1 |
/* |
2 |
* sheepthreads.c - Minimal pthreads implementation (libpthreads doesn't |
3 |
* like nonstandard stacks) |
4 |
* |
5 |
* SheepShaver (C) 1997-2005 Christian Bauer and Marc Hellwig |
6 |
* |
7 |
* This program is free software; you can redistribute it and/or modify |
8 |
* it under the terms of the GNU General Public License as published by |
9 |
* the Free Software Foundation; either version 2 of the License, or |
10 |
* (at your option) any later version. |
11 |
* |
12 |
* This program is distributed in the hope that it will be useful, |
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 |
* GNU General Public License for more details. |
16 |
* |
17 |
* You should have received a copy of the GNU General Public License |
18 |
* along with this program; if not, write to the Free Software |
19 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
20 |
*/ |
21 |
|
22 |
/* |
23 |
* NOTES: |
24 |
* - pthread_cancel() kills the thread immediately |
25 |
* - Semaphores are VERY restricted: the only supported use is to have one |
26 |
* thread sem_wait() on the semaphore while other threads sem_post() it |
27 |
* (i.e. to use the semaphore as a signal) |
28 |
*/ |
29 |
|
30 |
#include <sys/types.h> |
31 |
#include <sys/wait.h> |
32 |
#include <stdlib.h> |
33 |
#include <errno.h> |
34 |
#include <unistd.h> |
35 |
#include <signal.h> |
36 |
#include <pthread.h> |
37 |
#include <semaphore.h> |
38 |
|
39 |
|
40 |
/* Thread stack size */ |
41 |
#define STACK_SIZE 65536 |
42 |
|
43 |
/* From asm_linux.S */ |
44 |
extern int atomic_add(int *var, int add); |
45 |
extern int atomic_and(int *var, int and); |
46 |
extern int atomic_or(int *var, int or); |
47 |
extern int test_and_set(int *var, int val); |
48 |
|
49 |
/* Linux kernel calls */ |
50 |
extern int __clone(int (*fn)(void *), void *, int, void *); |
51 |
|
52 |
/* struct sem_t */ |
53 |
#define status __status |
54 |
#define spinlock __spinlock |
55 |
#define sem_lock __sem_lock |
56 |
#define sem_value __sem_value |
57 |
#define sem_waiting __sem_waiting |
58 |
|
59 |
/* Wait for "clone" children only (Linux 2.4+ specific) */ |
60 |
#ifndef __WCLONE |
61 |
#define __WCLONE 0 |
62 |
#endif |
63 |
|
64 |
|
65 |
/* |
66 |
* Return pthread ID of self |
67 |
*/ |
68 |
|
69 |
pthread_t pthread_self(void) |
70 |
{ |
71 |
return getpid(); |
72 |
} |
73 |
|
74 |
|
75 |
/* |
76 |
* Test whether two pthread IDs are equal |
77 |
*/ |
78 |
|
79 |
int pthread_equal(pthread_t t1, pthread_t t2) |
80 |
{ |
81 |
return t1 == t2; |
82 |
} |
83 |
|
84 |
|
85 |
/* |
86 |
* Send signal to thread |
87 |
*/ |
88 |
|
89 |
int pthread_kill(pthread_t thread, int sig) |
90 |
{ |
91 |
if (kill(thread, sig) == -1) |
92 |
return errno; |
93 |
else |
94 |
return 0; |
95 |
} |
96 |
|
97 |
|
98 |
/* |
99 |
* Create pthread |
100 |
*/ |
101 |
|
102 |
struct new_thread { |
103 |
void *(*fn)(void *); |
104 |
void *arg; |
105 |
}; |
106 |
|
107 |
static int start_thread(void *arg) |
108 |
{ |
109 |
struct new_thread *nt = (struct new_thread *)arg; |
110 |
nt->fn(nt->arg); |
111 |
return 0; |
112 |
} |
113 |
|
114 |
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg) |
115 |
{ |
116 |
struct new_thread *nt; |
117 |
void *stack; |
118 |
int pid; |
119 |
|
120 |
nt = (struct new_thread *)malloc(sizeof(struct new_thread)); |
121 |
nt->fn = start_routine; |
122 |
nt->arg = arg; |
123 |
stack = malloc(STACK_SIZE); |
124 |
|
125 |
pid = __clone(start_thread, (char *)stack + STACK_SIZE - 16, CLONE_VM | CLONE_FS | CLONE_FILES, nt); |
126 |
if (pid == -1) { |
127 |
free(stack); |
128 |
free(nt); |
129 |
return errno; |
130 |
} else { |
131 |
*thread = pid; |
132 |
return 0; |
133 |
} |
134 |
} |
135 |
|
136 |
|
137 |
/* |
138 |
* Join pthread |
139 |
*/ |
140 |
|
141 |
int pthread_join(pthread_t thread, void **ret) |
142 |
{ |
143 |
do { |
144 |
if (waitpid(thread, NULL, __WCLONE) >= 0); |
145 |
break; |
146 |
} while (errno == EINTR); |
147 |
if (ret) |
148 |
*ret = NULL; |
149 |
return 0; |
150 |
} |
151 |
|
152 |
|
153 |
/* |
154 |
* Cancel thread |
155 |
*/ |
156 |
|
157 |
int pthread_cancel(pthread_t thread) |
158 |
{ |
159 |
kill(thread, SIGINT); |
160 |
return 0; |
161 |
} |
162 |
|
163 |
|
164 |
/* |
165 |
* Test for cancellation |
166 |
*/ |
167 |
|
168 |
void pthread_testcancel(void) |
169 |
{ |
170 |
} |
171 |
|
172 |
|
173 |
/* |
174 |
* Spinlocks |
175 |
*/ |
176 |
|
177 |
/* For multiprocessor systems, we want to ensure all memory accesses |
178 |
are completed before we reset a lock. On other systems, we still |
179 |
need to make sure that the compiler has flushed everything to memory. */ |
180 |
#define MEMORY_BARRIER() __asm__ __volatile__ ("sync" : : : "memory") |
181 |
|
182 |
static void fastlock_init(struct _pthread_fastlock *lock) |
183 |
{ |
184 |
lock->status = 0; |
185 |
lock->spinlock = 0; |
186 |
} |
187 |
|
188 |
static int fastlock_try_acquire(struct _pthread_fastlock *lock) |
189 |
{ |
190 |
int res = EBUSY; |
191 |
if (test_and_set(&lock->spinlock, 1) == 0) { |
192 |
if (lock->status == 0) { |
193 |
lock->status = 1; |
194 |
MEMORY_BARRIER(); |
195 |
res = 0; |
196 |
} |
197 |
lock->spinlock = 0; |
198 |
} |
199 |
return res; |
200 |
} |
201 |
|
202 |
static void fastlock_acquire(struct _pthread_fastlock *lock) |
203 |
{ |
204 |
MEMORY_BARRIER(); |
205 |
while (test_and_set(&lock->spinlock, 1)) |
206 |
usleep(0); |
207 |
} |
208 |
|
209 |
static void fastlock_release(struct _pthread_fastlock *lock) |
210 |
{ |
211 |
MEMORY_BARRIER(); |
212 |
lock->spinlock = 0; |
213 |
__asm__ __volatile__ ("" : "=m" (lock->spinlock) : "m" (lock->spinlock)); |
214 |
} |
215 |
|
216 |
|
217 |
/* |
218 |
* Initialize mutex |
219 |
*/ |
220 |
|
221 |
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr) |
222 |
{ |
223 |
fastlock_init(&mutex->__m_lock); |
224 |
mutex->__m_kind = mutex_attr ? mutex_attr->__mutexkind : PTHREAD_MUTEX_TIMED_NP; |
225 |
mutex->__m_count = 0; |
226 |
mutex->__m_owner = NULL; |
227 |
return 0; |
228 |
} |
229 |
|
230 |
|
231 |
/* |
232 |
* Destroy mutex |
233 |
*/ |
234 |
|
235 |
int pthread_mutex_destroy(pthread_mutex_t *mutex) |
236 |
{ |
237 |
switch (mutex->__m_kind) { |
238 |
case PTHREAD_MUTEX_TIMED_NP: |
239 |
return (mutex->__m_lock.__status != 0) ? EBUSY : 0; |
240 |
default: |
241 |
return EINVAL; |
242 |
} |
243 |
} |
244 |
|
245 |
|
246 |
/* |
247 |
* Lock mutex |
248 |
*/ |
249 |
|
250 |
int pthread_mutex_lock(pthread_mutex_t *mutex) |
251 |
{ |
252 |
switch (mutex->__m_kind) { |
253 |
case PTHREAD_MUTEX_TIMED_NP: |
254 |
fastlock_acquire(&mutex->__m_lock); |
255 |
return 0; |
256 |
default: |
257 |
return EINVAL; |
258 |
} |
259 |
} |
260 |
|
261 |
|
262 |
/* |
263 |
* Try to lock mutex |
264 |
*/ |
265 |
|
266 |
int pthread_mutex_trylock(pthread_mutex_t *mutex) |
267 |
{ |
268 |
switch (mutex->__m_kind) { |
269 |
case PTHREAD_MUTEX_TIMED_NP: |
270 |
return fastlock_try_acquire(&mutex->__m_lock); |
271 |
default: |
272 |
return EINVAL; |
273 |
} |
274 |
} |
275 |
|
276 |
|
277 |
/* |
278 |
* Unlock mutex |
279 |
*/ |
280 |
|
281 |
int pthread_mutex_unlock(pthread_mutex_t *mutex) |
282 |
{ |
283 |
switch (mutex->__m_kind) { |
284 |
case PTHREAD_MUTEX_TIMED_NP: |
285 |
fastlock_release(&mutex->__m_lock); |
286 |
return 0; |
287 |
default: |
288 |
return EINVAL; |
289 |
} |
290 |
} |
291 |
|
292 |
|
293 |
/* |
294 |
* Create mutex attribute |
295 |
*/ |
296 |
|
297 |
int pthread_mutexattr_init(pthread_mutexattr_t *attr) |
298 |
{ |
299 |
attr->__mutexkind = PTHREAD_MUTEX_TIMED_NP; |
300 |
return 0; |
301 |
} |
302 |
|
303 |
|
304 |
/* |
305 |
* Destroy mutex attribute |
306 |
*/ |
307 |
|
308 |
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) |
309 |
{ |
310 |
return 0; |
311 |
} |
312 |
|
313 |
|
314 |
/* |
315 |
* Init semaphore |
316 |
*/ |
317 |
|
318 |
int sem_init(sem_t *sem, int pshared, unsigned int value) |
319 |
{ |
320 |
if (sem == NULL || value > SEM_VALUE_MAX) { |
321 |
errno = EINVAL; |
322 |
return -1; |
323 |
} |
324 |
if (pshared) { |
325 |
errno = ENOSYS; |
326 |
return -1; |
327 |
} |
328 |
fastlock_init(&sem->sem_lock); |
329 |
sem->sem_value = value; |
330 |
sem->sem_waiting = NULL; |
331 |
return 0; |
332 |
} |
333 |
|
334 |
|
335 |
/* |
336 |
* Delete remaphore |
337 |
*/ |
338 |
|
339 |
int sem_destroy(sem_t *sem) |
340 |
{ |
341 |
if (sem == NULL) { |
342 |
errno = EINVAL; |
343 |
return -1; |
344 |
} |
345 |
if (sem->sem_waiting) { |
346 |
errno = EBUSY; |
347 |
return -1; |
348 |
} |
349 |
sem->sem_value = 0; |
350 |
sem->sem_waiting = NULL; |
351 |
return 0; |
352 |
} |
353 |
|
354 |
|
355 |
/* |
356 |
* Wait on semaphore |
357 |
*/ |
358 |
|
359 |
int sem_wait(sem_t *sem) |
360 |
{ |
361 |
if (sem == NULL) { |
362 |
errno = EINVAL; |
363 |
return -1; |
364 |
} |
365 |
fastlock_acquire(&sem->sem_lock); |
366 |
if (sem->sem_value > 0) { |
367 |
sem->sem_value--; |
368 |
fastlock_release(&sem->sem_lock); |
369 |
return 0; |
370 |
} |
371 |
sem->sem_waiting = (struct _pthread_descr_struct *)((long)sem->sem_waiting + 1); |
372 |
while (sem->sem_value == 0) { |
373 |
fastlock_release(&sem->sem_lock); |
374 |
usleep(0); |
375 |
fastlock_acquire(&sem->sem_lock); |
376 |
} |
377 |
sem->sem_value--; |
378 |
fastlock_release(&sem->sem_lock); |
379 |
return 0; |
380 |
} |
381 |
|
382 |
|
383 |
/* |
384 |
* Post semaphore |
385 |
*/ |
386 |
|
387 |
int sem_post(sem_t *sem) |
388 |
{ |
389 |
if (sem == NULL) { |
390 |
errno = EINVAL; |
391 |
return -1; |
392 |
} |
393 |
fastlock_acquire(&sem->sem_lock); |
394 |
if (sem->sem_waiting) |
395 |
sem->sem_waiting = (struct _pthread_descr_struct *)((long)sem->sem_waiting - 1); |
396 |
else { |
397 |
if (sem->sem_value >= SEM_VALUE_MAX) { |
398 |
errno = ERANGE; |
399 |
fastlock_release(&sem->sem_lock); |
400 |
return -1; |
401 |
} |
402 |
} |
403 |
sem->sem_value++; |
404 |
fastlock_release(&sem->sem_lock); |
405 |
return 0; |
406 |
} |
407 |
|
408 |
|
409 |
/* |
410 |
* Simple producer/consumer test program |
411 |
*/ |
412 |
|
413 |
#ifdef TEST |
414 |
#include <stdio.h> |
415 |
|
416 |
static sem_t p_sem, c_sem; |
417 |
static int data = 0; |
418 |
|
419 |
static void *producer_func(void *arg) |
420 |
{ |
421 |
int i, n = (int)arg; |
422 |
for (i = 0; i < n; i++) { |
423 |
sem_wait(&p_sem); |
424 |
data++; |
425 |
sem_post(&c_sem); |
426 |
} |
427 |
return NULL; |
428 |
} |
429 |
|
430 |
static void *consumer_func(void *arg) |
431 |
{ |
432 |
int i, n = (int)arg; |
433 |
for (i = 0; i < n; i++) { |
434 |
sem_wait(&c_sem); |
435 |
printf("data: %d\n", data); |
436 |
sem_post(&p_sem); |
437 |
} |
438 |
sleep(1); // for testing pthread_join() |
439 |
return NULL; |
440 |
} |
441 |
|
442 |
int main(void) |
443 |
{ |
444 |
pthread_t producer_thread, consumer_thread; |
445 |
static const int N = 5; |
446 |
|
447 |
if (sem_init(&c_sem, 0, 0) < 0) |
448 |
return 1; |
449 |
if (sem_init(&p_sem, 0, 1) < 0) |
450 |
return 2; |
451 |
if (pthread_create(&producer_thread, NULL, producer_func, (void *)N) != 0) |
452 |
return 3; |
453 |
if (pthread_create(&consumer_thread, NULL, consumer_func, (void *)N) != 0) |
454 |
return 4; |
455 |
pthread_join(producer_thread, NULL); |
456 |
pthread_join(consumer_thread, NULL); |
457 |
sem_destroy(&p_sem); |
458 |
sem_destroy(&c_sem); |
459 |
if (data != N) |
460 |
return 5; |
461 |
return 0; |
462 |
} |
463 |
#endif |