }
1137     }
1138    
1139    
1140     /*
1141     * Make code executable
1142     */
1143    
1144     void MakeExecutable(int dummy, void *start, uint32 length)
1145     {
1146 gbeauche 1.9 if (((uintptr)start >= ROM_BASE) && ((uintptr)start < (ROM_BASE + ROM_SIZE)))
1147 cebix 1.1 return;
1148 gbeauche 1.9 #if EMULATED_PPC
1149     FlushCodeCache((uintptr)start, (uintptr)start + length);
1150     #else
1151     flush_icache_range(start, (void *)((uintptr)start + length));
1152 cebix 1.1 #endif
1153     }
1154    
1155    
1156     /*
1157     * Patch things after system startup (gets called by disk driver accRun routine)
1158     */
1159    
1160     void PatchAfterStartup(void)
1161     {
1162 gbeauche 1.6 ExecuteNative(NATIVE_VIDEO_INSTALL_ACCEL);
1163 cebix 1.1 InstallExtFS();
1164     }
1165    
1166    
1167     /*
1168     * NVRAM watchdog thread (saves NVRAM every minute)
1169     */
1170    
1171     static void *nvram_func(void *arg)
1172     {
1173     struct timespec req = {60, 0}; // 1 minute
1174    
1175     for (;;) {
1176     pthread_testcancel();
1177     nanosleep(&req, NULL);
1178     pthread_testcancel();
1179     if (memcmp(last_xpram, XPRAM, XPRAM_SIZE)) {
1180     memcpy(last_xpram, XPRAM, XPRAM_SIZE);
1181     SaveXPRAM();
1182     }
1183     }
1184     return NULL;
1185     }
1186    
1187    
1188     /*
1189     * 60Hz thread (really 60.15Hz)
1190     */
1191    
1192     static void *tick_func(void *arg)
1193     {
1194     int tick_counter = 0;
1195     struct timespec req = {0, 16625000};
1196    
1197     for (;;) {
1198    
1199     // Wait
1200     nanosleep(&req, NULL);
1201    
1202     #if !EMULATED_PPC
1203     // Did we crash?
1204     if (emul_thread_fatal) {
1205    
1206     // Yes, dump registers
1207 gbeauche 1.26 sigregs *r = &sigsegv_regs;
1208 cebix 1.1 char str[256];
1209 gbeauche 1.23 if (crash_reason == NULL)
1210     crash_reason = "SIGSEGV";
1211     sprintf(str, "%s\n"
1212 cebix 1.1 " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1213     " xer %08lx cr %08lx \n"
1214     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1215     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1216     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1217     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1218     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1219     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1220     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1221     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1222 gbeauche 1.23 crash_reason,
1223 cebix 1.1 r->nip, r->link, r->ctr, r->msr,
1224     r->xer, r->ccr,
1225     r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
1226     r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
1227     r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
1228     r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
1229     r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
1230     r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
1231     r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
1232     r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
1233     printf(str);
1234     VideoQuitFullScreen();
1235    
1236     #ifdef ENABLE_MON
1237     // Start up mon in real-mode
1238     printf("Welcome to the sheep factory.\n");
1239     char *arg[4] = {"mon", "-m", "-r", NULL};
1240     mon(3, arg);
1241     #endif
1242     return NULL;
1243     }
1244     #endif
1245    
1246     // Pseudo Mac 1Hz interrupt, update local time
1247     if (++tick_counter > 60) {
1248     tick_counter = 0;
1249     WriteMacInt32(0x20c, TimerDateTime());
1250     }
1251    
1252     // Trigger 60Hz interrupt
1253     if (ReadMacInt32(XLM_IRQ_NEST) == 0) {
1254     SetInterruptFlag(INTFLAG_VIA);
1255     TriggerInterrupt();
1256     }
1257     }
1258     return NULL;
1259     }
1260    
1261    
1262     /*
1263 cebix 1.2 * Pthread configuration
1264     */
1265    
1266     void Set_pthread_attr(pthread_attr_t *attr, int priority)
1267     {
1268 gbeauche 1.14 #ifdef HAVE_PTHREADS
1269     pthread_attr_init(attr);
1270     #if defined(_POSIX_THREAD_PRIORITY_SCHEDULING)
1271     // Some of these only work for superuser
1272     if (geteuid() == 0) {
1273     pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
1274     pthread_attr_setschedpolicy(attr, SCHED_FIFO);
1275     struct sched_param fifo_param;
1276     fifo_param.sched_priority = ((sched_get_priority_min(SCHED_FIFO) +
1277     sched_get_priority_max(SCHED_FIFO)) / 2 +
1278     priority);
1279     pthread_attr_setschedparam(attr, &fifo_param);
1280     }
1281     if (pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM) != 0) {
1282     #ifdef PTHREAD_SCOPE_BOUND_NP
1283     // If system scope is not available (eg. we're not running
1284     // with CAP_SCHED_MGT capability on an SGI box), try bound
1285     // scope. It exposes pthread scheduling to the kernel,
1286     // without setting realtime priority.
1287     pthread_attr_setscope(attr, PTHREAD_SCOPE_BOUND_NP);
1288     #endif
1289     }
1290     #endif
1291     #endif
1292 cebix 1.2 }
1293    
1294    
1295     /*
1296 cebix 1.1 * Mutexes
1297     */
1298    
1299 gbeauche 1.7 #ifdef HAVE_PTHREADS
1300    
1301     struct B2_mutex {
1302     B2_mutex() {
1303     pthread_mutexattr_t attr;
1304     pthread_mutexattr_init(&attr);
1305     // Initialize the mutex for priority inheritance --
1306     // required for accurate timing.
1307     #ifdef HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL
1308     pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
1309     #endif
1310     #if defined(HAVE_PTHREAD_MUTEXATTR_SETTYPE) && defined(PTHREAD_MUTEX_NORMAL)
1311     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1312     #endif
1313     #ifdef HAVE_PTHREAD_MUTEXATTR_SETPSHARED
1314     pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_PRIVATE);
1315     #endif
1316     pthread_mutex_init(&m, &attr);
1317     pthread_mutexattr_destroy(&attr);
1318     }
1319     ~B2_mutex() {
1320     pthread_mutex_trylock(&m); // Make sure it's locked before
1321     pthread_mutex_unlock(&m); // unlocking it.
1322     pthread_mutex_destroy(&m);
1323     }
1324     pthread_mutex_t m;
1325     };
1326    
1327     B2_mutex *B2_create_mutex(void)
1328     {
1329     return new B2_mutex;
1330     }
1331    
1332     void B2_lock_mutex(B2_mutex *mutex)
1333     {
1334     pthread_mutex_lock(&mutex->m);
1335     }
1336    
1337     void B2_unlock_mutex(B2_mutex *mutex)
1338     {
1339     pthread_mutex_unlock(&mutex->m);
1340     }
1341    
1342     void B2_delete_mutex(B2_mutex *mutex)
1343     {
1344     delete mutex;
1345     }
1346    
1347     #else
1348    
1349 cebix 1.1 struct B2_mutex {
1350     int dummy;
1351     };
1352    
1353     B2_mutex *B2_create_mutex(void)
1354     {
1355     return new B2_mutex;
1356     }
1357    
1358     void B2_lock_mutex(B2_mutex *mutex)
1359     {
1360     }
1361    
1362     void B2_unlock_mutex(B2_mutex *mutex)
1363     {
1364     }
1365    
1366     void B2_delete_mutex(B2_mutex *mutex)
1367     {
1368     delete mutex;
1369     }
1370    
1371 gbeauche 1.7 #endif
1372    
1373 cebix 1.1
1374     /*
1375     * Trigger signal USR2 from another thread
1376     */
1377    
1378 gbeauche 1.8 #if !EMULATED_PPC || ASYNC_IRQ
1379 cebix 1.1 void TriggerInterrupt(void)
1380     {
1381     if (ready_for_signals)
1382     pthread_kill(emul_thread, SIGUSR2);
1383     }
1384 gbeauche 1.7 #endif
1385 cebix 1.1
1386    
1387     /*
1388     * Interrupt flags (must be handled atomically!)
1389     */
1390    
1391     volatile uint32 InterruptFlags = 0;
1392    
1393     void SetInterruptFlag(uint32 flag)
1394     {
1395     atomic_or((int *)&InterruptFlags, flag);
1396     }
1397    
1398     void ClearInterruptFlag(uint32 flag)
1399     {
1400     atomic_and((int *)&InterruptFlags, ~flag);
1401     }
1402    
1403    
1404     /*
1405     * Disable interrupts
1406     */
1407    
1408     void DisableInterrupt(void)
1409     {
1410 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, 1);
1411 cebix 1.1 }
1412    
1413    
1414     /*
1415     * Enable interrupts
1416     */
1417    
1418     void EnableInterrupt(void)
1419     {
1420 gbeauche 1.7 atomic_add((int *)XLM_IRQ_NEST, -1);
1421 cebix 1.1 }
1422    
1423    
1424     /*
1425     * USR2 handler
1426     */
1427    
1428 gbeauche 1.8 #if EMULATED_PPC
1429     static void sigusr2_handler(int sig)
1430     {
1431     #if ASYNC_IRQ
1432     extern void HandleInterrupt(void);
1433     HandleInterrupt();
1434     #endif
1435     }
1436     #else
1437 gbeauche 1.26 static void sigusr2_handler(int sig, siginfo_t *sip, void *scp)
1438 cebix 1.1 {
1439 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1440 cebix 1.1
1441     // Do nothing if interrupts are disabled
1442     if (*(int32 *)XLM_IRQ_NEST > 0)
1443     return;
1444    
1445     // Disable MacOS stack sniffer
1446     WriteMacInt32(0x110, 0);
1447    
1448     // Interrupt action depends on current run mode
1449     switch (ReadMacInt32(XLM_RUN_MODE)) {
1450     case MODE_68K:
1451     // 68k emulator active, trigger 68k interrupt level 1
1452     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1453 gbeauche 1.26 r->cr() |= ntohl(kernel_data->v[0x674 >> 2]);
1454 cebix 1.1 break;
1455    
1456     #if INTERRUPTS_IN_NATIVE_MODE
1457     case MODE_NATIVE:
1458     // 68k emulator inactive, in nanokernel?
1459 gbeauche 1.26 if (r->gpr(1) != KernelDataAddr) {
1460 cebix 1.1 // Prepare for 68k interrupt level 1
1461     WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
1462     WriteMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc) | ntohl(kernel_data->v[0x674 >> 2]));
1463    
1464     // Execute nanokernel interrupt routine (this will activate the 68k emulator)
1465     atomic_add((int32 *)XLM_IRQ_NEST, 1);
1466     if (ROMType == ROMTYPE_NEWWORLD)
1467     ppc_interrupt(ROM_BASE + 0x312b1c, KernelDataAddr);
1468     else
1469     ppc_interrupt(ROM_BASE + 0x312a3c, KernelDataAddr);
1470     }
1471     break;
1472     #endif
1473    
1474     #if INTERRUPTS_IN_EMUL_OP_MODE
1475     case MODE_EMUL_OP:
1476     // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
1477     if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
1478    
1479     // Set extra stack for SIGSEGV handler
1480     struct sigaltstack new_stack;
1481     new_stack.ss_sp = extra_stack;
1482     new_stack.ss_flags = 0;
1483     new_stack.ss_size = SIG_STACK_SIZE;
1484     sigaltstack(&new_stack, NULL);
1485     #if 1
1486     // Execute full 68k interrupt routine
1487     M68kRegisters r;
1488     uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
1489     WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
1490     static const uint16 proc[] = {
1491     0x3f3c, 0x0000, // move.w #$0000,-(sp) (fake format word)
1492     0x487a, 0x000a, // pea @1(pc) (return address)
1493     0x40e7, // move sr,-(sp) (saved SR)
1494     0x2078, 0x0064, // move.l $64,a0
1495     0x4ed0, // jmp (a0)
1496     M68K_RTS // @1
1497     };
1498     Execute68k((uint32)proc, &r);
1499     WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
1500     #else
1501     // Only update cursor
1502     if (HasMacStarted()) {
1503     if (InterruptFlags & INTFLAG_VIA) {
1504     ClearInterruptFlag(INTFLAG_VIA);
1505     ADBInterrupt();
1506 gbeauche 1.17 ExecuteNative(NATIVE_VIDEO_VBL);
1507 cebix 1.1 }
1508     }
1509     #endif
1510     // Reset normal signal stack
1511     new_stack.ss_sp = sig_stack;
1512     new_stack.ss_flags = 0;
1513     new_stack.ss_size = SIG_STACK_SIZE;
1514     sigaltstack(&new_stack, NULL);
1515     }
1516     break;
1517     #endif
1518     }
1519     }
1520 gbeauche 1.8 #endif
1521 cebix 1.1
1522    
1523     /*
1524     * SIGSEGV handler
1525     */
1526    
1527 gbeauche 1.8 #if !EMULATED_PPC
1528 gbeauche 1.26 static void sigsegv_handler(int sig, siginfo_t *sip, void *scp)
1529 cebix 1.1 {
1530 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1531 gbeauche 1.5
1532     // Get effective address
1533 gbeauche 1.26 uint32 addr = r->dar();
1534 gbeauche 1.5
1535     #if ENABLE_VOSF
1536     // Handle screen fault.
1537     extern bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction);
1538 gbeauche 1.26 if (Screen_fault_handler((sigsegv_address_t)addr, (sigsegv_address_t)r->pc()))
1539 gbeauche 1.5 return;
1540     #endif
1541    
1542 cebix 1.1 num_segv++;
1543    
1544     // Fault in Mac ROM or RAM?
1545 gbeauche 1.26 bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
1546 cebix 1.1 if (mac_fault) {
1547    
1548     // "VM settings" during MacOS 8 installation
1549 gbeauche 1.26 if (r->pc() == ROM_BASE + 0x488160 && r->gpr(20) == 0xf8000000) {
1550     r->pc() += 4;
1551     r->gpr(8) = 0;
1552 cebix 1.1 return;
1553    
1554     // MacOS 8.5 installation
1555 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x488140 && r->gpr(16) == 0xf8000000) {
1556     r->pc() += 4;
1557     r->gpr(8) = 0;
1558 cebix 1.1 return;
1559    
1560     // MacOS 8 serial drivers on startup
1561 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48e080 && (r->gpr(8) == 0xf3012002 || r->gpr(8) == 0xf3012000)) {
1562     r->pc() += 4;
1563     r->gpr(8) = 0;
1564 cebix 1.1 return;
1565    
1566     // MacOS 8.1 serial drivers on startup
1567 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x48c5e0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1568     r->pc() += 4;
1569 cebix 1.1 return;
1570 gbeauche 1.26 } else if (r->pc() == ROM_BASE + 0x4a10a0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
1571     r->pc() += 4;
1572 cebix 1.1 return;
1573     }
1574    
1575 gbeauche 1.5 // Get opcode and divide into fields
1576 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1577 gbeauche 1.5 uint32 primop = opcode >> 26;
1578     uint32 exop = (opcode >> 1) & 0x3ff;
1579     uint32 ra = (opcode >> 16) & 0x1f;
1580     uint32 rb = (opcode >> 11) & 0x1f;
1581     uint32 rd = (opcode >> 21) & 0x1f;
1582     int32 imm = (int16)(opcode & 0xffff);
1583    
1584 cebix 1.1 // Analyze opcode
1585     enum {
1586     TYPE_UNKNOWN,
1587     TYPE_LOAD,
1588     TYPE_STORE
1589     } transfer_type = TYPE_UNKNOWN;
1590     enum {
1591     SIZE_UNKNOWN,
1592     SIZE_BYTE,
1593     SIZE_HALFWORD,
1594     SIZE_WORD
1595     } transfer_size = SIZE_UNKNOWN;
1596     enum {
1597     MODE_UNKNOWN,
1598     MODE_NORM,
1599     MODE_U,
1600     MODE_X,
1601     MODE_UX
1602     } addr_mode = MODE_UNKNOWN;
1603     switch (primop) {
1604     case 31:
1605     switch (exop) {
1606     case 23: // lwzx
1607     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1608     case 55: // lwzux
1609     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1610     case 87: // lbzx
1611     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1612     case 119: // lbzux
1613     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1614     case 151: // stwx
1615     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
1616     case 183: // stwux
1617     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
1618     case 215: // stbx
1619     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
1620     case 247: // stbux
1621     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
1622     case 279: // lhzx
1623     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1624     case 311: // lhzux
1625     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1626     case 343: // lhax
1627     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1628     case 375: // lhaux
1629     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1630     case 407: // sthx
1631     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
1632     case 439: // sthux
1633     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
1634     }
1635     break;
1636    
1637     case 32: // lwz
1638     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1639     case 33: // lwzu
1640     transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1641     case 34: // lbz
1642     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1643     case 35: // lbzu
1644     transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1645     case 36: // stw
1646     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
1647     case 37: // stwu
1648     transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
1649     case 38: // stb
1650     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
1651     case 39: // stbu
1652     transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
1653     case 40: // lhz
1654     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1655     case 41: // lhzu
1656     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1657     case 42: // lha
1658     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1659     case 43: // lhau
1660     transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1661     case 44: // sth
1662     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
1663     case 45: // sthu
1664     transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
1665 gbeauche 1.23 #if EMULATE_UNALIGNED_LOADSTORE_MULTIPLE
1666     case 46: // lmw
1667 gbeauche 1.27 if ((addr % 4) != 0) {
1668     uint32 ea = addr;
1669 gbeauche 1.26 D(bug("WARNING: unaligned lmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1670 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1671 gbeauche 1.26 r->gpr(i) = ReadMacInt32(ea);
1672 gbeauche 1.23 ea += 4;
1673     }
1674 gbeauche 1.26 r->pc() += 4;
1675 gbeauche 1.23 goto rti;
1676     }
1677     break;
1678     case 47: // stmw
1679 gbeauche 1.27 if ((addr % 4) != 0) {
1680     uint32 ea = addr;
1681 gbeauche 1.26 D(bug("WARNING: unaligned stmw to EA=%08x from IP=%08x\n", ea, r->pc()));
1682 gbeauche 1.23 for (int i = rd; i <= 31; i++) {
1683 gbeauche 1.26 WriteMacInt32(ea, r->gpr(i));
1684 gbeauche 1.23 ea += 4;
1685     }
1686 gbeauche 1.26 r->pc() += 4;
1687 gbeauche 1.23 goto rti;
1688     }
1689     break;
1690     #endif
1691 cebix 1.1 }
1692    
1693 gbeauche 1.31 // Ignore ROM writes (including to the zero page, which is read-only)
1694     if (transfer_type == TYPE_STORE &&
1695     ((addr >= ROM_BASE && addr < ROM_BASE + ROM_SIZE) ||
1696     (addr >= SheepMem::ZeroPage() && addr < SheepMem::ZeroPage() + SheepMem::PageSize()))) {
1697 gbeauche 1.26 // D(bug("WARNING: %s write access to ROM at %08lx, pc %08lx\n", transfer_size == SIZE_BYTE ? "Byte" : transfer_size == SIZE_HALFWORD ? "Halfword" : "Word", addr, r->pc()));
1698 cebix 1.1 if (addr_mode == MODE_U || addr_mode == MODE_UX)
1699 gbeauche 1.26 r->gpr(ra) = addr;
1700     r->pc() += 4;
1701 cebix 1.1 goto rti;
1702     }
1703    
1704     // Ignore illegal memory accesses?
1705     if (PrefsFindBool("ignoresegv")) {
1706     if (addr_mode == MODE_U || addr_mode == MODE_UX)
1707 gbeauche 1.26 r->gpr(ra) = addr;
1708 cebix 1.1 if (transfer_type == TYPE_LOAD)
1709 gbeauche 1.26 r->gpr(rd) = 0;
1710     r->pc() += 4;
1711 cebix 1.1 goto rti;
1712     }
1713    
1714     // In GUI mode, show error alert
1715     if (!PrefsFindBool("nogui")) {
1716     char str[256];
1717     if (transfer_type == TYPE_LOAD || transfer_type == TYPE_STORE)
1718 gbeauche 1.26 sprintf(str, GetString(STR_MEM_ACCESS_ERR), transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_HALFWORD ? "halfword" : "word", transfer_type == TYPE_LOAD ? GetString(STR_MEM_ACCESS_READ) : GetString(STR_MEM_ACCESS_WRITE), addr, r->pc(), r->gpr(24), r->gpr(1));
1719 cebix 1.1 else
1720 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
1721 cebix 1.1 ErrorAlert(str);
1722     QuitEmulator();
1723     return;
1724     }
1725     }
1726    
1727     // For all other errors, jump into debugger (sort of...)
1728 gbeauche 1.23 crash_reason = (sig == SIGBUS) ? "SIGBUS" : "SIGSEGV";
1729 cebix 1.1 if (!ready_for_signals) {
1730 gbeauche 1.23 printf("%s\n");
1731 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
1732 cebix 1.1 printf(
1733     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1734     " xer %08lx cr %08lx \n"
1735     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1736     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1737     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1738     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1739     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1740     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1741     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1742     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1743 gbeauche 1.23 crash_reason,
1744 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
1745     r->xer(), r->cr(),
1746     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
1747     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
1748     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
1749     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
1750     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
1751     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
1752     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
1753     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
1754 cebix 1.1 exit(1);
1755     QuitEmulator();
1756     return;
1757     } else {
1758     // We crashed. Save registers, tell tick thread and loop forever
1759 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
1760 cebix 1.1 emul_thread_fatal = true;
1761     for (;;) ;
1762     }
1763     rti:;
1764     }
1765    
1766    
1767     /*
1768     * SIGILL handler
1769     */
1770    
1771 gbeauche 1.26 static void sigill_handler(int sig, siginfo_t *sip, void *scp)
1772 cebix 1.1 {
1773 gbeauche 1.26 machine_regs *r = MACHINE_REGISTERS(scp);
1774 cebix 1.1 char str[256];
1775    
1776     // Fault in Mac ROM or RAM?
1777 gbeauche 1.26 bool mac_fault = (r->pc() >= ROM_BASE) && (r->pc() < (ROM_BASE + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
1778 cebix 1.1 if (mac_fault) {
1779    
1780     // Get opcode and divide into fields
1781 gbeauche 1.26 uint32 opcode = *((uint32 *)r->pc());
1782 cebix 1.1 uint32 primop = opcode >> 26;
1783     uint32 exop = (opcode >> 1) & 0x3ff;
1784     uint32 ra = (opcode >> 16) & 0x1f;
1785     uint32 rb = (opcode >> 11) & 0x1f;
1786     uint32 rd = (opcode >> 21) & 0x1f;
1787     int32 imm = (int16)(opcode & 0xffff);
1788    
1789     switch (primop) {
1790     case 9: // POWER instructions
1791     case 22:
1792 gbeauche 1.26 power_inst: sprintf(str, GetString(STR_POWER_INSTRUCTION_ERR), r->pc(), r->gpr(1), opcode);
1793 cebix 1.1 ErrorAlert(str);
1794     QuitEmulator();
1795     return;
1796    
1797     case 31:
1798     switch (exop) {
1799     case 83: // mfmsr
1800 gbeauche 1.26 r->gpr(rd) = 0xf072;
1801     r->pc() += 4;
1802 cebix 1.1 goto rti;
1803    
1804     case 210: // mtsr
1805     case 242: // mtsrin
1806     case 306: // tlbie
1807 gbeauche 1.26 r->pc() += 4;
1808 cebix 1.1 goto rti;
1809    
1810     case 339: { // mfspr
1811     int spr = ra | (rb << 5);
1812     switch (spr) {
1813     case 0: // MQ
1814     case 22: // DEC
1815     case 952: // MMCR0
1816     case 953: // PMC1
1817     case 954: // PMC2
1818     case 955: // SIA
1819     case 956: // MMCR1
1820     case 957: // PMC3
1821     case 958: // PMC4
1822     case 959: // SDA
1823 gbeauche 1.26 r->pc() += 4;
1824 cebix 1.1 goto rti;
1825     case 25: // SDR1
1826 gbeauche 1.26 r->gpr(rd) = 0xdead001f;
1827     r->pc() += 4;
1828 cebix 1.1 goto rti;
1829     case 287: // PVR
1830 gbeauche 1.26 r->gpr(rd) = PVR;
1831     r->pc() += 4;
1832 cebix 1.1 goto rti;
1833     }
1834     break;
1835     }
1836    
1837     case 467: { // mtspr
1838     int spr = ra | (rb << 5);
1839     switch (spr) {
1840     case 0: // MQ
1841     case 22: // DEC
1842     case 275: // SPRG3
1843     case 528: // IBAT0U
1844     case 529: // IBAT0L
1845     case 530: // IBAT1U
1846     case 531: // IBAT1L
1847     case 532: // IBAT2U
1848     case 533: // IBAT2L
1849     case 534: // IBAT3U
1850     case 535: // IBAT3L
1851     case 536: // DBAT0U
1852     case 537: // DBAT0L
1853     case 538: // DBAT1U
1854     case 539: // DBAT1L
1855     case 540: // DBAT2U
1856     case 541: // DBAT2L
1857     case 542: // DBAT3U
1858     case 543: // DBAT3L
1859     case 952: // MMCR0
1860     case 953: // PMC1
1861     case 954: // PMC2
1862     case 955: // SIA
1863     case 956: // MMCR1
1864     case 957: // PMC3
1865     case 958: // PMC4
1866     case 959: // SDA
1867 gbeauche 1.26 r->pc() += 4;
1868 cebix 1.1 goto rti;
1869     }
1870     break;
1871     }
1872    
1873     case 29: case 107: case 152: case 153: // POWER instructions
1874     case 184: case 216: case 217: case 248:
1875     case 264: case 277: case 331: case 360:
1876     case 363: case 488: case 531: case 537:
1877     case 541: case 664: case 665: case 696:
1878     case 728: case 729: case 760: case 920:
1879     case 921: case 952:
1880     goto power_inst;
1881     }
1882     }
1883    
1884     // In GUI mode, show error alert
1885     if (!PrefsFindBool("nogui")) {
1886 gbeauche 1.26 sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
1887 cebix 1.1 ErrorAlert(str);
1888     QuitEmulator();
1889     return;
1890     }
1891     }
1892    
1893     // For all other errors, jump into debugger (sort of...)
1894 gbeauche 1.23 crash_reason = "SIGILL";
1895 cebix 1.1 if (!ready_for_signals) {
1896 gbeauche 1.23 printf("%s\n");
1897 gbeauche 1.26 printf(" sigcontext %p, machine_regs %p\n", scp, r);
1898 cebix 1.1 printf(
1899     " pc %08lx lr %08lx ctr %08lx msr %08lx\n"
1900     " xer %08lx cr %08lx \n"
1901     " r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
1902     " r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
1903     " r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
1904     " r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
1905     " r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
1906     " r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
1907     " r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
1908     " r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
1909 gbeauche 1.23 crash_reason,
1910 gbeauche 1.26 r->pc(), r->lr(), r->ctr(), r->msr(),
1911     r->xer(), r->cr(),
1912     r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
1913     r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
1914     r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
1915     r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
1916     r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
1917     r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
1918     r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
1919     r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
1920 cebix 1.1 exit(1);
1921     QuitEmulator();
1922     return;
1923     } else {
1924     // We crashed. Save registers, tell tick thread and loop forever
1925 gbeauche 1.26 build_sigregs(&sigsegv_regs, r);
1926 cebix 1.1 emul_thread_fatal = true;
1927     for (;;) ;
1928     }
1929     rti:;
1930     }
1931     #endif
1932 gbeauche 1.15
1933    
1934     /*
1935     * Helpers to share 32-bit addressable data with MacOS
1936     */
1937    
1938     bool SheepMem::Init(void)
1939     {
1940 gbeauche 1.31 // Size of a native page
1941     page_size = getpagesize();
1942 gbeauche 1.20
1943     // Allocate SheepShaver globals
1944 gbeauche 1.15 if (vm_acquire_fixed((char *)base, size) < 0)
1945     return false;
1946 gbeauche 1.18
1947 gbeauche 1.20 // Allocate page with all bits set to 0
1948 gbeauche 1.18 zero_page = base + size;
1949     if (vm_acquire_fixed((char *)zero_page, page_size) < 0)
1950     return false;
1951 gbeauche 1.19 memset((char *)zero_page, 0, page_size);
1952 gbeauche 1.18 if (vm_protect((char *)zero_page, page_size, VM_PAGE_READ) < 0)
1953     return false;
1954    
1955 gbeauche 1.20 #if EMULATED_PPC
1956     // Allocate alternate stack for PowerPC interrupt routine
1957     sig_stack = zero_page + page_size;
1958     if (vm_acquire_fixed((char *)sig_stack, SIG_STACK_SIZE) < 0)
1959     return false;
1960     #endif
1961    
1962 gbeauche 1.15 top = base + size;
1963     return true;
1964     }
1965    
1966     void SheepMem::Exit(void)
1967     {
1968 gbeauche 1.18 if (top) {
1969 gbeauche 1.20 // Delete SheepShaver globals
1970     vm_release((void *)base, size);
1971    
1972     // Delete zero page
1973     vm_release((void *)zero_page, page_size);
1974    
1975     #if EMULATED_PPC
1976     // Delete alternate stack for PowerPC interrupt routine
1977     vm_release((void *)sig_stack, SIG_STACK_SIZE);
1978     #endif
1979 gbeauche 1.18 }
1980 gbeauche 1.15 }
1981 cebix 1.1
1982    
1983     /*
1984     * Display alert
1985     */
1986    
1987     #ifdef ENABLE_GTK
1988     static void dl_destroyed(void)
1989     {
1990     gtk_main_quit();
1991     }
1992    
1993     static void dl_quit(GtkWidget *dialog)
1994     {
1995     gtk_widget_destroy(dialog);
1996     }
1997    
1998     void display_alert(int title_id, int prefix_id, int button_id, const char *text)
1999     {
2000     char str[256];
2001     sprintf(str, GetString(prefix_id), text);
2002    
2003     GtkWidget *dialog = gtk_dialog_new();
2004     gtk_window_set_title(GTK_WINDOW(dialog), GetString(title_id));
2005     gtk_container_border_width(GTK_CONTAINER(dialog), 5);
2006     gtk_widget_set_uposition(GTK_WIDGET(dialog), 100, 150);
2007     gtk_signal_connect(GTK_OBJECT(dialog), "destroy", GTK_SIGNAL_FUNC(dl_destroyed), NULL);
2008    
2009     GtkWidget *label = gtk_label_new(str);
2010     gtk_widget_show(label);
2011     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->vbox), label, TRUE, TRUE, 0);
2012    
2013     GtkWidget *button = gtk_button_new_with_label(GetString(button_id));
2014     gtk_widget_show(button);
2015     gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(dl_quit), GTK_OBJECT(dialog));
2016     gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->action_area), button, FALSE, FALSE, 0);
2017     GTK_WIDGET_SET_FLAGS(button, GTK_CAN_DEFAULT);
2018     gtk_widget_grab_default(button);
2019     gtk_widget_show(dialog);
2020    
2021     gtk_main();
2022     }
2023     #endif
2024    
2025    
2026     /*
2027     * Display error alert
2028     */
2029    
2030     void ErrorAlert(const char *text)
2031     {
2032     #ifdef ENABLE_GTK
2033     if (PrefsFindBool("nogui") || x_display == NULL) {
2034     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2035     return;
2036     }
2037     VideoQuitFullScreen();
2038     display_alert(STR_ERROR_ALERT_TITLE, STR_GUI_ERROR_PREFIX, STR_QUIT_BUTTON, text);
2039     #else
2040     printf(GetString(STR_SHELL_ERROR_PREFIX), text);
2041     #endif
2042     }
2043    
2044    
2045     /*
2046     * Display warning alert
2047     */
2048    
2049     void WarningAlert(const char *text)
2050     {
2051     #ifdef ENABLE_GTK
2052     if (PrefsFindBool("nogui") || x_display == NULL) {
2053     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2054     return;
2055     }
2056     display_alert(STR_WARNING_ALERT_TITLE, STR_GUI_WARNING_PREFIX, STR_OK_BUTTON, text);
2057     #else
2058     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2059     #endif
2060     }
2061    
2062    
2063     /*
2064     * Display choice alert
2065     */
2066    
2067     bool ChoiceAlert(const char *text, const char *pos, const char *neg)
2068     {
2069     printf(GetString(STR_SHELL_WARNING_PREFIX), text);
2070     return false; //!!
2071     }