1 |
#include "slirp.h" |
2 |
|
3 |
/* host address */ |
4 |
struct in_addr our_addr; |
5 |
/* host dns address */ |
6 |
struct in_addr dns_addr; |
7 |
/* host loopback address */ |
8 |
struct in_addr loopback_addr; |
9 |
|
10 |
/* address for slirp virtual addresses */ |
11 |
struct in_addr special_addr; |
12 |
|
13 |
const uint8_t special_ethaddr[6] = { |
14 |
0x52, 0x54, 0x00, 0x12, 0x35, 0x00 |
15 |
}; |
16 |
|
17 |
uint8_t client_ethaddr[6]; |
18 |
|
19 |
int do_slowtimo; |
20 |
int link_up; |
21 |
struct timeval tt; |
22 |
FILE *lfd; |
23 |
struct ex_list *exec_list; |
24 |
|
25 |
/* XXX: suppress those select globals */ |
26 |
fd_set *global_readfds, *global_writefds, *global_xfds; |
27 |
|
28 |
#ifdef _WIN32 |
29 |
|
30 |
static int get_dns_addr(struct in_addr *pdns_addr) |
31 |
{ |
32 |
FIXED_INFO *FixedInfo=NULL; |
33 |
ULONG BufLen; |
34 |
DWORD ret; |
35 |
IP_ADDR_STRING *pIPAddr; |
36 |
struct in_addr tmp_addr; |
37 |
|
38 |
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
39 |
BufLen = sizeof(FIXED_INFO); |
40 |
|
41 |
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
42 |
if (FixedInfo) { |
43 |
GlobalFree(FixedInfo); |
44 |
FixedInfo = NULL; |
45 |
} |
46 |
FixedInfo = GlobalAlloc(GPTR, BufLen); |
47 |
} |
48 |
|
49 |
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
50 |
printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); |
51 |
if (FixedInfo) { |
52 |
GlobalFree(FixedInfo); |
53 |
FixedInfo = NULL; |
54 |
} |
55 |
return -1; |
56 |
} |
57 |
|
58 |
pIPAddr = &(FixedInfo->DnsServerList); |
59 |
inet_aton(pIPAddr->IpAddress.String, &tmp_addr); |
60 |
*pdns_addr = tmp_addr; |
61 |
#if 0 |
62 |
printf( "DNS Servers:\n" ); |
63 |
printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String ); |
64 |
|
65 |
pIPAddr = FixedInfo -> DnsServerList.Next; |
66 |
while ( pIPAddr ) { |
67 |
printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String ); |
68 |
pIPAddr = pIPAddr ->Next; |
69 |
} |
70 |
#endif |
71 |
if (FixedInfo) { |
72 |
GlobalFree(FixedInfo); |
73 |
FixedInfo = NULL; |
74 |
} |
75 |
return 0; |
76 |
} |
77 |
|
78 |
#else |
79 |
|
80 |
static int get_dns_addr(struct in_addr *pdns_addr) |
81 |
{ |
82 |
char buff[512]; |
83 |
char buff2[256]; |
84 |
FILE *f; |
85 |
int found = 0; |
86 |
struct in_addr tmp_addr; |
87 |
|
88 |
f = fopen("/etc/resolv.conf", "r"); |
89 |
if (!f) |
90 |
return -1; |
91 |
|
92 |
lprint("IP address of your DNS(s): "); |
93 |
while (fgets(buff, 512, f) != NULL) { |
94 |
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
95 |
if (!inet_aton(buff2, &tmp_addr)) |
96 |
continue; |
97 |
if (tmp_addr.s_addr == loopback_addr.s_addr) |
98 |
tmp_addr = our_addr; |
99 |
/* If it's the first one, set it to dns_addr */ |
100 |
if (!found) |
101 |
*pdns_addr = tmp_addr; |
102 |
else |
103 |
lprint(", "); |
104 |
if (++found > 3) { |
105 |
lprint("(more)"); |
106 |
break; |
107 |
} else |
108 |
lprint("%s", inet_ntoa(tmp_addr)); |
109 |
} |
110 |
} |
111 |
fclose(f); |
112 |
if (!found) |
113 |
return -1; |
114 |
return 0; |
115 |
} |
116 |
|
117 |
#endif |
118 |
|
119 |
#ifdef _WIN32 |
120 |
void slirp_cleanup(void) |
121 |
{ |
122 |
WSACleanup(); |
123 |
} |
124 |
#endif |
125 |
|
126 |
int slirp_init(void) |
127 |
{ |
128 |
// debug_init("/tmp/slirp.log", DEBUG_DEFAULT); |
129 |
|
130 |
#ifdef _WIN32 |
131 |
{ |
132 |
WSADATA Data; |
133 |
WSAStartup(MAKEWORD(2,0), &Data); |
134 |
atexit(slirp_cleanup); |
135 |
} |
136 |
#endif |
137 |
|
138 |
link_up = 1; |
139 |
|
140 |
if_init(); |
141 |
ip_init(); |
142 |
|
143 |
/* Initialise mbufs *after* setting the MTU */ |
144 |
m_init(); |
145 |
|
146 |
/* set default addresses */ |
147 |
getouraddr(); |
148 |
inet_aton("127.0.0.1", &loopback_addr); |
149 |
|
150 |
if (get_dns_addr(&dns_addr) < 0) |
151 |
return -1; |
152 |
|
153 |
inet_aton(CTL_SPECIAL, &special_addr); |
154 |
return 0; |
155 |
} |
156 |
|
157 |
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
158 |
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
159 |
#define UPD_NFDS(x) if (nfds < (x)) nfds = (x) |
160 |
|
161 |
/* |
162 |
* curtime kept to an accuracy of 1ms |
163 |
*/ |
164 |
#ifdef _WIN32 |
165 |
static void updtime(void) |
166 |
{ |
167 |
struct _timeb tb; |
168 |
|
169 |
_ftime(&tb); |
170 |
curtime = (u_int)tb.time * (u_int)1000; |
171 |
curtime += (u_int)tb.millitm; |
172 |
} |
173 |
#else |
174 |
static void updtime(void) |
175 |
{ |
176 |
gettimeofday(&tt, 0); |
177 |
|
178 |
curtime = (u_int)tt.tv_sec * (u_int)1000; |
179 |
curtime += (u_int)tt.tv_usec / (u_int)1000; |
180 |
|
181 |
if ((tt.tv_usec % 1000) >= 500) |
182 |
curtime++; |
183 |
} |
184 |
#endif |
185 |
|
186 |
int slirp_select_fill(int *pnfds, |
187 |
fd_set *readfds, fd_set *writefds, fd_set *xfds) |
188 |
{ |
189 |
struct socket *so, *so_next; |
190 |
int nfds; |
191 |
int timeout, tmp_time; |
192 |
|
193 |
/* fail safe */ |
194 |
global_readfds = NULL; |
195 |
global_writefds = NULL; |
196 |
global_xfds = NULL; |
197 |
|
198 |
nfds = *pnfds; |
199 |
/* |
200 |
* First, TCP sockets |
201 |
*/ |
202 |
do_slowtimo = 0; |
203 |
if (link_up) { |
204 |
/* |
205 |
* *_slowtimo needs calling if there are IP fragments |
206 |
* in the fragment queue, or there are TCP connections active |
207 |
*/ |
208 |
do_slowtimo = ((tcb.so_next != &tcb) || |
209 |
((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next)); |
210 |
|
211 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
212 |
so_next = so->so_next; |
213 |
|
214 |
/* |
215 |
* See if we need a tcp_fasttimo |
216 |
*/ |
217 |
if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) |
218 |
time_fasttimo = curtime; /* Flag when we want a fasttimo */ |
219 |
|
220 |
/* |
221 |
* NOFDREF can include still connecting to local-host, |
222 |
* newly socreated() sockets etc. Don't want to select these. |
223 |
*/ |
224 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
225 |
continue; |
226 |
|
227 |
/* |
228 |
* Set for reading sockets which are accepting |
229 |
*/ |
230 |
if (so->so_state & SS_FACCEPTCONN) { |
231 |
FD_SET(so->s, readfds); |
232 |
UPD_NFDS(so->s); |
233 |
continue; |
234 |
} |
235 |
|
236 |
/* |
237 |
* Set for writing sockets which are connecting |
238 |
*/ |
239 |
if (so->so_state & SS_ISFCONNECTING) { |
240 |
FD_SET(so->s, writefds); |
241 |
UPD_NFDS(so->s); |
242 |
continue; |
243 |
} |
244 |
|
245 |
/* |
246 |
* Set for writing if we are connected, can send more, and |
247 |
* we have something to send |
248 |
*/ |
249 |
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
250 |
FD_SET(so->s, writefds); |
251 |
UPD_NFDS(so->s); |
252 |
} |
253 |
|
254 |
/* |
255 |
* Set for reading (and urgent data) if we are connected, can |
256 |
* receive more, and we have room for it XXX /2 ? |
257 |
*/ |
258 |
if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { |
259 |
FD_SET(so->s, readfds); |
260 |
FD_SET(so->s, xfds); |
261 |
UPD_NFDS(so->s); |
262 |
} |
263 |
} |
264 |
|
265 |
/* |
266 |
* UDP sockets |
267 |
*/ |
268 |
for (so = udb.so_next; so != &udb; so = so_next) { |
269 |
so_next = so->so_next; |
270 |
|
271 |
/* |
272 |
* See if it's timed out |
273 |
*/ |
274 |
if (so->so_expire) { |
275 |
if (so->so_expire <= curtime) { |
276 |
udp_detach(so); |
277 |
continue; |
278 |
} else |
279 |
do_slowtimo = 1; /* Let socket expire */ |
280 |
} |
281 |
|
282 |
/* |
283 |
* When UDP packets are received from over the |
284 |
* link, they're sendto()'d straight away, so |
285 |
* no need for setting for writing |
286 |
* Limit the number of packets queued by this session |
287 |
* to 4. Note that even though we try and limit this |
288 |
* to 4 packets, the session could have more queued |
289 |
* if the packets needed to be fragmented |
290 |
* (XXX <= 4 ?) |
291 |
*/ |
292 |
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
293 |
FD_SET(so->s, readfds); |
294 |
UPD_NFDS(so->s); |
295 |
} |
296 |
} |
297 |
} |
298 |
|
299 |
/* |
300 |
* Setup timeout to use minimum CPU usage, especially when idle |
301 |
*/ |
302 |
|
303 |
timeout = -1; |
304 |
|
305 |
/* |
306 |
* If a slowtimo is needed, set timeout to 5ms from the last |
307 |
* slow timeout. If a fast timeout is needed, set timeout within |
308 |
* 2ms of when it was requested. |
309 |
*/ |
310 |
# define SLOW_TIMO 5 |
311 |
# define FAST_TIMO 2 |
312 |
if (do_slowtimo) { |
313 |
timeout = (SLOW_TIMO - (curtime - last_slowtimo)) * 1000; |
314 |
if (timeout < 0) |
315 |
timeout = 0; |
316 |
else if (timeout > (SLOW_TIMO * 1000)) |
317 |
timeout = SLOW_TIMO * 1000; |
318 |
|
319 |
/* Can only fasttimo if we also slowtimo */ |
320 |
if (time_fasttimo) { |
321 |
tmp_time = (FAST_TIMO - (curtime - time_fasttimo)) * 1000; |
322 |
if (tmp_time < 0) |
323 |
tmp_time = 0; |
324 |
|
325 |
/* Choose the smallest of the 2 */ |
326 |
if (tmp_time < timeout) |
327 |
timeout = tmp_time; |
328 |
} |
329 |
} |
330 |
*pnfds = nfds; |
331 |
|
332 |
/* |
333 |
* Adjust the timeout to make the minimum timeout |
334 |
* 2ms (XXX?) to lessen the CPU load |
335 |
*/ |
336 |
if (timeout < (FAST_TIMO * 1000)) |
337 |
timeout = FAST_TIMO * 1000; |
338 |
|
339 |
return timeout; |
340 |
} |
341 |
|
342 |
void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds) |
343 |
{ |
344 |
struct socket *so, *so_next; |
345 |
int ret; |
346 |
|
347 |
global_readfds = readfds; |
348 |
global_writefds = writefds; |
349 |
global_xfds = xfds; |
350 |
|
351 |
/* Update time */ |
352 |
updtime(); |
353 |
|
354 |
/* |
355 |
* See if anything has timed out |
356 |
*/ |
357 |
if (link_up) { |
358 |
if (time_fasttimo && ((curtime - time_fasttimo) >= FAST_TIMO)) { |
359 |
tcp_fasttimo(); |
360 |
time_fasttimo = 0; |
361 |
} |
362 |
if (do_slowtimo && ((curtime - last_slowtimo) >= SLOW_TIMO)) { |
363 |
ip_slowtimo(); |
364 |
tcp_slowtimo(); |
365 |
last_slowtimo = curtime; |
366 |
} |
367 |
} |
368 |
|
369 |
/* |
370 |
* Check sockets |
371 |
*/ |
372 |
if (link_up) { |
373 |
/* |
374 |
* Check TCP sockets |
375 |
*/ |
376 |
for (so = tcb.so_next; so != &tcb; so = so_next) { |
377 |
so_next = so->so_next; |
378 |
|
379 |
/* |
380 |
* FD_ISSET is meaningless on these sockets |
381 |
* (and they can crash the program) |
382 |
*/ |
383 |
if (so->so_state & SS_NOFDREF || so->s == -1) |
384 |
continue; |
385 |
|
386 |
/* |
387 |
* Check for URG data |
388 |
* This will soread as well, so no need to |
389 |
* test for readfds below if this succeeds |
390 |
*/ |
391 |
if (FD_ISSET(so->s, xfds)) |
392 |
sorecvoob(so); |
393 |
/* |
394 |
* Check sockets for reading |
395 |
*/ |
396 |
else if (FD_ISSET(so->s, readfds)) { |
397 |
/* |
398 |
* Check for incoming connections |
399 |
*/ |
400 |
if (so->so_state & SS_FACCEPTCONN) { |
401 |
tcp_connect(so); |
402 |
continue; |
403 |
} /* else */ |
404 |
ret = soread(so); |
405 |
|
406 |
/* Output it if we read something */ |
407 |
if (ret > 0) |
408 |
tcp_output(sototcpcb(so)); |
409 |
} |
410 |
|
411 |
/* |
412 |
* Check sockets for writing |
413 |
*/ |
414 |
if (FD_ISSET(so->s, writefds)) { |
415 |
/* |
416 |
* Check for non-blocking, still-connecting sockets |
417 |
*/ |
418 |
if (so->so_state & SS_ISFCONNECTING) { |
419 |
/* Connected */ |
420 |
so->so_state &= ~SS_ISFCONNECTING; |
421 |
|
422 |
ret = send(so->s, &ret, 0, 0); |
423 |
if (ret < 0) { |
424 |
/* XXXXX Must fix, zero bytes is a NOP */ |
425 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
426 |
errno == EINPROGRESS || errno == ENOTCONN) |
427 |
continue; |
428 |
|
429 |
/* else failed */ |
430 |
so->so_state = SS_NOFDREF; |
431 |
} |
432 |
/* else so->so_state &= ~SS_ISFCONNECTING; */ |
433 |
|
434 |
/* |
435 |
* Continue tcp_input |
436 |
*/ |
437 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip), so); |
438 |
/* continue; */ |
439 |
} else |
440 |
ret = sowrite(so); |
441 |
/* |
442 |
* XXXXX If we wrote something (a lot), there |
443 |
* could be a need for a window update. |
444 |
* In the worst case, the remote will send |
445 |
* a window probe to get things going again |
446 |
*/ |
447 |
} |
448 |
|
449 |
/* |
450 |
* Probe a still-connecting, non-blocking socket |
451 |
* to check if it's still alive |
452 |
*/ |
453 |
#ifdef PROBE_CONN |
454 |
if (so->so_state & SS_ISFCONNECTING) { |
455 |
ret = recv(so->s, (char *)&ret, 0,0); |
456 |
|
457 |
if (ret < 0) { |
458 |
/* XXX */ |
459 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
460 |
errno == EINPROGRESS || errno == ENOTCONN) |
461 |
continue; /* Still connecting, continue */ |
462 |
|
463 |
/* else failed */ |
464 |
so->so_state = SS_NOFDREF; |
465 |
|
466 |
/* tcp_input will take care of it */ |
467 |
} else { |
468 |
ret = send(so->s, &ret, 0,0); |
469 |
if (ret < 0) { |
470 |
/* XXX */ |
471 |
if (errno == EAGAIN || errno == EWOULDBLOCK || |
472 |
errno == EINPROGRESS || errno == ENOTCONN) |
473 |
continue; |
474 |
/* else failed */ |
475 |
so->so_state = SS_NOFDREF; |
476 |
} else |
477 |
so->so_state &= ~SS_ISFCONNECTING; |
478 |
|
479 |
} |
480 |
tcp_input((struct mbuf *)NULL, sizeof(struct ip),so); |
481 |
} /* SS_ISFCONNECTING */ |
482 |
#endif |
483 |
} |
484 |
|
485 |
/* |
486 |
* Now UDP sockets. |
487 |
* Incoming packets are sent straight away, they're not buffered. |
488 |
* Incoming UDP data isn't buffered either. |
489 |
*/ |
490 |
for (so = udb.so_next; so != &udb; so = so_next) { |
491 |
so_next = so->so_next; |
492 |
|
493 |
if (so->s != -1 && FD_ISSET(so->s, readfds)) { |
494 |
sorecvfrom(so); |
495 |
} |
496 |
} |
497 |
} |
498 |
|
499 |
/* |
500 |
* See if we can start outputting |
501 |
*/ |
502 |
if (if_queued && link_up) |
503 |
if_start(); |
504 |
|
505 |
/* clear global file descriptor sets. |
506 |
* these reside on the stack in vl.c |
507 |
* so they're unusable if we're not in |
508 |
* slirp_select_fill or slirp_select_poll. |
509 |
*/ |
510 |
global_readfds = NULL; |
511 |
global_writefds = NULL; |
512 |
global_xfds = NULL; |
513 |
} |
514 |
|
515 |
#define ETH_ALEN 6 |
516 |
#define ETH_HLEN 14 |
517 |
|
518 |
#define ETH_P_IP 0x0800 /* Internet Protocol packet */ |
519 |
#define ETH_P_ARP 0x0806 /* Address Resolution packet */ |
520 |
|
521 |
#define ARPOP_REQUEST 1 /* ARP request */ |
522 |
#define ARPOP_REPLY 2 /* ARP reply */ |
523 |
|
524 |
struct ethhdr |
525 |
{ |
526 |
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ |
527 |
unsigned char h_source[ETH_ALEN]; /* source ether addr */ |
528 |
unsigned short h_proto; /* packet type ID field */ |
529 |
}; |
530 |
|
531 |
struct arphdr |
532 |
{ |
533 |
unsigned short ar_hrd; /* format of hardware address */ |
534 |
unsigned short ar_pro; /* format of protocol address */ |
535 |
unsigned char ar_hln; /* length of hardware address */ |
536 |
unsigned char ar_pln; /* length of protocol address */ |
537 |
unsigned short ar_op; /* ARP opcode (command) */ |
538 |
|
539 |
/* |
540 |
* Ethernet looks like this : This bit is variable sized however... |
541 |
*/ |
542 |
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ |
543 |
unsigned char ar_sip[4]; /* sender IP address */ |
544 |
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ |
545 |
unsigned char ar_tip[4]; /* target IP address */ |
546 |
}; |
547 |
|
548 |
void arp_input(const uint8_t *pkt, int pkt_len) |
549 |
{ |
550 |
struct ethhdr *eh = (struct ethhdr *)pkt; |
551 |
struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); |
552 |
uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)]; |
553 |
struct ethhdr *reh = (struct ethhdr *)arp_reply; |
554 |
struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); |
555 |
int ar_op; |
556 |
struct ex_list *ex_ptr; |
557 |
|
558 |
ar_op = ntohs(ah->ar_op); |
559 |
switch(ar_op) { |
560 |
case ARPOP_REQUEST: |
561 |
if (!memcmp(ah->ar_tip, &special_addr, 3)) { |
562 |
if (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS) |
563 |
goto arp_ok; |
564 |
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
565 |
if (ex_ptr->ex_addr == ah->ar_tip[3]) |
566 |
goto arp_ok; |
567 |
} |
568 |
return; |
569 |
arp_ok: |
570 |
/* XXX: make an ARP request to have the client address */ |
571 |
memcpy(client_ethaddr, eh->h_source, ETH_ALEN); |
572 |
|
573 |
/* ARP request for alias/dns mac address */ |
574 |
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
575 |
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); |
576 |
reh->h_source[5] = ah->ar_tip[3]; |
577 |
reh->h_proto = htons(ETH_P_ARP); |
578 |
|
579 |
rah->ar_hrd = htons(1); |
580 |
rah->ar_pro = htons(ETH_P_IP); |
581 |
rah->ar_hln = ETH_ALEN; |
582 |
rah->ar_pln = 4; |
583 |
rah->ar_op = htons(ARPOP_REPLY); |
584 |
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
585 |
memcpy(rah->ar_sip, ah->ar_tip, 4); |
586 |
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
587 |
memcpy(rah->ar_tip, ah->ar_sip, 4); |
588 |
slirp_output(arp_reply, sizeof(arp_reply)); |
589 |
} |
590 |
break; |
591 |
default: |
592 |
break; |
593 |
} |
594 |
} |
595 |
|
596 |
void slirp_input(const uint8_t *pkt, int pkt_len) |
597 |
{ |
598 |
struct mbuf *m; |
599 |
int proto; |
600 |
|
601 |
if (pkt_len < ETH_HLEN) |
602 |
return; |
603 |
|
604 |
proto = (pkt[12] << 8) | pkt[13]; |
605 |
switch(proto) { |
606 |
case ETH_P_ARP: |
607 |
arp_input(pkt, pkt_len); |
608 |
break; |
609 |
case ETH_P_IP: |
610 |
m = m_get(); |
611 |
if (!m) |
612 |
return; |
613 |
/* Note: we add to align the IP header */ |
614 |
m->m_len = pkt_len + 2; |
615 |
memcpy(m->m_data + 2, pkt, pkt_len); |
616 |
|
617 |
m->m_data += 2 + ETH_HLEN; |
618 |
m->m_len -= 2 + ETH_HLEN; |
619 |
|
620 |
ip_input(m); |
621 |
break; |
622 |
default: |
623 |
break; |
624 |
} |
625 |
} |
626 |
|
627 |
/* output the IP packet to the ethernet device */ |
628 |
void if_encap(const uint8_t *ip_data, int ip_data_len) |
629 |
{ |
630 |
uint8_t buf[1600]; |
631 |
struct ethhdr *eh = (struct ethhdr *)buf; |
632 |
|
633 |
if (ip_data_len + ETH_HLEN > sizeof(buf)) |
634 |
return; |
635 |
|
636 |
memcpy(eh->h_dest, client_ethaddr, ETH_ALEN); |
637 |
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1); |
638 |
/* XXX: not correct */ |
639 |
eh->h_source[5] = CTL_ALIAS; |
640 |
eh->h_proto = htons(ETH_P_IP); |
641 |
memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len); |
642 |
slirp_output(buf, ip_data_len + ETH_HLEN); |
643 |
} |
644 |
|
645 |
int slirp_redir(int is_udp, int host_port, |
646 |
struct in_addr guest_addr, int guest_port) |
647 |
{ |
648 |
if (is_udp) { |
649 |
if (!udp_listen(htons(host_port), guest_addr.s_addr, |
650 |
htons(guest_port), 0)) |
651 |
return -1; |
652 |
} else { |
653 |
if (!solisten(htons(host_port), guest_addr.s_addr, |
654 |
htons(guest_port), 0)) |
655 |
return -1; |
656 |
} |
657 |
return 0; |
658 |
} |
659 |
|
660 |
int slirp_add_exec(int do_pty, const char *args, int addr_low_byte, |
661 |
int guest_port) |
662 |
{ |
663 |
return add_exec(&exec_list, do_pty, (char *)args, |
664 |
addr_low_byte, htons(guest_port)); |
665 |
} |