1 |
#include "slirp.h" |
2 |
|
3 |
/* host address */ |
4 |
struct in_addr our_addr; |
5 |
/* host dns address */ |
6 |
struct in_addr dns_addr; |
7 |
/* host loopback address */ |
8 |
struct in_addr loopback_addr; |
9 |
|
10 |
/* address for slirp virtual addresses */ |
11 |
struct in_addr special_addr; |
12 |
|
13 |
const uint8_t special_ethaddr[6] = { |
14 |
0x52, 0x54, 0x00, 0x12, 0x35, 0x00 |
15 |
}; |
16 |
|
17 |
uint8_t client_ethaddr[6]; |
18 |
|
19 |
int do_slowtimo; |
20 |
int link_up; |
21 |
struct timeval tt; |
22 |
FILE *lfd; |
23 |
struct ex_list *exec_list; |
24 |
|
25 |
/* XXX: suppress those select globals */ |
26 |
fd_set *global_readfds, *global_writefds, *global_xfds; |
27 |
|
28 |
#ifdef _WIN32 |
29 |
|
30 |
static int get_dns_addr(struct in_addr *pdns_addr) |
31 |
{ |
32 |
FIXED_INFO *FixedInfo=NULL; |
33 |
ULONG BufLen; |
34 |
DWORD ret; |
35 |
IP_ADDR_STRING *pIPAddr; |
36 |
struct in_addr tmp_addr; |
37 |
|
38 |
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
39 |
BufLen = sizeof(FIXED_INFO); |
40 |
|
41 |
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
42 |
if (FixedInfo) { |
43 |
GlobalFree(FixedInfo); |
44 |
FixedInfo = NULL; |
45 |
} |
46 |
FixedInfo = GlobalAlloc(GPTR, BufLen); |
47 |
} |
48 |
|
49 |
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
50 |
printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); |
51 |
if (FixedInfo) { |
52 |
GlobalFree(FixedInfo); |
53 |
FixedInfo = NULL; |
54 |
} |
55 |
return -1; |
56 |
} |
57 |
|
58 |
pIPAddr = &(FixedInfo->DnsServerList); |
59 |
inet_aton(pIPAddr->IpAddress.String, &tmp_addr); |
60 |
*pdns_addr = tmp_addr; |
61 |
#if 0 |
62 |
printf( "DNS Servers:\n" ); |
63 |
printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String ); |
64 |
|
65 |
pIPAddr = FixedInfo -> DnsServerList.Next; |
66 |
while ( pIPAddr ) { |
67 |
printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String ); |
68 |
pIPAddr = pIPAddr ->Next; |
69 |
} |
70 |
#endif |
71 |
if (FixedInfo) { |
72 |
GlobalFree(FixedInfo); |
73 |
FixedInfo = NULL; |
74 |
} |
75 |
return 0; |
76 |
} |
77 |
|
78 |
#else |
79 |
|
80 |
static int get_dns_addr(struct in_addr *pdns_addr) |
81 |
{ |
82 |
char buff[512]; |
83 |
char buff2[256]; |
84 |
FILE *f; |
85 |
int found = 0; |
86 |
struct in_addr tmp_addr; |
87 |
|
88 |
f = fopen("/etc/resolv.conf", "r"); |
89 |
if (!f) |
90 |
return -1; |
91 |
|
92 |
lprint("IP address of your DNS(s): "); |
93 |
while (fgets(buff, 512, f) != NULL) { |
94 |
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
95 |
if (!inet_aton(buff2, &tmp_addr)) |
96 |
continue; |
97 |
if (tmp_addr.s_addr == loopback_addr.s_addr) |
98 |
tmp_addr = our_addr; |
99 |
/* If it's the first one, set it to dns_addr */ |
100 |
if (!found) |
101 |
*pdns_addr = tmp_addr; |
102 |
else |
103 |
lprint(", "); |
104 |
if (++found > 3) { |
105 |
lprint("(more)"); |
106 |
break; |
107 |
} else |
108 |
lprint("%s", inet_ntoa(tmp_addr)); |
109 |
} |
110 |
} |
111 |
fclose(f); |
112 |
if (!found) |
113 |
return -1; |
114 |
return 0; |
115 |
} |
116 |
|
117 |
#endif |
118 |
|
119 |
#ifdef _WIN32 |
120 |
void slirp_cleanup(void) |
121 |
{ |
122 |
WSACleanup(); |
123 |
} |
124 |
#endif |
125 |
|
126 |
int slirp_init(void) |
127 |
{ |
128 |
// debug_init("/tmp/slirp.log", DEBUG_DEFAULT); |
129 |
|
130 |
#ifdef _WIN32 |
131 |
{ |
132 |
WSADATA Data; |
133 |
WSAStartup(MAKEWORD(2,0), &Data); |
134 |
atexit(slirp_cleanup); |
135 |
} |
136 |
#endif |
137 |
|
138 |
link_up = 1; |
139 |
|
140 |
if_init(); |
141 |
ip_init(); |
142 |
|
143 |
/* Initialise mbufs *after* setting the MTU */ |
144 |
m_init(); |
145 |
|
146 |
/* set default addresses */ |
147 |
getouraddr(); |
148 |
inet_aton("127.0.0.1", &loopback_addr); |
149 |
|
150 |
if (get_dns_addr(&dns_addr) < 0) |
151 |
return -1; |
152 |
|
153 |
inet_aton(CTL_SPECIAL, &special_addr); |
154 |
return 0; |
155 |
} |
156 |
|
157 |
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
158 |
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
159 |
#define UPD_NFDS(x) if (nfds < (x)) nfds = (x) |
160 |
|
161 |
/* |
162 |
* curtime kept to an accuracy of 1ms |
163 |
*/ |
164 |
#ifdef _WIN32 |
165 |
static void updtime(void) |
166 |
{ |
167 |
struct _timeb tb; |
168 |
|
169 |
_ftime(&tb); |
170 |
curtime = (u_int)tb.time * (u_int)1000; |
171 |
curtime += (u_int)tb.millitm; |
172 |
} |
173 |
#else |
174 |
static void updtime(void) |
175 |
{ |
176 |
gettimeofday(&tt, 0); |
177 |
|
178 |
curtime = (u_int)tt.tv_sec * (u_int)1000; |
179 |
curtime += (u_int)tt.tv_usec / (u_int)1000; |
180 |
|
181 |
if ((tt.tv_usec % 1000) >= 500) |
182 |
curtime++; |
183 |
} |
184 |
#endif |
185 |
|
186 |
void slirp_select_fill(int *pnfds, |
187 |
fd_set *readfds, fd_set *writefds, fd_set *xfds) |
188 |
{ |
189 |
struct socket *so, *so_next; |
190 |
struct timeval timeout; |
191 |
int nfds; |
192 |
int tmp_time; |
193 |
|
194 |
/* fail safe */ |
195 |
global_readfds = NULL; |
196 |
global_writefds = NULL; |
197 |
global_xfds = NULL; |
198 |
|
199 |
nfds = *pnfds; |
200 |
/* |
201 |
* First, TCP sockets |
202 |
*/ |
203 |
do_slowtimo = 0; |
204 |
if (link_up) { |
205 |
/* |
206 |
* *_slowtimo needs calling if there are IP fragments |
207 |
* in the fragment queue, or there are TCP connections active |
208 |
*/ |
209 |
do_slowtimo = ((tcb.so_next != &tcb) || |
210 |
((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next)); |
211 |
|
212 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
213 |
so_next = so->so_next; |
214 |
|
215 |
/* |
216 |
* See if we need a tcp_fasttimo |
217 |
*/ |
218 |
if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) |
219 |
time_fasttimo = curtime; /* Flag when we want a fasttimo */ |
220 |
|
221 |
/* |
222 |
* NOFDREF can include still connecting to local-host, |
223 |
* newly socreated() sockets etc. Don't want to select these. |
224 |
*/ |
225 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
226 |
continue; |
227 |
|
228 |
/* |
229 |
* Set for reading sockets which are accepting |
230 |
*/ |
231 |
if (so->so_state & SS_FACCEPTCONN) { |
232 |
FD_SET(so->s, readfds); |
233 |
UPD_NFDS(so->s); |
234 |
continue; |
235 |
} |
236 |
|
237 |
/* |
238 |
* Set for writing sockets which are connecting |
239 |
*/ |
240 |
if (so->so_state & SS_ISFCONNECTING) { |
241 |
FD_SET(so->s, writefds); |
242 |
UPD_NFDS(so->s); |
243 |
continue; |
244 |
} |
245 |
|
246 |
/* |
247 |
* Set for writing if we are connected, can send more, and |
248 |
* we have something to send |
249 |
*/ |
250 |
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
251 |
FD_SET(so->s, writefds); |
252 |
UPD_NFDS(so->s); |
253 |
} |
254 |
|
255 |
/* |
256 |
* Set for reading (and urgent data) if we are connected, can |
257 |
* receive more, and we have room for it XXX /2 ? |
258 |
*/ |
259 |
if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { |
260 |
FD_SET(so->s, readfds); |
261 |
FD_SET(so->s, xfds); |
262 |
UPD_NFDS(so->s); |
263 |
} |
264 |
} |
265 |
|
266 |
/* |
267 |
* UDP sockets |
268 |
*/ |
269 |
for (so = udb.so_next; so != &udb; so = so_next) { |
270 |
so_next = so->so_next; |
271 |
|
272 |
/* |
273 |
* See if it's timed out |
274 |
*/ |
275 |
if (so->so_expire) { |
276 |
if (so->so_expire <= curtime) { |
277 |
udp_detach(so); |
278 |
continue; |
279 |
} else |
280 |
do_slowtimo = 1; /* Let socket expire */ |
281 |
} |
282 |
|
283 |
/* |
284 |
* When UDP packets are received from over the |
285 |
* link, they're sendto()'d straight away, so |
286 |
* no need for setting for writing |
287 |
* Limit the number of packets queued by this session |
288 |
* to 4. Note that even though we try and limit this |
289 |
* to 4 packets, the session could have more queued |
290 |
* if the packets needed to be fragmented |
291 |
* (XXX <= 4 ?) |
292 |
*/ |
293 |
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
294 |
FD_SET(so->s, readfds); |
295 |
UPD_NFDS(so->s); |
296 |
} |
297 |
} |
298 |
} |
299 |
|
300 |
/* |
301 |
* Setup timeout to use minimum CPU usage, especially when idle |
302 |
*/ |
303 |
|
304 |
/* |
305 |
* First, see the timeout needed by *timo |
306 |
*/ |
307 |
timeout.tv_sec = 0; |
308 |
timeout.tv_usec = -1; |
309 |
/* |
310 |
* If a slowtimo is needed, set timeout to 500ms from the last |
311 |
* slow timeout. If a fast timeout is needed, set timeout within |
312 |
* 200ms of when it was requested. |
313 |
*/ |
314 |
if (do_slowtimo) { |
315 |
/* XXX + 10000 because some select()'s aren't that accurate */ |
316 |
timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000; |
317 |
if (timeout.tv_usec < 0) |
318 |
timeout.tv_usec = 0; |
319 |
else if (timeout.tv_usec > 510000) |
320 |
timeout.tv_usec = 510000; |
321 |
|
322 |
/* Can only fasttimo if we also slowtimo */ |
323 |
if (time_fasttimo) { |
324 |
tmp_time = (200 - (curtime - time_fasttimo)) * 1000; |
325 |
if (tmp_time < 0) |
326 |
tmp_time = 0; |
327 |
|
328 |
/* Choose the smallest of the 2 */ |
329 |
if (tmp_time < timeout.tv_usec) |
330 |
timeout.tv_usec = (u_int)tmp_time; |
331 |
} |
332 |
} |
333 |
*pnfds = nfds; |
334 |
} |
335 |
|
336 |
void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds) |
337 |
{ |
338 |
struct socket *so, *so_next; |
339 |
int ret; |
340 |
|
341 |
global_readfds = readfds; |
342 |
global_writefds = writefds; |
343 |
global_xfds = xfds; |
344 |
|
345 |
/* Update time */ |
346 |
updtime(); |
347 |
|
348 |
/* |
349 |
* See if anything has timed out |
350 |
*/ |
351 |
if (link_up) { |
352 |
if (time_fasttimo && ((curtime - time_fasttimo) >= 199)) { |
353 |
tcp_fasttimo(); |
354 |
time_fasttimo = 0; |
355 |
} |
356 |
if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) { |
357 |
ip_slowtimo(); |
358 |
tcp_slowtimo(); |
359 |
last_slowtimo = curtime; |
360 |
} |
361 |
} |
362 |
|
363 |
/* |
364 |
* Check sockets |
365 |
*/ |
366 |
if (link_up) { |
367 |
/* |
368 |
* Check TCP sockets |
369 |
*/ |
370 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
371 |
so_next = so->so_next; |
372 |
|
373 |
/* |
374 |
* FD_ISSET is meaningless on these sockets |
375 |
* (and they can crash the program) |
376 |
*/ |
377 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
378 |
continue; |
379 |
|
380 |
/* |
381 |
* Check for URG data |
382 |
* This will soread as well, so no need to |
383 |
* test for readfds below if this succeeds |
384 |
*/ |
385 |
if (FD_ISSET(so->s, xfds)) |
386 |
sorecvoob(so); |
387 |
/* |
388 |
* Check sockets for reading |
389 |
*/ |
390 |
else if (FD_ISSET(so->s, readfds)) { |
391 |
/* |
392 |
* Check for incoming connections |
393 |
*/ |
394 |
if (so->so_state & SS_FACCEPTCONN) { |
395 |
tcp_connect(so); |
396 |
continue; |
397 |
} /* else */ |
398 |
ret = soread(so); |
399 |
|
400 |
/* Output it if we read something */ |
401 |
if (ret > 0) |
402 |
tcp_output(sototcpcb(so)); |
403 |
} |
404 |
|
405 |
/* |
406 |
* Check sockets for writing |
407 |
*/ |
408 |
if (FD_ISSET(so->s, writefds)) { |
409 |
/* |
410 |
* Check for non-blocking, still-connecting sockets |
411 |
*/ |
412 |
if (so->so_state & SS_ISFCONNECTING) { |
413 |
/* Connected */ |
414 |
so->so_state &= ~SS_ISFCONNECTING; |
415 |
|
416 |
ret = send(so->s, &ret, 0, 0); |
417 |
if (ret < 0) { |
418 |
/* XXXXX Must fix, zero bytes is a NOP */ |
419 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
420 |
errno == EINPROGRESS || errno == ENOTCONN) |
421 |
continue; |
422 |
|
423 |
/* else failed */ |
424 |
so->so_state = SS_NOFDREF; |
425 |
} |
426 |
/* else so->so_state &= ~SS_ISFCONNECTING; */ |
427 |
|
428 |
/* |
429 |
* Continue tcp_input |
430 |
*/ |
431 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip), so); |
432 |
/* continue; */ |
433 |
} else |
434 |
ret = sowrite(so); |
435 |
/* |
436 |
* XXXXX If we wrote something (a lot), there |
437 |
* could be a need for a window update. |
438 |
* In the worst case, the remote will send |
439 |
* a window probe to get things going again |
440 |
*/ |
441 |
} |
442 |
|
443 |
/* |
444 |
* Probe a still-connecting, non-blocking socket |
445 |
* to check if it's still alive |
446 |
*/ |
447 |
#ifdef PROBE_CONN |
448 |
if (so->so_state & SS_ISFCONNECTING) { |
449 |
ret = recv(so->s, (char *)&ret, 0,0); |
450 |
|
451 |
if (ret < 0) { |
452 |
/* XXX */ |
453 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
454 |
errno == EINPROGRESS || errno == ENOTCONN) |
455 |
continue; /* Still connecting, continue */ |
456 |
|
457 |
/* else failed */ |
458 |
so->so_state = SS_NOFDREF; |
459 |
|
460 |
/* tcp_input will take care of it */ |
461 |
} else { |
462 |
ret = send(so->s, &ret, 0,0); |
463 |
if (ret < 0) { |
464 |
/* XXX */ |
465 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
466 |
errno == EINPROGRESS || errno == ENOTCONN) |
467 |
continue; |
468 |
/* else failed */ |
469 |
so->so_state = SS_NOFDREF; |
470 |
} else |
471 |
so->so_state &= ~SS_ISFCONNECTING; |
472 |
|
473 |
} |
474 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip),so); |
475 |
} /* SS_ISFCONNECTING */ |
476 |
#endif |
477 |
} |
478 |
|
479 |
/* |
480 |
* Now UDP sockets. |
481 |
* Incoming packets are sent straight away, they're not buffered. |
482 |
* Incoming UDP data isn't buffered either. |
483 |
*/ |
484 |
for (so = udb.so_next; so != &udb; so = so_next) { |
485 |
so_next = so->so_next; |
486 |
|
487 |
if (so->s != -1 && FD_ISSET(so->s, readfds)) { |
488 |
sorecvfrom(so); |
489 |
} |
490 |
} |
491 |
} |
492 |
|
493 |
/* |
494 |
* See if we can start outputting |
495 |
*/ |
496 |
if (if_queued && link_up) |
497 |
if_start(); |
498 |
|
499 |
/* clear global file descriptor sets. |
500 |
* these reside on the stack in vl.c |
501 |
* so they're unusable if we're not in |
502 |
* slirp_select_fill or slirp_select_poll. |
503 |
*/ |
504 |
global_readfds = NULL; |
505 |
global_writefds = NULL; |
506 |
global_xfds = NULL; |
507 |
} |
508 |
|
509 |
#define ETH_ALEN 6 |
510 |
#define ETH_HLEN 14 |
511 |
|
512 |
#define ETH_P_IP 0x0800 /* Internet Protocol packet */ |
513 |
#define ETH_P_ARP 0x0806 /* Address Resolution packet */ |
514 |
|
515 |
#define ARPOP_REQUEST 1 /* ARP request */ |
516 |
#define ARPOP_REPLY 2 /* ARP reply */ |
517 |
|
518 |
struct ethhdr |
519 |
{ |
520 |
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ |
521 |
unsigned char h_source[ETH_ALEN]; /* source ether addr */ |
522 |
unsigned short h_proto; /* packet type ID field */ |
523 |
}; |
524 |
|
525 |
struct arphdr |
526 |
{ |
527 |
unsigned short ar_hrd; /* format of hardware address */ |
528 |
unsigned short ar_pro; /* format of protocol address */ |
529 |
unsigned char ar_hln; /* length of hardware address */ |
530 |
unsigned char ar_pln; /* length of protocol address */ |
531 |
unsigned short ar_op; /* ARP opcode (command) */ |
532 |
|
533 |
/* |
534 |
* Ethernet looks like this : This bit is variable sized however... |
535 |
*/ |
536 |
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ |
537 |
unsigned char ar_sip[4]; /* sender IP address */ |
538 |
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ |
539 |
unsigned char ar_tip[4]; /* target IP address */ |
540 |
}; |
541 |
|
542 |
void arp_input(const uint8_t *pkt, int pkt_len) |
543 |
{ |
544 |
struct ethhdr *eh = (struct ethhdr *)pkt; |
545 |
struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); |
546 |
uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)]; |
547 |
struct ethhdr *reh = (struct ethhdr *)arp_reply; |
548 |
struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); |
549 |
int ar_op; |
550 |
struct ex_list *ex_ptr; |
551 |
|
552 |
ar_op = ntohs(ah->ar_op); |
553 |
switch(ar_op) { |
554 |
case ARPOP_REQUEST: |
555 |
if (!memcmp(ah->ar_tip, &special_addr, 3)) { |
556 |
if (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS) |
557 |
goto arp_ok; |
558 |
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
559 |
if (ex_ptr->ex_addr == ah->ar_tip[3]) |
560 |
goto arp_ok; |
561 |
} |
562 |
return; |
563 |
arp_ok: |
564 |
/* XXX: make an ARP request to have the client address */ |
565 |
memcpy(client_ethaddr, eh->h_source, ETH_ALEN); |
566 |
|
567 |
/* ARP request for alias/dns mac address */ |
568 |
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
569 |
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); |
570 |
reh->h_source[5] = ah->ar_tip[3]; |
571 |
reh->h_proto = htons(ETH_P_ARP); |
572 |
|
573 |
rah->ar_hrd = htons(1); |
574 |
rah->ar_pro = htons(ETH_P_IP); |
575 |
rah->ar_hln = ETH_ALEN; |
576 |
rah->ar_pln = 4; |
577 |
rah->ar_op = htons(ARPOP_REPLY); |
578 |
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
579 |
memcpy(rah->ar_sip, ah->ar_tip, 4); |
580 |
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
581 |
memcpy(rah->ar_tip, ah->ar_sip, 4); |
582 |
slirp_output(arp_reply, sizeof(arp_reply)); |
583 |
} |
584 |
break; |
585 |
default: |
586 |
break; |
587 |
} |
588 |
} |
589 |
|
590 |
void slirp_input(const uint8_t *pkt, int pkt_len) |
591 |
{ |
592 |
struct mbuf *m; |
593 |
int proto; |
594 |
|
595 |
if (pkt_len < ETH_HLEN) |
596 |
return; |
597 |
|
598 |
proto = ntohs(*(uint16_t *)(pkt + 12)); |
599 |
switch(proto) { |
600 |
case ETH_P_ARP: |
601 |
arp_input(pkt, pkt_len); |
602 |
break; |
603 |
case ETH_P_IP: |
604 |
m = m_get(); |
605 |
if (!m) |
606 |
return; |
607 |
m->m_len = pkt_len; |
608 |
memcpy(m->m_data, pkt, pkt_len); |
609 |
|
610 |
m->m_data += ETH_HLEN; |
611 |
m->m_len -= ETH_HLEN; |
612 |
|
613 |
ip_input(m); |
614 |
break; |
615 |
default: |
616 |
break; |
617 |
} |
618 |
} |
619 |
|
620 |
/* output the IP packet to the ethernet device */ |
621 |
void if_encap(const uint8_t *ip_data, int ip_data_len) |
622 |
{ |
623 |
uint8_t buf[1600]; |
624 |
struct ethhdr *eh = (struct ethhdr *)buf; |
625 |
|
626 |
if (ip_data_len + ETH_HLEN > sizeof(buf)) |
627 |
return; |
628 |
|
629 |
memcpy(eh->h_dest, client_ethaddr, ETH_ALEN); |
630 |
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1); |
631 |
/* XXX: not correct */ |
632 |
eh->h_source[5] = CTL_ALIAS; |
633 |
eh->h_proto = htons(ETH_P_IP); |
634 |
memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len); |
635 |
slirp_output(buf, ip_data_len + ETH_HLEN); |
636 |
} |
637 |
|
638 |
int slirp_redir(int is_udp, int host_port, |
639 |
struct in_addr guest_addr, int guest_port) |
640 |
{ |
641 |
if (is_udp) { |
642 |
if (!udp_listen(htons(host_port), guest_addr.s_addr, |
643 |
htons(guest_port), 0)) |
644 |
return -1; |
645 |
} else { |
646 |
if (!solisten(htons(host_port), guest_addr.s_addr, |
647 |
htons(guest_port), 0)) |
648 |
return -1; |
649 |
} |
650 |
return 0; |
651 |
} |
652 |
|
653 |
int slirp_add_exec(int do_pty, const char *args, int addr_low_byte, |
654 |
int guest_port) |
655 |
{ |
656 |
return add_exec(&exec_list, do_pty, (char *)args, |
657 |
addr_low_byte, htons(guest_port)); |
658 |
} |