1 |
#include "slirp.h" |
2 |
|
3 |
/* host address */ |
4 |
struct in_addr our_addr; |
5 |
/* host dns address */ |
6 |
struct in_addr dns_addr; |
7 |
/* host loopback address */ |
8 |
struct in_addr loopback_addr; |
9 |
|
10 |
/* address for slirp virtual addresses */ |
11 |
struct in_addr special_addr; |
12 |
/* virtual address alias for host */ |
13 |
struct in_addr alias_addr; |
14 |
|
15 |
const uint8_t special_ethaddr[6] = { |
16 |
0x52, 0x54, 0x00, 0x12, 0x35, 0x00 |
17 |
}; |
18 |
|
19 |
uint8_t client_ethaddr[6]; |
20 |
|
21 |
int do_slowtimo; |
22 |
int link_up; |
23 |
struct timeval tt; |
24 |
FILE *lfd; |
25 |
struct ex_list *exec_list; |
26 |
|
27 |
/* XXX: suppress those select globals */ |
28 |
fd_set *global_readfds, *global_writefds, *global_xfds; |
29 |
|
30 |
char slirp_hostname[33]; |
31 |
|
32 |
#ifdef _WIN32 |
33 |
|
34 |
static int get_dns_addr(struct in_addr *pdns_addr) |
35 |
{ |
36 |
FIXED_INFO *FixedInfo=NULL; |
37 |
ULONG BufLen; |
38 |
DWORD ret; |
39 |
IP_ADDR_STRING *pIPAddr; |
40 |
struct in_addr tmp_addr; |
41 |
|
42 |
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
43 |
BufLen = sizeof(FIXED_INFO); |
44 |
|
45 |
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
46 |
if (FixedInfo) { |
47 |
GlobalFree(FixedInfo); |
48 |
FixedInfo = NULL; |
49 |
} |
50 |
FixedInfo = GlobalAlloc(GPTR, BufLen); |
51 |
} |
52 |
|
53 |
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
54 |
printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); |
55 |
if (FixedInfo) { |
56 |
GlobalFree(FixedInfo); |
57 |
FixedInfo = NULL; |
58 |
} |
59 |
return -1; |
60 |
} |
61 |
|
62 |
pIPAddr = &(FixedInfo->DnsServerList); |
63 |
inet_aton(pIPAddr->IpAddress.String, &tmp_addr); |
64 |
*pdns_addr = tmp_addr; |
65 |
#if 0 |
66 |
printf( "DNS Servers:\n" ); |
67 |
printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String ); |
68 |
|
69 |
pIPAddr = FixedInfo -> DnsServerList.Next; |
70 |
while ( pIPAddr ) { |
71 |
printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String ); |
72 |
pIPAddr = pIPAddr ->Next; |
73 |
} |
74 |
#endif |
75 |
if (FixedInfo) { |
76 |
GlobalFree(FixedInfo); |
77 |
FixedInfo = NULL; |
78 |
} |
79 |
return 0; |
80 |
} |
81 |
|
82 |
#else |
83 |
|
84 |
static int get_dns_addr(struct in_addr *pdns_addr) |
85 |
{ |
86 |
char buff[512]; |
87 |
char buff2[256]; |
88 |
FILE *f; |
89 |
int found = 0; |
90 |
struct in_addr tmp_addr; |
91 |
|
92 |
f = fopen("/etc/resolv.conf", "r"); |
93 |
if (!f) |
94 |
return -1; |
95 |
|
96 |
lprint("IP address of your DNS(s): "); |
97 |
while (fgets(buff, 512, f) != NULL) { |
98 |
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
99 |
if (!inet_aton(buff2, &tmp_addr)) |
100 |
continue; |
101 |
if (tmp_addr.s_addr == loopback_addr.s_addr) |
102 |
tmp_addr = our_addr; |
103 |
/* If it's the first one, set it to dns_addr */ |
104 |
if (!found) |
105 |
*pdns_addr = tmp_addr; |
106 |
else |
107 |
lprint(", "); |
108 |
if (++found > 3) { |
109 |
lprint("(more)"); |
110 |
break; |
111 |
} else |
112 |
lprint("%s", inet_ntoa(tmp_addr)); |
113 |
} |
114 |
} |
115 |
fclose(f); |
116 |
if (!found) |
117 |
return -1; |
118 |
return 0; |
119 |
} |
120 |
|
121 |
#endif |
122 |
|
123 |
#ifdef _WIN32 |
124 |
void slirp_cleanup(void) |
125 |
{ |
126 |
WSACleanup(); |
127 |
} |
128 |
#endif |
129 |
|
130 |
int slirp_init(void) |
131 |
{ |
132 |
// debug_init("/tmp/slirp.log", DEBUG_DEFAULT); |
133 |
|
134 |
#ifdef _WIN32 |
135 |
{ |
136 |
WSADATA Data; |
137 |
WSAStartup(MAKEWORD(2,0), &Data); |
138 |
atexit(slirp_cleanup); |
139 |
} |
140 |
#endif |
141 |
|
142 |
link_up = 1; |
143 |
|
144 |
if_init(); |
145 |
ip_init(); |
146 |
|
147 |
/* Initialise mbufs *after* setting the MTU */ |
148 |
m_init(); |
149 |
|
150 |
/* set default addresses */ |
151 |
inet_aton("127.0.0.1", &loopback_addr); |
152 |
|
153 |
if (get_dns_addr(&dns_addr) < 0) |
154 |
return -1; |
155 |
|
156 |
inet_aton(CTL_SPECIAL, &special_addr); |
157 |
alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS); |
158 |
getouraddr(); |
159 |
return 0; |
160 |
} |
161 |
|
162 |
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
163 |
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
164 |
#define UPD_NFDS(x) if (nfds < (x)) nfds = (x) |
165 |
|
166 |
/* |
167 |
* curtime kept to an accuracy of 1ms |
168 |
*/ |
169 |
#ifdef _WIN32 |
170 |
static void updtime(void) |
171 |
{ |
172 |
struct _timeb tb; |
173 |
|
174 |
_ftime(&tb); |
175 |
curtime = (u_int)tb.time * (u_int)1000; |
176 |
curtime += (u_int)tb.millitm; |
177 |
} |
178 |
#else |
179 |
static void updtime(void) |
180 |
{ |
181 |
gettimeofday(&tt, 0); |
182 |
|
183 |
curtime = (u_int)tt.tv_sec * (u_int)1000; |
184 |
curtime += (u_int)tt.tv_usec / (u_int)1000; |
185 |
|
186 |
if ((tt.tv_usec % 1000) >= 500) |
187 |
curtime++; |
188 |
} |
189 |
#endif |
190 |
|
191 |
int slirp_select_fill(int *pnfds, |
192 |
fd_set *readfds, fd_set *writefds, fd_set *xfds) |
193 |
{ |
194 |
struct socket *so, *so_next; |
195 |
int nfds; |
196 |
int timeout, tmp_time; |
197 |
|
198 |
/* fail safe */ |
199 |
global_readfds = NULL; |
200 |
global_writefds = NULL; |
201 |
global_xfds = NULL; |
202 |
|
203 |
nfds = *pnfds; |
204 |
/* |
205 |
* First, TCP sockets |
206 |
*/ |
207 |
do_slowtimo = 0; |
208 |
if (link_up) { |
209 |
/* |
210 |
* *_slowtimo needs calling if there are IP fragments |
211 |
* in the fragment queue, or there are TCP connections active |
212 |
*/ |
213 |
do_slowtimo = ((tcb.so_next != &tcb) || |
214 |
((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next)); |
215 |
|
216 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
217 |
so_next = so->so_next; |
218 |
|
219 |
/* |
220 |
* See if we need a tcp_fasttimo |
221 |
*/ |
222 |
if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) |
223 |
time_fasttimo = curtime; /* Flag when we want a fasttimo */ |
224 |
|
225 |
/* |
226 |
* NOFDREF can include still connecting to local-host, |
227 |
* newly socreated() sockets etc. Don't want to select these. |
228 |
*/ |
229 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
230 |
continue; |
231 |
|
232 |
/* |
233 |
* Set for reading sockets which are accepting |
234 |
*/ |
235 |
if (so->so_state & SS_FACCEPTCONN) { |
236 |
FD_SET(so->s, readfds); |
237 |
UPD_NFDS(so->s); |
238 |
continue; |
239 |
} |
240 |
|
241 |
/* |
242 |
* Set for writing sockets which are connecting |
243 |
*/ |
244 |
if (so->so_state & SS_ISFCONNECTING) { |
245 |
FD_SET(so->s, writefds); |
246 |
UPD_NFDS(so->s); |
247 |
continue; |
248 |
} |
249 |
|
250 |
/* |
251 |
* Set for writing if we are connected, can send more, and |
252 |
* we have something to send |
253 |
*/ |
254 |
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
255 |
FD_SET(so->s, writefds); |
256 |
UPD_NFDS(so->s); |
257 |
} |
258 |
|
259 |
/* |
260 |
* Set for reading (and urgent data) if we are connected, can |
261 |
* receive more, and we have room for it XXX /2 ? |
262 |
*/ |
263 |
if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { |
264 |
FD_SET(so->s, readfds); |
265 |
FD_SET(so->s, xfds); |
266 |
UPD_NFDS(so->s); |
267 |
} |
268 |
} |
269 |
|
270 |
/* |
271 |
* UDP sockets |
272 |
*/ |
273 |
for (so = udb.so_next; so != &udb; so = so_next) { |
274 |
so_next = so->so_next; |
275 |
|
276 |
/* |
277 |
* See if it's timed out |
278 |
*/ |
279 |
if (so->so_expire) { |
280 |
if (so->so_expire <= curtime) { |
281 |
udp_detach(so); |
282 |
continue; |
283 |
} else |
284 |
do_slowtimo = 1; /* Let socket expire */ |
285 |
} |
286 |
|
287 |
/* |
288 |
* When UDP packets are received from over the |
289 |
* link, they're sendto()'d straight away, so |
290 |
* no need for setting for writing |
291 |
* Limit the number of packets queued by this session |
292 |
* to 4. Note that even though we try and limit this |
293 |
* to 4 packets, the session could have more queued |
294 |
* if the packets needed to be fragmented |
295 |
* (XXX <= 4 ?) |
296 |
*/ |
297 |
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
298 |
FD_SET(so->s, readfds); |
299 |
UPD_NFDS(so->s); |
300 |
} |
301 |
} |
302 |
} |
303 |
|
304 |
/* |
305 |
* Setup timeout to use minimum CPU usage, especially when idle |
306 |
*/ |
307 |
|
308 |
timeout = -1; |
309 |
|
310 |
/* |
311 |
* If a slowtimo is needed, set timeout to 5ms from the last |
312 |
* slow timeout. If a fast timeout is needed, set timeout within |
313 |
* 2ms of when it was requested. |
314 |
*/ |
315 |
# define SLOW_TIMO 5 |
316 |
# define FAST_TIMO 2 |
317 |
if (do_slowtimo) { |
318 |
timeout = (SLOW_TIMO - (curtime - last_slowtimo)) * 1000; |
319 |
if (timeout < 0) |
320 |
timeout = 0; |
321 |
else if (timeout > (SLOW_TIMO * 1000)) |
322 |
timeout = SLOW_TIMO * 1000; |
323 |
|
324 |
/* Can only fasttimo if we also slowtimo */ |
325 |
if (time_fasttimo) { |
326 |
tmp_time = (FAST_TIMO - (curtime - time_fasttimo)) * 1000; |
327 |
if (tmp_time < 0) |
328 |
tmp_time = 0; |
329 |
|
330 |
/* Choose the smallest of the 2 */ |
331 |
if (tmp_time < timeout) |
332 |
timeout = tmp_time; |
333 |
} |
334 |
} |
335 |
*pnfds = nfds; |
336 |
|
337 |
/* |
338 |
* Adjust the timeout to make the minimum timeout |
339 |
* 2ms (XXX?) to lessen the CPU load |
340 |
*/ |
341 |
if (timeout < (FAST_TIMO * 1000)) |
342 |
timeout = FAST_TIMO * 1000; |
343 |
|
344 |
return timeout; |
345 |
} |
346 |
|
347 |
void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds) |
348 |
{ |
349 |
struct socket *so, *so_next; |
350 |
int ret; |
351 |
|
352 |
global_readfds = readfds; |
353 |
global_writefds = writefds; |
354 |
global_xfds = xfds; |
355 |
|
356 |
/* Update time */ |
357 |
updtime(); |
358 |
|
359 |
/* |
360 |
* See if anything has timed out |
361 |
*/ |
362 |
if (link_up) { |
363 |
if (time_fasttimo && ((curtime - time_fasttimo) >= FAST_TIMO)) { |
364 |
tcp_fasttimo(); |
365 |
time_fasttimo = 0; |
366 |
} |
367 |
if (do_slowtimo && ((curtime - last_slowtimo) >= SLOW_TIMO)) { |
368 |
ip_slowtimo(); |
369 |
tcp_slowtimo(); |
370 |
last_slowtimo = curtime; |
371 |
} |
372 |
} |
373 |
|
374 |
/* |
375 |
* Check sockets |
376 |
*/ |
377 |
if (link_up) { |
378 |
/* |
379 |
* Check TCP sockets |
380 |
*/ |
381 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
382 |
so_next = so->so_next; |
383 |
|
384 |
/* |
385 |
* FD_ISSET is meaningless on these sockets |
386 |
* (and they can crash the program) |
387 |
*/ |
388 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
389 |
continue; |
390 |
|
391 |
/* |
392 |
* Check for URG data |
393 |
* This will soread as well, so no need to |
394 |
* test for readfds below if this succeeds |
395 |
*/ |
396 |
if (FD_ISSET(so->s, xfds)) |
397 |
sorecvoob(so); |
398 |
/* |
399 |
* Check sockets for reading |
400 |
*/ |
401 |
else if (FD_ISSET(so->s, readfds)) { |
402 |
/* |
403 |
* Check for incoming connections |
404 |
*/ |
405 |
if (so->so_state & SS_FACCEPTCONN) { |
406 |
tcp_connect(so); |
407 |
continue; |
408 |
} /* else */ |
409 |
ret = soread(so); |
410 |
|
411 |
/* Output it if we read something */ |
412 |
if (ret > 0) |
413 |
tcp_output(sototcpcb(so)); |
414 |
} |
415 |
|
416 |
/* |
417 |
* Check sockets for writing |
418 |
*/ |
419 |
if (FD_ISSET(so->s, writefds)) { |
420 |
/* |
421 |
* Check for non-blocking, still-connecting sockets |
422 |
*/ |
423 |
if (so->so_state & SS_ISFCONNECTING) { |
424 |
/* Connected */ |
425 |
so->so_state &= ~SS_ISFCONNECTING; |
426 |
|
427 |
ret = send(so->s, &ret, 0, 0); |
428 |
if (ret < 0) { |
429 |
/* XXXXX Must fix, zero bytes is a NOP */ |
430 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
431 |
errno == EINPROGRESS || errno == ENOTCONN) |
432 |
continue; |
433 |
|
434 |
/* else failed */ |
435 |
so->so_state = SS_NOFDREF; |
436 |
} |
437 |
/* else so->so_state &= ~SS_ISFCONNECTING; */ |
438 |
|
439 |
/* |
440 |
* Continue tcp_input |
441 |
*/ |
442 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip), so); |
443 |
/* continue; */ |
444 |
} else |
445 |
ret = sowrite(so); |
446 |
/* |
447 |
* XXXXX If we wrote something (a lot), there |
448 |
* could be a need for a window update. |
449 |
* In the worst case, the remote will send |
450 |
* a window probe to get things going again |
451 |
*/ |
452 |
} |
453 |
|
454 |
/* |
455 |
* Probe a still-connecting, non-blocking socket |
456 |
* to check if it's still alive |
457 |
*/ |
458 |
#ifdef PROBE_CONN |
459 |
if (so->so_state & SS_ISFCONNECTING) { |
460 |
ret = recv(so->s, (char *)&ret, 0,0); |
461 |
|
462 |
if (ret < 0) { |
463 |
/* XXX */ |
464 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
465 |
errno == EINPROGRESS || errno == ENOTCONN) |
466 |
continue; /* Still connecting, continue */ |
467 |
|
468 |
/* else failed */ |
469 |
so->so_state = SS_NOFDREF; |
470 |
|
471 |
/* tcp_input will take care of it */ |
472 |
} else { |
473 |
ret = send(so->s, &ret, 0,0); |
474 |
if (ret < 0) { |
475 |
/* XXX */ |
476 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
477 |
errno == EINPROGRESS || errno == ENOTCONN) |
478 |
continue; |
479 |
/* else failed */ |
480 |
so->so_state = SS_NOFDREF; |
481 |
} else |
482 |
so->so_state &= ~SS_ISFCONNECTING; |
483 |
|
484 |
} |
485 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip),so); |
486 |
} /* SS_ISFCONNECTING */ |
487 |
#endif |
488 |
} |
489 |
|
490 |
/* |
491 |
* Now UDP sockets. |
492 |
* Incoming packets are sent straight away, they're not buffered. |
493 |
* Incoming UDP data isn't buffered either. |
494 |
*/ |
495 |
for (so = udb.so_next; so != &udb; so = so_next) { |
496 |
so_next = so->so_next; |
497 |
|
498 |
if (so->s != -1 && FD_ISSET(so->s, readfds)) { |
499 |
sorecvfrom(so); |
500 |
} |
501 |
} |
502 |
} |
503 |
|
504 |
/* |
505 |
* See if we can start outputting |
506 |
*/ |
507 |
if (if_queued && link_up) |
508 |
if_start(); |
509 |
|
510 |
/* clear global file descriptor sets. |
511 |
* these reside on the stack in vl.c |
512 |
* so they're unusable if we're not in |
513 |
* slirp_select_fill or slirp_select_poll. |
514 |
*/ |
515 |
global_readfds = NULL; |
516 |
global_writefds = NULL; |
517 |
global_xfds = NULL; |
518 |
} |
519 |
|
520 |
#define ETH_ALEN 6 |
521 |
#define ETH_HLEN 14 |
522 |
|
523 |
#define ETH_P_IP 0x0800 /* Internet Protocol packet */ |
524 |
#define ETH_P_ARP 0x0806 /* Address Resolution packet */ |
525 |
|
526 |
#define ARPOP_REQUEST 1 /* ARP request */ |
527 |
#define ARPOP_REPLY 2 /* ARP reply */ |
528 |
|
529 |
struct ethhdr |
530 |
{ |
531 |
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ |
532 |
unsigned char h_source[ETH_ALEN]; /* source ether addr */ |
533 |
unsigned short h_proto; /* packet type ID field */ |
534 |
}; |
535 |
|
536 |
struct arphdr |
537 |
{ |
538 |
unsigned short ar_hrd; /* format of hardware address */ |
539 |
unsigned short ar_pro; /* format of protocol address */ |
540 |
unsigned char ar_hln; /* length of hardware address */ |
541 |
unsigned char ar_pln; /* length of protocol address */ |
542 |
unsigned short ar_op; /* ARP opcode (command) */ |
543 |
|
544 |
/* |
545 |
* Ethernet looks like this : This bit is variable sized however... |
546 |
*/ |
547 |
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ |
548 |
unsigned char ar_sip[4]; /* sender IP address */ |
549 |
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ |
550 |
unsigned char ar_tip[4]; /* target IP address */ |
551 |
}; |
552 |
|
553 |
void arp_input(const uint8_t *pkt, int pkt_len) |
554 |
{ |
555 |
struct ethhdr *eh = (struct ethhdr *)pkt; |
556 |
struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); |
557 |
uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)]; |
558 |
struct ethhdr *reh = (struct ethhdr *)arp_reply; |
559 |
struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); |
560 |
int ar_op; |
561 |
struct ex_list *ex_ptr; |
562 |
|
563 |
ar_op = ntohs(ah->ar_op); |
564 |
switch(ar_op) { |
565 |
case ARPOP_REQUEST: |
566 |
if (!memcmp(ah->ar_tip, &special_addr, 3)) { |
567 |
if (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS) |
568 |
goto arp_ok; |
569 |
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
570 |
if (ex_ptr->ex_addr == ah->ar_tip[3]) |
571 |
goto arp_ok; |
572 |
} |
573 |
return; |
574 |
arp_ok: |
575 |
/* XXX: make an ARP request to have the client address */ |
576 |
memcpy(client_ethaddr, eh->h_source, ETH_ALEN); |
577 |
|
578 |
/* ARP request for alias/dns mac address */ |
579 |
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
580 |
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); |
581 |
reh->h_source[5] = ah->ar_tip[3]; |
582 |
reh->h_proto = htons(ETH_P_ARP); |
583 |
|
584 |
rah->ar_hrd = htons(1); |
585 |
rah->ar_pro = htons(ETH_P_IP); |
586 |
rah->ar_hln = ETH_ALEN; |
587 |
rah->ar_pln = 4; |
588 |
rah->ar_op = htons(ARPOP_REPLY); |
589 |
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
590 |
memcpy(rah->ar_sip, ah->ar_tip, 4); |
591 |
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
592 |
memcpy(rah->ar_tip, ah->ar_sip, 4); |
593 |
slirp_output(arp_reply, sizeof(arp_reply)); |
594 |
} |
595 |
break; |
596 |
default: |
597 |
break; |
598 |
} |
599 |
} |
600 |
|
601 |
void slirp_input(const uint8_t *pkt, int pkt_len) |
602 |
{ |
603 |
struct mbuf *m; |
604 |
int proto; |
605 |
|
606 |
if (pkt_len < ETH_HLEN) |
607 |
return; |
608 |
|
609 |
proto = (pkt[12] << 8) | pkt[13]; |
610 |
switch(proto) { |
611 |
case ETH_P_ARP: |
612 |
arp_input(pkt, pkt_len); |
613 |
break; |
614 |
case ETH_P_IP: |
615 |
m = m_get(); |
616 |
if (!m) |
617 |
return; |
618 |
/* Note: we add to align the IP header */ |
619 |
m->m_len = pkt_len + 2; |
620 |
memcpy(m->m_data + 2, pkt, pkt_len); |
621 |
|
622 |
m->m_data += 2 + ETH_HLEN; |
623 |
m->m_len -= 2 + ETH_HLEN; |
624 |
|
625 |
ip_input(m); |
626 |
break; |
627 |
default: |
628 |
break; |
629 |
} |
630 |
} |
631 |
|
632 |
/* output the IP packet to the ethernet device */ |
633 |
void if_encap(const uint8_t *ip_data, int ip_data_len) |
634 |
{ |
635 |
uint8_t buf[1600]; |
636 |
struct ethhdr *eh = (struct ethhdr *)buf; |
637 |
|
638 |
if (ip_data_len + ETH_HLEN > sizeof(buf)) |
639 |
return; |
640 |
|
641 |
memcpy(eh->h_dest, client_ethaddr, ETH_ALEN); |
642 |
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1); |
643 |
/* XXX: not correct */ |
644 |
eh->h_source[5] = CTL_ALIAS; |
645 |
eh->h_proto = htons(ETH_P_IP); |
646 |
memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len); |
647 |
slirp_output(buf, ip_data_len + ETH_HLEN); |
648 |
} |
649 |
|
650 |
int slirp_redir(int is_udp, int host_port, |
651 |
struct in_addr guest_addr, int guest_port) |
652 |
{ |
653 |
if (is_udp) { |
654 |
if (!udp_listen(htons(host_port), guest_addr.s_addr, |
655 |
htons(guest_port), 0)) |
656 |
return -1; |
657 |
} else { |
658 |
if (!solisten(htons(host_port), guest_addr.s_addr, |
659 |
htons(guest_port), 0)) |
660 |
return -1; |
661 |
} |
662 |
return 0; |
663 |
} |
664 |
|
665 |
int slirp_add_exec(int do_pty, const char *args, int addr_low_byte, |
666 |
int guest_port) |
667 |
{ |
668 |
return add_exec(&exec_list, do_pty, (char *)args, |
669 |
addr_low_byte, htons(guest_port)); |
670 |
} |