ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/slirp/tcp_input.c
Revision: 1.2
Committed: 2006-04-13T22:15:02Z (18 years, 7 months ago) by gbeauche
Content type: text/plain
Branch: MAIN
CVS Tags: nigel-build-19
Changes since 1.1: +4 -21 lines
Log Message:
Apply the qemu-slirp-performance.patch from Kenneth Duda available here:
<http://lists.nongnu.org/archive/html/qemu-devel/2006-04/msg00245.html>

This does improve slirp performance a lot, especially in FTP passive mode
transfers. i.e. now, they are equally as fast as non passive mode. I get
approx. 800 KB/sec in B2 and 500 KB/sec in SheepShaver (over a DSL line).
In native env, the max download data rate from my ISP is around 950 KB/sec.

File Contents

# Content
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
34 * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
35 */
36
37 /*
38 * Changes and additions relating to SLiRP
39 * Copyright (c) 1995 Danny Gasparovski.
40 *
41 * Please read the file COPYRIGHT for the
42 * terms and conditions of the copyright.
43 */
44
45 #include <slirp.h>
46 #include "ip_icmp.h"
47
48 struct socket tcb;
49
50 int tcprexmtthresh = 3;
51 struct socket *tcp_last_so = &tcb;
52
53 tcp_seq tcp_iss; /* tcp initial send seq # */
54
55 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
56
57 /* for modulo comparisons of timestamps */
58 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
59 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
60
61 /*
62 * Insert segment ti into reassembly queue of tcp with
63 * control block tp. Return TH_FIN if reassembly now includes
64 * a segment with FIN. The macro form does the common case inline
65 * (segment is the next to be received on an established connection,
66 * and the queue is empty), avoiding linkage into and removal
67 * from the queue and repetition of various conversions.
68 * Set DELACK for segments received in order, but ack immediately
69 * when segments are out of order (so fast retransmit can work).
70 */
71 #ifdef TCP_ACK_HACK
72 #define TCP_REASS(tp, ti, m, so, flags) {\
73 if ((ti)->ti_seq == (tp)->rcv_nxt && \
74 (tp)->seg_next == (tcpiphdrp_32)(tp) && \
75 (tp)->t_state == TCPS_ESTABLISHED) {\
76 if (ti->ti_flags & TH_PUSH) \
77 tp->t_flags |= TF_ACKNOW; \
78 else \
79 tp->t_flags |= TF_DELACK; \
80 (tp)->rcv_nxt += (ti)->ti_len; \
81 flags = (ti)->ti_flags & TH_FIN; \
82 tcpstat.tcps_rcvpack++;\
83 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
84 if (so->so_emu) { \
85 if (tcp_emu((so),(m))) sbappend((so), (m)); \
86 } else \
87 sbappend((so), (m)); \
88 /* sorwakeup(so); */ \
89 } else {\
90 (flags) = tcp_reass((tp), (ti), (m)); \
91 tp->t_flags |= TF_ACKNOW; \
92 } \
93 }
94 #else
95 #define TCP_REASS(tp, ti, m, so, flags) { \
96 if ((ti)->ti_seq == (tp)->rcv_nxt && \
97 (tp)->seg_next == (tcpiphdrp_32)(tp) && \
98 (tp)->t_state == TCPS_ESTABLISHED) { \
99 tp->t_flags |= TF_DELACK; \
100 (tp)->rcv_nxt += (ti)->ti_len; \
101 flags = (ti)->ti_flags & TH_FIN; \
102 tcpstat.tcps_rcvpack++;\
103 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
104 if (so->so_emu) { \
105 if (tcp_emu((so),(m))) sbappend(so, (m)); \
106 } else \
107 sbappend((so), (m)); \
108 /* sorwakeup(so); */ \
109 } else { \
110 (flags) = tcp_reass((tp), (ti), (m)); \
111 tp->t_flags |= TF_ACKNOW; \
112 } \
113 }
114 #endif
115
116 int
117 tcp_reass(tp, ti, m)
118 register struct tcpcb *tp;
119 register struct tcpiphdr *ti;
120 struct mbuf *m;
121 {
122 register struct tcpiphdr *q;
123 struct socket *so = tp->t_socket;
124 int flags;
125
126 /*
127 * Call with ti==0 after become established to
128 * force pre-ESTABLISHED data up to user socket.
129 */
130 if (ti == 0)
131 goto present;
132
133 /*
134 * Find a segment which begins after this one does.
135 */
136 for (q = (struct tcpiphdr *)tp->seg_next; q != (struct tcpiphdr *)tp;
137 q = (struct tcpiphdr *)q->ti_next)
138 if (SEQ_GT(q->ti_seq, ti->ti_seq))
139 break;
140
141 /*
142 * If there is a preceding segment, it may provide some of
143 * our data already. If so, drop the data from the incoming
144 * segment. If it provides all of our data, drop us.
145 */
146 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
147 register int i;
148 q = (struct tcpiphdr *)q->ti_prev;
149 /* conversion to int (in i) handles seq wraparound */
150 i = q->ti_seq + q->ti_len - ti->ti_seq;
151 if (i > 0) {
152 if (i >= ti->ti_len) {
153 tcpstat.tcps_rcvduppack++;
154 tcpstat.tcps_rcvdupbyte += ti->ti_len;
155 m_freem(m);
156 /*
157 * Try to present any queued data
158 * at the left window edge to the user.
159 * This is needed after the 3-WHS
160 * completes.
161 */
162 goto present; /* ??? */
163 }
164 m_adj(m, i);
165 ti->ti_len -= i;
166 ti->ti_seq += i;
167 }
168 q = (struct tcpiphdr *)(q->ti_next);
169 }
170 tcpstat.tcps_rcvoopack++;
171 tcpstat.tcps_rcvoobyte += ti->ti_len;
172 REASS_MBUF(ti) = (mbufp_32) m; /* XXX */
173
174 /*
175 * While we overlap succeeding segments trim them or,
176 * if they are completely covered, dequeue them.
177 */
178 while (q != (struct tcpiphdr *)tp) {
179 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
180 if (i <= 0)
181 break;
182 if (i < q->ti_len) {
183 q->ti_seq += i;
184 q->ti_len -= i;
185 m_adj((struct mbuf *) REASS_MBUF(q), i);
186 break;
187 }
188 q = (struct tcpiphdr *)q->ti_next;
189 m = (struct mbuf *) REASS_MBUF((struct tcpiphdr *)q->ti_prev);
190 remque_32((void *)(q->ti_prev));
191 m_freem(m);
192 }
193
194 /*
195 * Stick new segment in its place.
196 */
197 insque_32(ti, (void *)(q->ti_prev));
198
199 present:
200 /*
201 * Present data to user, advancing rcv_nxt through
202 * completed sequence space.
203 */
204 if (!TCPS_HAVEESTABLISHED(tp->t_state))
205 return (0);
206 ti = (struct tcpiphdr *) tp->seg_next;
207 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
208 return (0);
209 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
210 return (0);
211 do {
212 tp->rcv_nxt += ti->ti_len;
213 flags = ti->ti_flags & TH_FIN;
214 remque_32(ti);
215 m = (struct mbuf *) REASS_MBUF(ti); /* XXX */
216 ti = (struct tcpiphdr *)ti->ti_next;
217 /* if (so->so_state & SS_FCANTRCVMORE) */
218 if (so->so_state & SS_FCANTSENDMORE)
219 m_freem(m);
220 else {
221 if (so->so_emu) {
222 if (tcp_emu(so,m)) sbappend(so, m);
223 } else
224 sbappend(so, m);
225 }
226 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
227 /* sorwakeup(so); */
228 return (flags);
229 }
230
231 /*
232 * TCP input routine, follows pages 65-76 of the
233 * protocol specification dated September, 1981 very closely.
234 */
235 void
236 tcp_input(m, iphlen, inso)
237 register struct mbuf *m;
238 int iphlen;
239 struct socket *inso;
240 {
241 struct ip save_ip, *ip;
242 register struct tcpiphdr *ti;
243 caddr_t optp = NULL;
244 int optlen = 0;
245 int len, tlen, off;
246 register struct tcpcb *tp = 0;
247 register int tiflags;
248 struct socket *so = 0;
249 int todrop, acked, ourfinisacked, needoutput = 0;
250 /* int dropsocket = 0; */
251 int iss = 0;
252 u_long tiwin;
253 int ret;
254 /* int ts_present = 0; */
255
256 DEBUG_CALL("tcp_input");
257 DEBUG_ARGS((dfd," m = %8lx iphlen = %2d inso = %lx\n",
258 (long )m, iphlen, (long )inso ));
259
260 /*
261 * If called with m == 0, then we're continuing the connect
262 */
263 if (m == NULL) {
264 so = inso;
265
266 /* Re-set a few variables */
267 tp = sototcpcb(so);
268 m = so->so_m;
269 so->so_m = 0;
270 ti = so->so_ti;
271 tiwin = ti->ti_win;
272 tiflags = ti->ti_flags;
273
274 goto cont_conn;
275 }
276
277
278 tcpstat.tcps_rcvtotal++;
279 /*
280 * Get IP and TCP header together in first mbuf.
281 * Note: IP leaves IP header in first mbuf.
282 */
283 ti = mtod(m, struct tcpiphdr *);
284 if (iphlen > sizeof(struct ip )) {
285 ip_stripoptions(m, (struct mbuf *)0);
286 iphlen=sizeof(struct ip );
287 }
288 /* XXX Check if too short */
289
290
291 /*
292 * Save a copy of the IP header in case we want restore it
293 * for sending an ICMP error message in response.
294 */
295 ip=mtod(m, struct ip *);
296 save_ip = *ip;
297 save_ip.ip_len+= iphlen;
298
299 /*
300 * Checksum extended TCP header and data.
301 */
302 tlen = ((struct ip *)ti)->ip_len;
303 ti->ti_next = ti->ti_prev = 0;
304 ti->ti_x1 = 0;
305 ti->ti_len = htons((u_int16_t)tlen);
306 len = sizeof(struct ip ) + tlen;
307 /* keep checksum for ICMP reply
308 * ti->ti_sum = cksum(m, len);
309 * if (ti->ti_sum) { */
310 if(cksum(m, len)) {
311 tcpstat.tcps_rcvbadsum++;
312 goto drop;
313 }
314
315 /*
316 * Check that TCP offset makes sense,
317 * pull out TCP options and adjust length. XXX
318 */
319 off = ti->ti_off << 2;
320 if (off < sizeof (struct tcphdr) || off > tlen) {
321 tcpstat.tcps_rcvbadoff++;
322 goto drop;
323 }
324 tlen -= off;
325 ti->ti_len = tlen;
326 if (off > sizeof (struct tcphdr)) {
327 optlen = off - sizeof (struct tcphdr);
328 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
329
330 /*
331 * Do quick retrieval of timestamp options ("options
332 * prediction?"). If timestamp is the only option and it's
333 * formatted as recommended in RFC 1323 appendix A, we
334 * quickly get the values now and not bother calling
335 * tcp_dooptions(), etc.
336 */
337 /* if ((optlen == TCPOLEN_TSTAMP_APPA ||
338 * (optlen > TCPOLEN_TSTAMP_APPA &&
339 * optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
340 * *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
341 * (ti->ti_flags & TH_SYN) == 0) {
342 * ts_present = 1;
343 * ts_val = ntohl(*(u_int32_t *)(optp + 4));
344 * ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
345 * optp = NULL; / * we've parsed the options * /
346 * }
347 */
348 }
349 tiflags = ti->ti_flags;
350
351 /*
352 * Convert TCP protocol specific fields to host format.
353 */
354 NTOHL(ti->ti_seq);
355 NTOHL(ti->ti_ack);
356 NTOHS(ti->ti_win);
357 NTOHS(ti->ti_urp);
358
359 /*
360 * Drop TCP, IP headers and TCP options.
361 */
362 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
363 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
364
365 /*
366 * Locate pcb for segment.
367 */
368 findso:
369 so = tcp_last_so;
370 if (so->so_fport != ti->ti_dport ||
371 so->so_lport != ti->ti_sport ||
372 so->so_laddr.s_addr != ti->ti_src.s_addr ||
373 so->so_faddr.s_addr != ti->ti_dst.s_addr) {
374 so = solookup(&tcb, ti->ti_src, ti->ti_sport,
375 ti->ti_dst, ti->ti_dport);
376 if (so)
377 tcp_last_so = so;
378 ++tcpstat.tcps_socachemiss;
379 }
380
381 /*
382 * If the state is CLOSED (i.e., TCB does not exist) then
383 * all data in the incoming segment is discarded.
384 * If the TCB exists but is in CLOSED state, it is embryonic,
385 * but should either do a listen or a connect soon.
386 *
387 * state == CLOSED means we've done socreate() but haven't
388 * attached it to a protocol yet...
389 *
390 * XXX If a TCB does not exist, and the TH_SYN flag is
391 * the only flag set, then create a session, mark it
392 * as if it was LISTENING, and continue...
393 */
394 if (so == 0) {
395 if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
396 goto dropwithreset;
397
398 if ((so = socreate()) == NULL)
399 goto dropwithreset;
400 if (tcp_attach(so) < 0) {
401 free(so); /* Not sofree (if it failed, it's not insqued) */
402 goto dropwithreset;
403 }
404
405 sbreserve(&so->so_snd, tcp_sndspace);
406 sbreserve(&so->so_rcv, tcp_rcvspace);
407
408 /* tcp_last_so = so; */ /* XXX ? */
409 /* tp = sototcpcb(so); */
410
411 so->so_laddr = ti->ti_src;
412 so->so_lport = ti->ti_sport;
413 so->so_faddr = ti->ti_dst;
414 so->so_fport = ti->ti_dport;
415
416 if ((so->so_iptos = tcp_tos(so)) == 0)
417 so->so_iptos = ((struct ip *)ti)->ip_tos;
418
419 tp = sototcpcb(so);
420 tp->t_state = TCPS_LISTEN;
421 }
422
423 /*
424 * If this is a still-connecting socket, this probably
425 * a retransmit of the SYN. Whether it's a retransmit SYN
426 * or something else, we nuke it.
427 */
428 if (so->so_state & SS_ISFCONNECTING)
429 goto drop;
430
431 tp = sototcpcb(so);
432
433 /* XXX Should never fail */
434 if (tp == 0)
435 goto dropwithreset;
436 if (tp->t_state == TCPS_CLOSED)
437 goto drop;
438
439 /* Unscale the window into a 32-bit value. */
440 /* if ((tiflags & TH_SYN) == 0)
441 * tiwin = ti->ti_win << tp->snd_scale;
442 * else
443 */
444 tiwin = ti->ti_win;
445
446 /*
447 * Segment received on connection.
448 * Reset idle time and keep-alive timer.
449 */
450 tp->t_idle = 0;
451 if (so_options)
452 tp->t_timer[TCPT_KEEP] = tcp_keepintvl;
453 else
454 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
455
456 /*
457 * Process options if not in LISTEN state,
458 * else do it below (after getting remote address).
459 */
460 if (optp && tp->t_state != TCPS_LISTEN)
461 tcp_dooptions(tp, (u_char *)optp, optlen, ti);
462 /* , */
463 /* &ts_present, &ts_val, &ts_ecr); */
464
465 /*
466 * Header prediction: check for the two common cases
467 * of a uni-directional data xfer. If the packet has
468 * no control flags, is in-sequence, the window didn't
469 * change and we're not retransmitting, it's a
470 * candidate. If the length is zero and the ack moved
471 * forward, we're the sender side of the xfer. Just
472 * free the data acked & wake any higher level process
473 * that was blocked waiting for space. If the length
474 * is non-zero and the ack didn't move, we're the
475 * receiver side. If we're getting packets in-order
476 * (the reassembly queue is empty), add the data to
477 * the socket buffer and note that we need a delayed ack.
478 *
479 * XXX Some of these tests are not needed
480 * eg: the tiwin == tp->snd_wnd prevents many more
481 * predictions.. with no *real* advantage..
482 */
483 if (tp->t_state == TCPS_ESTABLISHED &&
484 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
485 /* (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && */
486 ti->ti_seq == tp->rcv_nxt &&
487 tiwin && tiwin == tp->snd_wnd &&
488 tp->snd_nxt == tp->snd_max) {
489 /*
490 * If last ACK falls within this segment's sequence numbers,
491 * record the timestamp.
492 */
493 /* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
494 * SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
495 * tp->ts_recent_age = tcp_now;
496 * tp->ts_recent = ts_val;
497 * }
498 */
499 if (ti->ti_len == 0) {
500 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
501 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
502 tp->snd_cwnd >= tp->snd_wnd) {
503 /*
504 * this is a pure ack for outstanding data.
505 */
506 ++tcpstat.tcps_predack;
507 /* if (ts_present)
508 * tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
509 * else
510 */ if (tp->t_rtt &&
511 SEQ_GT(ti->ti_ack, tp->t_rtseq))
512 tcp_xmit_timer(tp, tp->t_rtt);
513 acked = ti->ti_ack - tp->snd_una;
514 tcpstat.tcps_rcvackpack++;
515 tcpstat.tcps_rcvackbyte += acked;
516 sbdrop(&so->so_snd, acked);
517 tp->snd_una = ti->ti_ack;
518 m_freem(m);
519
520 /*
521 * If all outstanding data are acked, stop
522 * retransmit timer, otherwise restart timer
523 * using current (possibly backed-off) value.
524 * If process is waiting for space,
525 * wakeup/selwakeup/signal. If data
526 * are ready to send, let tcp_output
527 * decide between more output or persist.
528 */
529 if (tp->snd_una == tp->snd_max)
530 tp->t_timer[TCPT_REXMT] = 0;
531 else if (tp->t_timer[TCPT_PERSIST] == 0)
532 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
533
534 /*
535 * There's room in so_snd, sowwakup will read()
536 * from the socket if we can
537 */
538 /* if (so->so_snd.sb_flags & SB_NOTIFY)
539 * sowwakeup(so);
540 */
541 /*
542 * This is called because sowwakeup might have
543 * put data into so_snd. Since we don't so sowwakeup,
544 * we don't need this.. XXX???
545 */
546 if (so->so_snd.sb_cc)
547 (void) tcp_output(tp);
548
549 return;
550 }
551 } else if (ti->ti_ack == tp->snd_una &&
552 tp->seg_next == (tcpiphdrp_32)tp &&
553 ti->ti_len <= sbspace(&so->so_rcv)) {
554 /*
555 * this is a pure, in-sequence data packet
556 * with nothing on the reassembly queue and
557 * we have enough buffer space to take it.
558 */
559 ++tcpstat.tcps_preddat;
560 tp->rcv_nxt += ti->ti_len;
561 tcpstat.tcps_rcvpack++;
562 tcpstat.tcps_rcvbyte += ti->ti_len;
563 /*
564 * Add data to socket buffer.
565 */
566 if (so->so_emu) {
567 if (tcp_emu(so,m)) sbappend(so, m);
568 } else
569 sbappend(so, m);
570
571 /*
572 * XXX This is called when data arrives. Later, check
573 * if we can actually write() to the socket
574 * XXX Need to check? It's be NON_BLOCKING
575 */
576 /* sorwakeup(so); */
577
578 /*
579 * If this is a short packet, then ACK now - with Nagel
580 * congestion avoidance sender won't send more until
581 * he gets an ACK.
582 *
583 * It is better to not delay acks at all to maximize
584 * TCP throughput. See RFC 2581.
585 */
586 tp->t_flags |= TF_ACKNOW;
587 tcp_output(tp);
588 return;
589 }
590 } /* header prediction */
591 /*
592 * Calculate amount of space in receive window,
593 * and then do TCP input processing.
594 * Receive window is amount of space in rcv queue,
595 * but not less than advertised window.
596 */
597 { int win;
598 win = sbspace(&so->so_rcv);
599 if (win < 0)
600 win = 0;
601 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
602 }
603
604 switch (tp->t_state) {
605
606 /*
607 * If the state is LISTEN then ignore segment if it contains an RST.
608 * If the segment contains an ACK then it is bad and send a RST.
609 * If it does not contain a SYN then it is not interesting; drop it.
610 * Don't bother responding if the destination was a broadcast.
611 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
612 * tp->iss, and send a segment:
613 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
614 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
615 * Fill in remote peer address fields if not previously specified.
616 * Enter SYN_RECEIVED state, and process any other fields of this
617 * segment in this state.
618 */
619 case TCPS_LISTEN: {
620
621 if (tiflags & TH_RST)
622 goto drop;
623 if (tiflags & TH_ACK)
624 goto dropwithreset;
625 if ((tiflags & TH_SYN) == 0)
626 goto drop;
627
628 /*
629 * This has way too many gotos...
630 * But a bit of spaghetti code never hurt anybody :)
631 */
632
633 /*
634 * If this is destined for the control address, then flag to
635 * tcp_ctl once connected, otherwise connect
636 */
637 if ((so->so_faddr.s_addr&htonl(0xffffff00)) == special_addr.s_addr) {
638 int lastbyte=ntohl(so->so_faddr.s_addr) & 0xff;
639 if (lastbyte!=CTL_ALIAS && lastbyte!=CTL_DNS) {
640 #if 0
641 if(lastbyte==CTL_CMD || lastbyte==CTL_EXEC) {
642 /* Command or exec adress */
643 so->so_state |= SS_CTL;
644 } else
645 #endif
646 {
647 /* May be an add exec */
648 struct ex_list *ex_ptr;
649 for(ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
650 if(ex_ptr->ex_fport == so->so_fport &&
651 lastbyte == ex_ptr->ex_addr) {
652 so->so_state |= SS_CTL;
653 break;
654 }
655 }
656 }
657 if(so->so_state & SS_CTL) goto cont_input;
658 }
659 /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
660 }
661
662 if (so->so_emu & EMU_NOCONNECT) {
663 so->so_emu &= ~EMU_NOCONNECT;
664 goto cont_input;
665 }
666
667 if((tcp_fconnect(so) == -1) && (errno != EINPROGRESS) && (errno != EWOULDBLOCK)) {
668 u_char code=ICMP_UNREACH_NET;
669 DEBUG_MISC((dfd," tcp fconnect errno = %d-%s\n",
670 errno,strerror(errno)));
671 if(errno == ECONNREFUSED) {
672 /* ACK the SYN, send RST to refuse the connection */
673 tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
674 TH_RST|TH_ACK);
675 } else {
676 if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
677 HTONL(ti->ti_seq); /* restore tcp header */
678 HTONL(ti->ti_ack);
679 HTONS(ti->ti_win);
680 HTONS(ti->ti_urp);
681 m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
682 m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
683 *ip=save_ip;
684 icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
685 }
686 tp = tcp_close(tp);
687 m_free(m);
688 } else {
689 /*
690 * Haven't connected yet, save the current mbuf
691 * and ti, and return
692 * XXX Some OS's don't tell us whether the connect()
693 * succeeded or not. So we must time it out.
694 */
695 so->so_m = m;
696 so->so_ti = ti;
697 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
698 tp->t_state = TCPS_SYN_RECEIVED;
699 }
700 return;
701
702 cont_conn:
703 /* m==NULL
704 * Check if the connect succeeded
705 */
706 if (so->so_state & SS_NOFDREF) {
707 tp = tcp_close(tp);
708 goto dropwithreset;
709 }
710 cont_input:
711 tcp_template(tp);
712
713 if (optp)
714 tcp_dooptions(tp, (u_char *)optp, optlen, ti);
715 /* , */
716 /* &ts_present, &ts_val, &ts_ecr); */
717
718 if (iss)
719 tp->iss = iss;
720 else
721 tp->iss = tcp_iss;
722 tcp_iss += TCP_ISSINCR/2;
723 tp->irs = ti->ti_seq;
724 tcp_sendseqinit(tp);
725 tcp_rcvseqinit(tp);
726 tp->t_flags |= TF_ACKNOW;
727 tp->t_state = TCPS_SYN_RECEIVED;
728 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
729 tcpstat.tcps_accepts++;
730 goto trimthenstep6;
731 } /* case TCPS_LISTEN */
732
733 /*
734 * If the state is SYN_SENT:
735 * if seg contains an ACK, but not for our SYN, drop the input.
736 * if seg contains a RST, then drop the connection.
737 * if seg does not contain SYN, then drop it.
738 * Otherwise this is an acceptable SYN segment
739 * initialize tp->rcv_nxt and tp->irs
740 * if seg contains ack then advance tp->snd_una
741 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
742 * arrange for segment to be acked (eventually)
743 * continue processing rest of data/controls, beginning with URG
744 */
745 case TCPS_SYN_SENT:
746 if ((tiflags & TH_ACK) &&
747 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
748 SEQ_GT(ti->ti_ack, tp->snd_max)))
749 goto dropwithreset;
750
751 if (tiflags & TH_RST) {
752 if (tiflags & TH_ACK)
753 tp = tcp_drop(tp,0); /* XXX Check t_softerror! */
754 goto drop;
755 }
756
757 if ((tiflags & TH_SYN) == 0)
758 goto drop;
759 if (tiflags & TH_ACK) {
760 tp->snd_una = ti->ti_ack;
761 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
762 tp->snd_nxt = tp->snd_una;
763 }
764
765 tp->t_timer[TCPT_REXMT] = 0;
766 tp->irs = ti->ti_seq;
767 tcp_rcvseqinit(tp);
768 tp->t_flags |= TF_ACKNOW;
769 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
770 tcpstat.tcps_connects++;
771 soisfconnected(so);
772 tp->t_state = TCPS_ESTABLISHED;
773
774 /* Do window scaling on this connection? */
775 /* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
776 * (TF_RCVD_SCALE|TF_REQ_SCALE)) {
777 * tp->snd_scale = tp->requested_s_scale;
778 * tp->rcv_scale = tp->request_r_scale;
779 * }
780 */
781 (void) tcp_reass(tp, (struct tcpiphdr *)0,
782 (struct mbuf *)0);
783 /*
784 * if we didn't have to retransmit the SYN,
785 * use its rtt as our initial srtt & rtt var.
786 */
787 if (tp->t_rtt)
788 tcp_xmit_timer(tp, tp->t_rtt);
789 } else
790 tp->t_state = TCPS_SYN_RECEIVED;
791
792 trimthenstep6:
793 /*
794 * Advance ti->ti_seq to correspond to first data byte.
795 * If data, trim to stay within window,
796 * dropping FIN if necessary.
797 */
798 ti->ti_seq++;
799 if (ti->ti_len > tp->rcv_wnd) {
800 todrop = ti->ti_len - tp->rcv_wnd;
801 m_adj(m, -todrop);
802 ti->ti_len = tp->rcv_wnd;
803 tiflags &= ~TH_FIN;
804 tcpstat.tcps_rcvpackafterwin++;
805 tcpstat.tcps_rcvbyteafterwin += todrop;
806 }
807 tp->snd_wl1 = ti->ti_seq - 1;
808 tp->rcv_up = ti->ti_seq;
809 goto step6;
810 } /* switch tp->t_state */
811 /*
812 * States other than LISTEN or SYN_SENT.
813 * First check timestamp, if present.
814 * Then check that at least some bytes of segment are within
815 * receive window. If segment begins before rcv_nxt,
816 * drop leading data (and SYN); if nothing left, just ack.
817 *
818 * RFC 1323 PAWS: If we have a timestamp reply on this segment
819 * and it's less than ts_recent, drop it.
820 */
821 /* if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
822 * TSTMP_LT(ts_val, tp->ts_recent)) {
823 *
824 */ /* Check to see if ts_recent is over 24 days old. */
825 /* if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
826 */ /*
827 * * Invalidate ts_recent. If this segment updates
828 * * ts_recent, the age will be reset later and ts_recent
829 * * will get a valid value. If it does not, setting
830 * * ts_recent to zero will at least satisfy the
831 * * requirement that zero be placed in the timestamp
832 * * echo reply when ts_recent isn't valid. The
833 * * age isn't reset until we get a valid ts_recent
834 * * because we don't want out-of-order segments to be
835 * * dropped when ts_recent is old.
836 * */
837 /* tp->ts_recent = 0;
838 * } else {
839 * tcpstat.tcps_rcvduppack++;
840 * tcpstat.tcps_rcvdupbyte += ti->ti_len;
841 * tcpstat.tcps_pawsdrop++;
842 * goto dropafterack;
843 * }
844 * }
845 */
846
847 todrop = tp->rcv_nxt - ti->ti_seq;
848 if (todrop > 0) {
849 if (tiflags & TH_SYN) {
850 tiflags &= ~TH_SYN;
851 ti->ti_seq++;
852 if (ti->ti_urp > 1)
853 ti->ti_urp--;
854 else
855 tiflags &= ~TH_URG;
856 todrop--;
857 }
858 /*
859 * Following if statement from Stevens, vol. 2, p. 960.
860 */
861 if (todrop > ti->ti_len
862 || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
863 /*
864 * Any valid FIN must be to the left of the window.
865 * At this point the FIN must be a duplicate or out
866 * of sequence; drop it.
867 */
868 tiflags &= ~TH_FIN;
869
870 /*
871 * Send an ACK to resynchronize and drop any data.
872 * But keep on processing for RST or ACK.
873 */
874 tp->t_flags |= TF_ACKNOW;
875 todrop = ti->ti_len;
876 tcpstat.tcps_rcvduppack++;
877 tcpstat.tcps_rcvdupbyte += todrop;
878 } else {
879 tcpstat.tcps_rcvpartduppack++;
880 tcpstat.tcps_rcvpartdupbyte += todrop;
881 }
882 m_adj(m, todrop);
883 ti->ti_seq += todrop;
884 ti->ti_len -= todrop;
885 if (ti->ti_urp > todrop)
886 ti->ti_urp -= todrop;
887 else {
888 tiflags &= ~TH_URG;
889 ti->ti_urp = 0;
890 }
891 }
892 /*
893 * If new data are received on a connection after the
894 * user processes are gone, then RST the other end.
895 */
896 if ((so->so_state & SS_NOFDREF) &&
897 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
898 tp = tcp_close(tp);
899 tcpstat.tcps_rcvafterclose++;
900 goto dropwithreset;
901 }
902
903 /*
904 * If segment ends after window, drop trailing data
905 * (and PUSH and FIN); if nothing left, just ACK.
906 */
907 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
908 if (todrop > 0) {
909 tcpstat.tcps_rcvpackafterwin++;
910 if (todrop >= ti->ti_len) {
911 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
912 /*
913 * If a new connection request is received
914 * while in TIME_WAIT, drop the old connection
915 * and start over if the sequence numbers
916 * are above the previous ones.
917 */
918 if (tiflags & TH_SYN &&
919 tp->t_state == TCPS_TIME_WAIT &&
920 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
921 iss = tp->rcv_nxt + TCP_ISSINCR;
922 tp = tcp_close(tp);
923 goto findso;
924 }
925 /*
926 * If window is closed can only take segments at
927 * window edge, and have to drop data and PUSH from
928 * incoming segments. Continue processing, but
929 * remember to ack. Otherwise, drop segment
930 * and ack.
931 */
932 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
933 tp->t_flags |= TF_ACKNOW;
934 tcpstat.tcps_rcvwinprobe++;
935 } else
936 goto dropafterack;
937 } else
938 tcpstat.tcps_rcvbyteafterwin += todrop;
939 m_adj(m, -todrop);
940 ti->ti_len -= todrop;
941 tiflags &= ~(TH_PUSH|TH_FIN);
942 }
943
944 /*
945 * If last ACK falls within this segment's sequence numbers,
946 * record its timestamp.
947 */
948 /* if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
949 * SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
950 * ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
951 * tp->ts_recent_age = tcp_now;
952 * tp->ts_recent = ts_val;
953 * }
954 */
955
956 /*
957 * If the RST bit is set examine the state:
958 * SYN_RECEIVED STATE:
959 * If passive open, return to LISTEN state.
960 * If active open, inform user that connection was refused.
961 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
962 * Inform user that connection was reset, and close tcb.
963 * CLOSING, LAST_ACK, TIME_WAIT STATES
964 * Close the tcb.
965 */
966 if (tiflags&TH_RST) switch (tp->t_state) {
967
968 case TCPS_SYN_RECEIVED:
969 /* so->so_error = ECONNREFUSED; */
970 goto close;
971
972 case TCPS_ESTABLISHED:
973 case TCPS_FIN_WAIT_1:
974 case TCPS_FIN_WAIT_2:
975 case TCPS_CLOSE_WAIT:
976 /* so->so_error = ECONNRESET; */
977 close:
978 tp->t_state = TCPS_CLOSED;
979 tcpstat.tcps_drops++;
980 tp = tcp_close(tp);
981 goto drop;
982
983 case TCPS_CLOSING:
984 case TCPS_LAST_ACK:
985 case TCPS_TIME_WAIT:
986 tp = tcp_close(tp);
987 goto drop;
988 }
989
990 /*
991 * If a SYN is in the window, then this is an
992 * error and we send an RST and drop the connection.
993 */
994 if (tiflags & TH_SYN) {
995 tp = tcp_drop(tp,0);
996 goto dropwithreset;
997 }
998
999 /*
1000 * If the ACK bit is off we drop the segment and return.
1001 */
1002 if ((tiflags & TH_ACK) == 0) goto drop;
1003
1004 /*
1005 * Ack processing.
1006 */
1007 switch (tp->t_state) {
1008 /*
1009 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1010 * ESTABLISHED state and continue processing, otherwise
1011 * send an RST. una<=ack<=max
1012 */
1013 case TCPS_SYN_RECEIVED:
1014
1015 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1016 SEQ_GT(ti->ti_ack, tp->snd_max))
1017 goto dropwithreset;
1018 tcpstat.tcps_connects++;
1019 tp->t_state = TCPS_ESTABLISHED;
1020 /*
1021 * The sent SYN is ack'ed with our sequence number +1
1022 * The first data byte already in the buffer will get
1023 * lost if no correction is made. This is only needed for
1024 * SS_CTL since the buffer is empty otherwise.
1025 * tp->snd_una++; or:
1026 */
1027 tp->snd_una=ti->ti_ack;
1028 if (so->so_state & SS_CTL) {
1029 /* So tcp_ctl reports the right state */
1030 ret = tcp_ctl(so);
1031 if (ret == 1) {
1032 soisfconnected(so);
1033 so->so_state &= ~SS_CTL; /* success XXX */
1034 } else if (ret == 2) {
1035 so->so_state = SS_NOFDREF; /* CTL_CMD */
1036 } else {
1037 needoutput = 1;
1038 tp->t_state = TCPS_FIN_WAIT_1;
1039 }
1040 } else {
1041 soisfconnected(so);
1042 }
1043
1044 /* Do window scaling? */
1045 /* if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1046 * (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1047 * tp->snd_scale = tp->requested_s_scale;
1048 * tp->rcv_scale = tp->request_r_scale;
1049 * }
1050 */
1051 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1052 tp->snd_wl1 = ti->ti_seq - 1;
1053 /* Avoid ack processing; snd_una==ti_ack => dup ack */
1054 goto synrx_to_est;
1055 /* fall into ... */
1056
1057 /*
1058 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1059 * ACKs. If the ack is in the range
1060 * tp->snd_una < ti->ti_ack <= tp->snd_max
1061 * then advance tp->snd_una to ti->ti_ack and drop
1062 * data from the retransmission queue. If this ACK reflects
1063 * more up to date window information we update our window information.
1064 */
1065 case TCPS_ESTABLISHED:
1066 case TCPS_FIN_WAIT_1:
1067 case TCPS_FIN_WAIT_2:
1068 case TCPS_CLOSE_WAIT:
1069 case TCPS_CLOSING:
1070 case TCPS_LAST_ACK:
1071 case TCPS_TIME_WAIT:
1072
1073 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1074 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1075 tcpstat.tcps_rcvdupack++;
1076 DEBUG_MISC((dfd," dup ack m = %lx so = %lx \n",
1077 (long )m, (long )so));
1078 /*
1079 * If we have outstanding data (other than
1080 * a window probe), this is a completely
1081 * duplicate ack (ie, window info didn't
1082 * change), the ack is the biggest we've
1083 * seen and we've seen exactly our rexmt
1084 * threshold of them, assume a packet
1085 * has been dropped and retransmit it.
1086 * Kludge snd_nxt & the congestion
1087 * window so we send only this one
1088 * packet.
1089 *
1090 * We know we're losing at the current
1091 * window size so do congestion avoidance
1092 * (set ssthresh to half the current window
1093 * and pull our congestion window back to
1094 * the new ssthresh).
1095 *
1096 * Dup acks mean that packets have left the
1097 * network (they're now cached at the receiver)
1098 * so bump cwnd by the amount in the receiver
1099 * to keep a constant cwnd packets in the
1100 * network.
1101 */
1102 if (tp->t_timer[TCPT_REXMT] == 0 ||
1103 ti->ti_ack != tp->snd_una)
1104 tp->t_dupacks = 0;
1105 else if (++tp->t_dupacks == tcprexmtthresh) {
1106 tcp_seq onxt = tp->snd_nxt;
1107 u_int win =
1108 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1109 tp->t_maxseg;
1110
1111 if (win < 2)
1112 win = 2;
1113 tp->snd_ssthresh = win * tp->t_maxseg;
1114 tp->t_timer[TCPT_REXMT] = 0;
1115 tp->t_rtt = 0;
1116 tp->snd_nxt = ti->ti_ack;
1117 tp->snd_cwnd = tp->t_maxseg;
1118 (void) tcp_output(tp);
1119 tp->snd_cwnd = tp->snd_ssthresh +
1120 tp->t_maxseg * tp->t_dupacks;
1121 if (SEQ_GT(onxt, tp->snd_nxt))
1122 tp->snd_nxt = onxt;
1123 goto drop;
1124 } else if (tp->t_dupacks > tcprexmtthresh) {
1125 tp->snd_cwnd += tp->t_maxseg;
1126 (void) tcp_output(tp);
1127 goto drop;
1128 }
1129 } else
1130 tp->t_dupacks = 0;
1131 break;
1132 }
1133 synrx_to_est:
1134 /*
1135 * If the congestion window was inflated to account
1136 * for the other side's cached packets, retract it.
1137 */
1138 if (tp->t_dupacks > tcprexmtthresh &&
1139 tp->snd_cwnd > tp->snd_ssthresh)
1140 tp->snd_cwnd = tp->snd_ssthresh;
1141 tp->t_dupacks = 0;
1142 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1143 tcpstat.tcps_rcvacktoomuch++;
1144 goto dropafterack;
1145 }
1146 acked = ti->ti_ack - tp->snd_una;
1147 tcpstat.tcps_rcvackpack++;
1148 tcpstat.tcps_rcvackbyte += acked;
1149
1150 /*
1151 * If we have a timestamp reply, update smoothed
1152 * round trip time. If no timestamp is present but
1153 * transmit timer is running and timed sequence
1154 * number was acked, update smoothed round trip time.
1155 * Since we now have an rtt measurement, cancel the
1156 * timer backoff (cf., Phil Karn's retransmit alg.).
1157 * Recompute the initial retransmit timer.
1158 */
1159 /* if (ts_present)
1160 * tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1161 * else
1162 */
1163 if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1164 tcp_xmit_timer(tp,tp->t_rtt);
1165
1166 /*
1167 * If all outstanding data is acked, stop retransmit
1168 * timer and remember to restart (more output or persist).
1169 * If there is more data to be acked, restart retransmit
1170 * timer, using current (possibly backed-off) value.
1171 */
1172 if (ti->ti_ack == tp->snd_max) {
1173 tp->t_timer[TCPT_REXMT] = 0;
1174 needoutput = 1;
1175 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1176 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1177 /*
1178 * When new data is acked, open the congestion window.
1179 * If the window gives us less than ssthresh packets
1180 * in flight, open exponentially (maxseg per packet).
1181 * Otherwise open linearly: maxseg per window
1182 * (maxseg^2 / cwnd per packet).
1183 */
1184 {
1185 register u_int cw = tp->snd_cwnd;
1186 register u_int incr = tp->t_maxseg;
1187
1188 if (cw > tp->snd_ssthresh)
1189 incr = incr * incr / cw;
1190 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1191 }
1192 if (acked > so->so_snd.sb_cc) {
1193 tp->snd_wnd -= so->so_snd.sb_cc;
1194 sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
1195 ourfinisacked = 1;
1196 } else {
1197 sbdrop(&so->so_snd, acked);
1198 tp->snd_wnd -= acked;
1199 ourfinisacked = 0;
1200 }
1201 /*
1202 * XXX sowwakup is called when data is acked and there's room for
1203 * for more data... it should read() the socket
1204 */
1205 /* if (so->so_snd.sb_flags & SB_NOTIFY)
1206 * sowwakeup(so);
1207 */
1208 tp->snd_una = ti->ti_ack;
1209 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1210 tp->snd_nxt = tp->snd_una;
1211
1212 switch (tp->t_state) {
1213
1214 /*
1215 * In FIN_WAIT_1 STATE in addition to the processing
1216 * for the ESTABLISHED state if our FIN is now acknowledged
1217 * then enter FIN_WAIT_2.
1218 */
1219 case TCPS_FIN_WAIT_1:
1220 if (ourfinisacked) {
1221 /*
1222 * If we can't receive any more
1223 * data, then closing user can proceed.
1224 * Starting the timer is contrary to the
1225 * specification, but if we don't get a FIN
1226 * we'll hang forever.
1227 */
1228 if (so->so_state & SS_FCANTRCVMORE) {
1229 soisfdisconnected(so);
1230 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1231 }
1232 tp->t_state = TCPS_FIN_WAIT_2;
1233 }
1234 break;
1235
1236 /*
1237 * In CLOSING STATE in addition to the processing for
1238 * the ESTABLISHED state if the ACK acknowledges our FIN
1239 * then enter the TIME-WAIT state, otherwise ignore
1240 * the segment.
1241 */
1242 case TCPS_CLOSING:
1243 if (ourfinisacked) {
1244 tp->t_state = TCPS_TIME_WAIT;
1245 tcp_canceltimers(tp);
1246 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1247 soisfdisconnected(so);
1248 }
1249 break;
1250
1251 /*
1252 * In LAST_ACK, we may still be waiting for data to drain
1253 * and/or to be acked, as well as for the ack of our FIN.
1254 * If our FIN is now acknowledged, delete the TCB,
1255 * enter the closed state and return.
1256 */
1257 case TCPS_LAST_ACK:
1258 if (ourfinisacked) {
1259 tp = tcp_close(tp);
1260 goto drop;
1261 }
1262 break;
1263
1264 /*
1265 * In TIME_WAIT state the only thing that should arrive
1266 * is a retransmission of the remote FIN. Acknowledge
1267 * it and restart the finack timer.
1268 */
1269 case TCPS_TIME_WAIT:
1270 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1271 goto dropafterack;
1272 }
1273 } /* switch(tp->t_state) */
1274
1275 step6:
1276 /*
1277 * Update window information.
1278 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1279 */
1280 if ((tiflags & TH_ACK) &&
1281 (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1282 (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1283 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
1284 /* keep track of pure window updates */
1285 if (ti->ti_len == 0 &&
1286 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1287 tcpstat.tcps_rcvwinupd++;
1288 tp->snd_wnd = tiwin;
1289 tp->snd_wl1 = ti->ti_seq;
1290 tp->snd_wl2 = ti->ti_ack;
1291 if (tp->snd_wnd > tp->max_sndwnd)
1292 tp->max_sndwnd = tp->snd_wnd;
1293 needoutput = 1;
1294 }
1295
1296 /*
1297 * Process segments with URG.
1298 */
1299 if ((tiflags & TH_URG) && ti->ti_urp &&
1300 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1301 /*
1302 * This is a kludge, but if we receive and accept
1303 * random urgent pointers, we'll crash in
1304 * soreceive. It's hard to imagine someone
1305 * actually wanting to send this much urgent data.
1306 */
1307 if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
1308 ti->ti_urp = 0;
1309 tiflags &= ~TH_URG;
1310 goto dodata;
1311 }
1312 /*
1313 * If this segment advances the known urgent pointer,
1314 * then mark the data stream. This should not happen
1315 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1316 * a FIN has been received from the remote side.
1317 * In these states we ignore the URG.
1318 *
1319 * According to RFC961 (Assigned Protocols),
1320 * the urgent pointer points to the last octet
1321 * of urgent data. We continue, however,
1322 * to consider it to indicate the first octet
1323 * of data past the urgent section as the original
1324 * spec states (in one of two places).
1325 */
1326 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1327 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1328 so->so_urgc = so->so_rcv.sb_cc +
1329 (tp->rcv_up - tp->rcv_nxt); /* -1; */
1330 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1331
1332 }
1333 } else
1334 /*
1335 * If no out of band data is expected,
1336 * pull receive urgent pointer along
1337 * with the receive window.
1338 */
1339 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1340 tp->rcv_up = tp->rcv_nxt;
1341 dodata:
1342
1343 /*
1344 * Process the segment text, merging it into the TCP sequencing queue,
1345 * and arranging for acknowledgment of receipt if necessary.
1346 * This process logically involves adjusting tp->rcv_wnd as data
1347 * is presented to the user (this happens in tcp_usrreq.c,
1348 * case PRU_RCVD). If a FIN has already been received on this
1349 * connection then we just ignore the text.
1350 */
1351 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1352 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1353 TCP_REASS(tp, ti, m, so, tiflags);
1354 /*
1355 * Note the amount of data that peer has sent into
1356 * our window, in order to estimate the sender's
1357 * buffer size.
1358 */
1359 len = so->so_rcv.sb_datalen - (tp->rcv_adv - tp->rcv_nxt);
1360 } else {
1361 m_free(m);
1362 tiflags &= ~TH_FIN;
1363 }
1364
1365 /*
1366 * If FIN is received ACK the FIN and let the user know
1367 * that the connection is closing.
1368 */
1369 if (tiflags & TH_FIN) {
1370 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1371 /*
1372 * If we receive a FIN we can't send more data,
1373 * set it SS_FDRAIN
1374 * Shutdown the socket if there is no rx data in the
1375 * buffer.
1376 * soread() is called on completion of shutdown() and
1377 * will got to TCPS_LAST_ACK, and use tcp_output()
1378 * to send the FIN.
1379 */
1380 /* sofcantrcvmore(so); */
1381 sofwdrain(so);
1382
1383 tp->t_flags |= TF_ACKNOW;
1384 tp->rcv_nxt++;
1385 }
1386 switch (tp->t_state) {
1387
1388 /*
1389 * In SYN_RECEIVED and ESTABLISHED STATES
1390 * enter the CLOSE_WAIT state.
1391 */
1392 case TCPS_SYN_RECEIVED:
1393 case TCPS_ESTABLISHED:
1394 if(so->so_emu == EMU_CTL) /* no shutdown on socket */
1395 tp->t_state = TCPS_LAST_ACK;
1396 else
1397 tp->t_state = TCPS_CLOSE_WAIT;
1398 break;
1399
1400 /*
1401 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1402 * enter the CLOSING state.
1403 */
1404 case TCPS_FIN_WAIT_1:
1405 tp->t_state = TCPS_CLOSING;
1406 break;
1407
1408 /*
1409 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1410 * starting the time-wait timer, turning off the other
1411 * standard timers.
1412 */
1413 case TCPS_FIN_WAIT_2:
1414 tp->t_state = TCPS_TIME_WAIT;
1415 tcp_canceltimers(tp);
1416 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1417 soisfdisconnected(so);
1418 break;
1419
1420 /*
1421 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1422 */
1423 case TCPS_TIME_WAIT:
1424 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1425 break;
1426 }
1427 }
1428
1429 /*
1430 * If this is a small packet, then ACK now - with Nagel
1431 * congestion avoidance sender won't send more until
1432 * he gets an ACK.
1433 *
1434 * See above.
1435 */
1436 /* if (ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg) {
1437 */
1438 /* if ((ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg &&
1439 * (so->so_iptos & IPTOS_LOWDELAY) == 0) ||
1440 * ((so->so_iptos & IPTOS_LOWDELAY) &&
1441 * ((struct tcpiphdr_2 *)ti)->first_char == (char)27)) {
1442 */
1443 if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
1444 ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
1445 tp->t_flags |= TF_ACKNOW;
1446 }
1447
1448 /*
1449 * Return any desired output.
1450 */
1451 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
1452 (void) tcp_output(tp);
1453 }
1454 return;
1455
1456 dropafterack:
1457 /*
1458 * Generate an ACK dropping incoming segment if it occupies
1459 * sequence space, where the ACK reflects our state.
1460 */
1461 if (tiflags & TH_RST)
1462 goto drop;
1463 m_freem(m);
1464 tp->t_flags |= TF_ACKNOW;
1465 (void) tcp_output(tp);
1466 return;
1467
1468 dropwithreset:
1469 /* reuses m if m!=NULL, m_free() unnecessary */
1470 if (tiflags & TH_ACK)
1471 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1472 else {
1473 if (tiflags & TH_SYN) ti->ti_len++;
1474 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1475 TH_RST|TH_ACK);
1476 }
1477
1478 return;
1479
1480 drop:
1481 /*
1482 * Drop space held by incoming segment and return.
1483 */
1484 m_free(m);
1485
1486 return;
1487 }
1488
1489 /* , ts_present, ts_val, ts_ecr) */
1490 /* int *ts_present;
1491 * u_int32_t *ts_val, *ts_ecr;
1492 */
1493 void
1494 tcp_dooptions(tp, cp, cnt, ti)
1495 struct tcpcb *tp;
1496 u_char *cp;
1497 int cnt;
1498 struct tcpiphdr *ti;
1499 {
1500 u_int16_t mss;
1501 int opt, optlen;
1502
1503 DEBUG_CALL("tcp_dooptions");
1504 DEBUG_ARGS((dfd," tp = %lx cnt=%i \n", (long )tp, cnt));
1505
1506 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1507 opt = cp[0];
1508 if (opt == TCPOPT_EOL)
1509 break;
1510 if (opt == TCPOPT_NOP)
1511 optlen = 1;
1512 else {
1513 optlen = cp[1];
1514 if (optlen <= 0)
1515 break;
1516 }
1517 switch (opt) {
1518
1519 default:
1520 continue;
1521
1522 case TCPOPT_MAXSEG:
1523 if (optlen != TCPOLEN_MAXSEG)
1524 continue;
1525 if (!(ti->ti_flags & TH_SYN))
1526 continue;
1527 memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
1528 NTOHS(mss);
1529 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1530 break;
1531
1532 /* case TCPOPT_WINDOW:
1533 * if (optlen != TCPOLEN_WINDOW)
1534 * continue;
1535 * if (!(ti->ti_flags & TH_SYN))
1536 * continue;
1537 * tp->t_flags |= TF_RCVD_SCALE;
1538 * tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1539 * break;
1540 */
1541 /* case TCPOPT_TIMESTAMP:
1542 * if (optlen != TCPOLEN_TIMESTAMP)
1543 * continue;
1544 * *ts_present = 1;
1545 * memcpy((char *) ts_val, (char *)cp + 2, sizeof(*ts_val));
1546 * NTOHL(*ts_val);
1547 * memcpy((char *) ts_ecr, (char *)cp + 6, sizeof(*ts_ecr));
1548 * NTOHL(*ts_ecr);
1549 *
1550 */ /*
1551 * * A timestamp received in a SYN makes
1552 * * it ok to send timestamp requests and replies.
1553 * */
1554 /* if (ti->ti_flags & TH_SYN) {
1555 * tp->t_flags |= TF_RCVD_TSTMP;
1556 * tp->ts_recent = *ts_val;
1557 * tp->ts_recent_age = tcp_now;
1558 * }
1559 */ break;
1560 }
1561 }
1562 }
1563
1564
1565 /*
1566 * Pull out of band byte out of a segment so
1567 * it doesn't appear in the user's data queue.
1568 * It is still reflected in the segment length for
1569 * sequencing purposes.
1570 */
1571
1572 #ifdef notdef
1573
1574 void
1575 tcp_pulloutofband(so, ti, m)
1576 struct socket *so;
1577 struct tcpiphdr *ti;
1578 register struct mbuf *m;
1579 {
1580 int cnt = ti->ti_urp - 1;
1581
1582 while (cnt >= 0) {
1583 if (m->m_len > cnt) {
1584 char *cp = mtod(m, caddr_t) + cnt;
1585 struct tcpcb *tp = sototcpcb(so);
1586
1587 tp->t_iobc = *cp;
1588 tp->t_oobflags |= TCPOOB_HAVEDATA;
1589 memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1));
1590 m->m_len--;
1591 return;
1592 }
1593 cnt -= m->m_len;
1594 m = m->m_next; /* XXX WRONG! Fix it! */
1595 if (m == 0)
1596 break;
1597 }
1598 panic("tcp_pulloutofband");
1599 }
1600
1601 #endif /* notdef */
1602
1603 /*
1604 * Collect new round-trip time estimate
1605 * and update averages and current timeout.
1606 */
1607
1608 void
1609 tcp_xmit_timer(tp, rtt)
1610 register struct tcpcb *tp;
1611 int rtt;
1612 {
1613 register short delta;
1614
1615 DEBUG_CALL("tcp_xmit_timer");
1616 DEBUG_ARG("tp = %lx", (long)tp);
1617 DEBUG_ARG("rtt = %d", rtt);
1618
1619 tcpstat.tcps_rttupdated++;
1620 if (tp->t_srtt != 0) {
1621 /*
1622 * srtt is stored as fixed point with 3 bits after the
1623 * binary point (i.e., scaled by 8). The following magic
1624 * is equivalent to the smoothing algorithm in rfc793 with
1625 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1626 * point). Adjust rtt to origin 0.
1627 */
1628 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1629 if ((tp->t_srtt += delta) <= 0)
1630 tp->t_srtt = 1;
1631 /*
1632 * We accumulate a smoothed rtt variance (actually, a
1633 * smoothed mean difference), then set the retransmit
1634 * timer to smoothed rtt + 4 times the smoothed variance.
1635 * rttvar is stored as fixed point with 2 bits after the
1636 * binary point (scaled by 4). The following is
1637 * equivalent to rfc793 smoothing with an alpha of .75
1638 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1639 * rfc793's wired-in beta.
1640 */
1641 if (delta < 0)
1642 delta = -delta;
1643 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1644 if ((tp->t_rttvar += delta) <= 0)
1645 tp->t_rttvar = 1;
1646 } else {
1647 /*
1648 * No rtt measurement yet - use the unsmoothed rtt.
1649 * Set the variance to half the rtt (so our first
1650 * retransmit happens at 3*rtt).
1651 */
1652 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1653 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1654 }
1655 tp->t_rtt = 0;
1656 tp->t_rxtshift = 0;
1657
1658 /*
1659 * the retransmit should happen at rtt + 4 * rttvar.
1660 * Because of the way we do the smoothing, srtt and rttvar
1661 * will each average +1/2 tick of bias. When we compute
1662 * the retransmit timer, we want 1/2 tick of rounding and
1663 * 1 extra tick because of +-1/2 tick uncertainty in the
1664 * firing of the timer. The bias will give us exactly the
1665 * 1.5 tick we need. But, because the bias is
1666 * statistical, we have to test that we don't drop below
1667 * the minimum feasible timer (which is 2 ticks).
1668 */
1669 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1670 (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
1671
1672 /*
1673 * We received an ack for a packet that wasn't retransmitted;
1674 * it is probably safe to discard any error indications we've
1675 * received recently. This isn't quite right, but close enough
1676 * for now (a route might have failed after we sent a segment,
1677 * and the return path might not be symmetrical).
1678 */
1679 tp->t_softerror = 0;
1680 }
1681
1682 /*
1683 * Determine a reasonable value for maxseg size.
1684 * If the route is known, check route for mtu.
1685 * If none, use an mss that can be handled on the outgoing
1686 * interface without forcing IP to fragment; if bigger than
1687 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1688 * to utilize large mbufs. If no route is found, route has no mtu,
1689 * or the destination isn't local, use a default, hopefully conservative
1690 * size (usually 512 or the default IP max size, but no more than the mtu
1691 * of the interface), as we can't discover anything about intervening
1692 * gateways or networks. We also initialize the congestion/slow start
1693 * window to be a single segment if the destination isn't local.
1694 * While looking at the routing entry, we also initialize other path-dependent
1695 * parameters from pre-set or cached values in the routing entry.
1696 */
1697
1698 int
1699 tcp_mss(tp, offer)
1700 register struct tcpcb *tp;
1701 u_int offer;
1702 {
1703 struct socket *so = tp->t_socket;
1704 int mss;
1705
1706 DEBUG_CALL("tcp_mss");
1707 DEBUG_ARG("tp = %lx", (long)tp);
1708 DEBUG_ARG("offer = %d", offer);
1709
1710 mss = min(if_mtu, if_mru) - sizeof(struct tcpiphdr);
1711 if (offer)
1712 mss = min(mss, offer);
1713 mss = max(mss, 32);
1714 if (mss < tp->t_maxseg || offer != 0)
1715 tp->t_maxseg = mss;
1716
1717 tp->snd_cwnd = mss;
1718
1719 sbreserve(&so->so_snd, tcp_sndspace+((tcp_sndspace%mss)?(mss-(tcp_sndspace%mss)):0));
1720 sbreserve(&so->so_rcv, tcp_rcvspace+((tcp_rcvspace%mss)?(mss-(tcp_rcvspace%mss)):0));
1721
1722 DEBUG_MISC((dfd, " returning mss = %d\n", mss));
1723
1724 return mss;
1725 }