1 |
/* |
2 |
* video_vosf.h - Video/graphics emulation, video on SEGV signals support |
3 |
* |
4 |
* Basilisk II (C) 1997-2005 Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#ifndef VIDEO_VOSF_H |
22 |
#define VIDEO_VOSF_H |
23 |
|
24 |
// Note: this file must be #include'd only in video_x.cpp |
25 |
#ifdef ENABLE_VOSF |
26 |
|
27 |
#include "sigsegv.h" |
28 |
#include "vm_alloc.h" |
29 |
#ifdef _WIN32 |
30 |
#include "util_windows.h" |
31 |
#endif |
32 |
|
33 |
// Glue for SDL and X11 support |
34 |
#ifdef USE_SDL_VIDEO |
35 |
#define MONITOR_INIT SDL_monitor_desc &monitor |
36 |
#define VIDEO_DRV_WIN_INIT driver_window *drv |
37 |
#define VIDEO_DRV_DGA_INIT driver_fullscreen *drv |
38 |
#define VIDEO_DRV_LOCK_PIXELS if (SDL_MUSTLOCK(drv->s)) SDL_LockSurface(drv->s) |
39 |
#define VIDEO_DRV_UNLOCK_PIXELS if (SDL_MUSTLOCK(drv->s)) SDL_UnlockSurface(drv->s) |
40 |
#define VIDEO_DRV_DEPTH drv->s->format->BitsPerPixel |
41 |
#define VIDEO_DRV_WIDTH drv->s->w |
42 |
#define VIDEO_DRV_HEIGHT drv->s->h |
43 |
#define VIDEO_DRV_ROW_BYTES drv->s->pitch |
44 |
#else |
45 |
#ifdef SHEEPSHAVER |
46 |
#define MONITOR_INIT /* nothing */ |
47 |
#define VIDEO_DRV_WIN_INIT /* nothing */ |
48 |
#define VIDEO_DRV_DGA_INIT /* nothing */ |
49 |
#define VIDEO_DRV_WINDOW the_win |
50 |
#define VIDEO_DRV_GC the_gc |
51 |
#define VIDEO_DRV_IMAGE img |
52 |
#define VIDEO_DRV_HAVE_SHM have_shm |
53 |
#else |
54 |
#define MONITOR_INIT X11_monitor_desc &monitor |
55 |
#define VIDEO_DRV_WIN_INIT driver_window *drv |
56 |
#define VIDEO_DRV_DGA_INIT driver_dga *drv |
57 |
#define VIDEO_DRV_WINDOW drv->w |
58 |
#define VIDEO_DRV_GC drv->gc |
59 |
#define VIDEO_DRV_IMAGE drv->img |
60 |
#define VIDEO_DRV_HAVE_SHM drv->have_shm |
61 |
#endif |
62 |
#define VIDEO_DRV_LOCK_PIXELS /* nothing */ |
63 |
#define VIDEO_DRV_UNLOCK_PIXELS /* nothing */ |
64 |
#define VIDEO_DRV_DEPTH VIDEO_DRV_IMAGE->depth |
65 |
#define VIDEO_DRV_WIDTH VIDEO_DRV_IMAGE->width |
66 |
#define VIDEO_DRV_HEIGHT VIDEO_DRV_IMAGE->height |
67 |
#define VIDEO_DRV_ROW_BYTES VIDEO_DRV_IMAGE->bytes_per_line |
68 |
#endif |
69 |
|
70 |
// Variables for Video on SEGV support |
71 |
static uint8 *the_host_buffer; // Host frame buffer in VOSF mode |
72 |
|
73 |
struct ScreenPageInfo { |
74 |
int top, bottom; // Mapping between this virtual page and Mac scanlines |
75 |
}; |
76 |
|
77 |
struct ScreenInfo { |
78 |
uintptr memStart; // Start address aligned to page boundary |
79 |
uint32 memLength; // Length of the memory addressed by the screen pages |
80 |
|
81 |
uintptr pageSize; // Size of a page |
82 |
int pageBits; // Shift count to get the page number |
83 |
uint32 pageCount; // Number of pages allocated to the screen |
84 |
|
85 |
bool dirty; // Flag: set if the frame buffer was touched |
86 |
bool very_dirty; // Flag: set if the frame buffer was completely modified (e.g. colormap changes) |
87 |
char * dirtyPages; // Table of flags set if page was altered |
88 |
ScreenPageInfo * pageInfo; // Table of mappings page -> Mac scanlines |
89 |
}; |
90 |
|
91 |
static ScreenInfo mainBuffer; |
92 |
|
93 |
#define PFLAG_SET_VALUE 0x00 |
94 |
#define PFLAG_CLEAR_VALUE 0x01 |
95 |
#define PFLAG_SET_VALUE_4 0x00000000 |
96 |
#define PFLAG_CLEAR_VALUE_4 0x01010101 |
97 |
#define PFLAG_SET(page) mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE |
98 |
#define PFLAG_CLEAR(page) mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE |
99 |
#define PFLAG_ISSET(page) (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE) |
100 |
#define PFLAG_ISCLEAR(page) (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE) |
101 |
|
102 |
#ifdef UNALIGNED_PROFITABLE |
103 |
# define PFLAG_ISSET_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4) |
104 |
# define PFLAG_ISCLEAR_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4) |
105 |
#else |
106 |
# define PFLAG_ISSET_4(page) \ |
107 |
PFLAG_ISSET(page ) && PFLAG_ISSET(page+1) \ |
108 |
&& PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3) |
109 |
# define PFLAG_ISCLEAR_4(page) \ |
110 |
PFLAG_ISCLEAR(page ) && PFLAG_ISCLEAR(page+1) \ |
111 |
&& PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3) |
112 |
#endif |
113 |
|
114 |
// Set the selected page range [ first_page, last_page [ into the SET state |
115 |
#define PFLAG_SET_RANGE(first_page, last_page) \ |
116 |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \ |
117 |
(last_page) - (first_page)) |
118 |
|
119 |
// Set the selected page range [ first_page, last_page [ into the CLEAR state |
120 |
#define PFLAG_CLEAR_RANGE(first_page, last_page) \ |
121 |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \ |
122 |
(last_page) - (first_page)) |
123 |
|
124 |
#define PFLAG_SET_ALL do { \ |
125 |
PFLAG_SET_RANGE(0, mainBuffer.pageCount); \ |
126 |
mainBuffer.dirty = true; \ |
127 |
} while (0) |
128 |
|
129 |
#define PFLAG_CLEAR_ALL do { \ |
130 |
PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \ |
131 |
mainBuffer.dirty = false; \ |
132 |
mainBuffer.very_dirty = false; \ |
133 |
} while (0) |
134 |
|
135 |
#define PFLAG_SET_VERY_DIRTY do { \ |
136 |
mainBuffer.very_dirty = true; \ |
137 |
} while (0) |
138 |
|
139 |
// Set the following macro definition to 1 if your system |
140 |
// provides a really fast strchr() implementation |
141 |
//#define HAVE_FAST_STRCHR 0 |
142 |
|
143 |
static inline int find_next_page_set(int page) |
144 |
{ |
145 |
#if HAVE_FAST_STRCHR |
146 |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE); |
147 |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
148 |
#else |
149 |
while (PFLAG_ISCLEAR_4(page)) |
150 |
page += 4; |
151 |
while (PFLAG_ISCLEAR(page)) |
152 |
page++; |
153 |
return page; |
154 |
#endif |
155 |
} |
156 |
|
157 |
static inline int find_next_page_clear(int page) |
158 |
{ |
159 |
#if HAVE_FAST_STRCHR |
160 |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE); |
161 |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
162 |
#else |
163 |
while (PFLAG_ISSET_4(page)) |
164 |
page += 4; |
165 |
while (PFLAG_ISSET(page)) |
166 |
page++; |
167 |
return page; |
168 |
#endif |
169 |
} |
170 |
|
171 |
#ifdef HAVE_SPINLOCKS |
172 |
static spinlock_t vosf_lock = SPIN_LOCK_UNLOCKED; // Mutex to protect frame buffer (dirtyPages in fact) |
173 |
#define LOCK_VOSF spin_lock(&vosf_lock) |
174 |
#define UNLOCK_VOSF spin_unlock(&vosf_lock) |
175 |
#elif defined(_WIN32) |
176 |
static mutex_t vosf_lock; // Mutex to protect frame buffer (dirtyPages in fact) |
177 |
#define LOCK_VOSF vosf_lock.lock(); |
178 |
#define UNLOCK_VOSF vosf_lock.unlock(); |
179 |
#elif defined(HAVE_PTHREADS) |
180 |
static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER; // Mutex to protect frame buffer (dirtyPages in fact) |
181 |
#define LOCK_VOSF pthread_mutex_lock(&vosf_lock); |
182 |
#define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock); |
183 |
#else |
184 |
#define LOCK_VOSF |
185 |
#define UNLOCK_VOSF |
186 |
#endif |
187 |
|
188 |
static int log_base_2(uint32 x) |
189 |
{ |
190 |
uint32 mask = 0x80000000; |
191 |
int l = 31; |
192 |
while (l >= 0 && (x & mask) == 0) { |
193 |
mask >>= 1; |
194 |
l--; |
195 |
} |
196 |
return l; |
197 |
} |
198 |
|
199 |
// Extend size to page boundary |
200 |
static uint32 page_extend(uint32 size) |
201 |
{ |
202 |
const uint32 page_size = vm_get_page_size(); |
203 |
const uint32 page_mask = page_size - 1; |
204 |
return (size + page_mask) & ~page_mask; |
205 |
} |
206 |
|
207 |
|
208 |
/* |
209 |
* Check if VOSF acceleration is profitable on this platform |
210 |
*/ |
211 |
|
212 |
const int VOSF_PROFITABLE_TRIES = 3; // Make 3 attempts for full screen update |
213 |
const int VOSF_PROFITABLE_THRESHOLD = 16667; // 60 Hz |
214 |
|
215 |
static bool video_vosf_profitable(void) |
216 |
{ |
217 |
int64 durations[VOSF_PROFITABLE_TRIES]; |
218 |
int mean_duration = 0; |
219 |
|
220 |
for (int i = 0; i < VOSF_PROFITABLE_TRIES; i++) { |
221 |
uint64 start = GetTicks_usec(); |
222 |
for (int p = 0; p < mainBuffer.pageCount; p++) { |
223 |
uint8 *addr = (uint8 *)(mainBuffer.memStart + (p * mainBuffer.pageSize)); |
224 |
addr[0] = 0; // Trigger Screen_fault_handler() |
225 |
} |
226 |
int64 duration = GetTicks_usec() - start; |
227 |
mean_duration += duration; |
228 |
durations[i] = duration; |
229 |
|
230 |
PFLAG_CLEAR_ALL; |
231 |
mainBuffer.dirty = false; |
232 |
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
233 |
return false; |
234 |
} |
235 |
|
236 |
mean_duration /= VOSF_PROFITABLE_TRIES; |
237 |
D(bug("Triggered %d screen faults in %ld usec on average\n", mainBuffer.pageCount, mean_duration)); |
238 |
return (mean_duration < (VOSF_PROFITABLE_THRESHOLD * (frame_skip ? frame_skip : 1))); |
239 |
} |
240 |
|
241 |
|
242 |
/* |
243 |
* Initialize the VOSF system (mainBuffer structure, SIGSEGV handler) |
244 |
*/ |
245 |
|
246 |
static bool video_vosf_init(MONITOR_INIT) |
247 |
{ |
248 |
VIDEO_MODE_INIT_MONITOR; |
249 |
|
250 |
const uintptr page_size = vm_get_page_size(); |
251 |
const uintptr page_mask = page_size - 1; |
252 |
|
253 |
// Round up frame buffer base to page boundary |
254 |
mainBuffer.memStart = (((uintptr) the_buffer) + page_mask) & ~page_mask; |
255 |
|
256 |
// The frame buffer size shall already be aligned to page boundary (use page_extend) |
257 |
mainBuffer.memLength = the_buffer_size; |
258 |
|
259 |
mainBuffer.pageSize = page_size; |
260 |
mainBuffer.pageBits = log_base_2(mainBuffer.pageSize); |
261 |
mainBuffer.pageCount = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize; |
262 |
|
263 |
// The "2" more bytes requested are a safety net to insure the |
264 |
// loops in the update routines will terminate. |
265 |
// See "How can we deal with array overrun conditions ?" hereunder for further details. |
266 |
mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2); |
267 |
if (mainBuffer.dirtyPages == NULL) |
268 |
return false; |
269 |
|
270 |
PFLAG_CLEAR_ALL; |
271 |
PFLAG_CLEAR(mainBuffer.pageCount); |
272 |
PFLAG_SET(mainBuffer.pageCount+1); |
273 |
|
274 |
// Allocate and fill in pageInfo with start and end (inclusive) row in number of bytes |
275 |
mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo)); |
276 |
if (mainBuffer.pageInfo == NULL) |
277 |
return false; |
278 |
|
279 |
uint32 a = 0; |
280 |
for (unsigned i = 0; i < mainBuffer.pageCount; i++) { |
281 |
unsigned y1 = a / VIDEO_MODE_ROW_BYTES; |
282 |
if (y1 >= VIDEO_MODE_Y) |
283 |
y1 = VIDEO_MODE_Y - 1; |
284 |
|
285 |
unsigned y2 = (a + mainBuffer.pageSize) / VIDEO_MODE_ROW_BYTES; |
286 |
if (y2 >= VIDEO_MODE_Y) |
287 |
y2 = VIDEO_MODE_Y - 1; |
288 |
|
289 |
mainBuffer.pageInfo[i].top = y1; |
290 |
mainBuffer.pageInfo[i].bottom = y2; |
291 |
|
292 |
a += mainBuffer.pageSize; |
293 |
if (a > mainBuffer.memLength) |
294 |
a = mainBuffer.memLength; |
295 |
} |
296 |
|
297 |
// We can now write-protect the frame buffer |
298 |
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
299 |
return false; |
300 |
|
301 |
// The frame buffer is sane, i.e. there is no write to it yet |
302 |
mainBuffer.dirty = false; |
303 |
return true; |
304 |
} |
305 |
|
306 |
|
307 |
/* |
308 |
* Deinitialize VOSF system |
309 |
*/ |
310 |
|
311 |
static void video_vosf_exit(void) |
312 |
{ |
313 |
if (mainBuffer.pageInfo) { |
314 |
free(mainBuffer.pageInfo); |
315 |
mainBuffer.pageInfo = NULL; |
316 |
} |
317 |
if (mainBuffer.dirtyPages) { |
318 |
free(mainBuffer.dirtyPages); |
319 |
mainBuffer.dirtyPages = NULL; |
320 |
} |
321 |
} |
322 |
|
323 |
|
324 |
/* |
325 |
* Screen fault handler |
326 |
*/ |
327 |
|
328 |
bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
329 |
{ |
330 |
const uintptr addr = (uintptr)fault_address; |
331 |
|
332 |
/* Someone attempted to write to the frame buffer. Make it writeable |
333 |
* now so that the data could actually be written to. It will be made |
334 |
* read-only back in one of the screen update_*() functions. |
335 |
*/ |
336 |
if (((uintptr)addr - mainBuffer.memStart) < mainBuffer.memLength) { |
337 |
const int page = ((uintptr)addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
338 |
LOCK_VOSF; |
339 |
PFLAG_SET(page); |
340 |
vm_protect((char *)(addr & -mainBuffer.pageSize), mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE); |
341 |
mainBuffer.dirty = true; |
342 |
UNLOCK_VOSF; |
343 |
return true; |
344 |
} |
345 |
|
346 |
/* Otherwise, we don't know how to handle the fault, let it crash */ |
347 |
return false; |
348 |
} |
349 |
|
350 |
|
351 |
/* |
352 |
* Update display for Windowed mode and VOSF |
353 |
*/ |
354 |
|
355 |
/* How can we deal with array overrun conditions ? |
356 |
|
357 |
The state of the framebuffer pages that have been touched are maintained |
358 |
in the dirtyPages[] table. That table is (pageCount + 2) bytes long. |
359 |
|
360 |
Terminology |
361 |
|
362 |
"Last Page" denotes the pageCount-nth page, i.e. dirtyPages[pageCount - 1]. |
363 |
"CLEAR Page Guard" refers to the page following the Last Page but is always |
364 |
in the CLEAR state. "SET Page Guard" refers to the page following the CLEAR |
365 |
Page Guard but is always in the SET state. |
366 |
|
367 |
Rough process |
368 |
|
369 |
The update routines must determine which pages have to be blitted to the |
370 |
screen. This job consists in finding the first_page that was touched. |
371 |
i.e. find the next page that is SET. Then, finding how many pages were |
372 |
touched starting from first_page. i.e. find the next page that is CLEAR. |
373 |
|
374 |
There are two cases to check: |
375 |
|
376 |
- Last Page is CLEAR: find_next_page_set() will reach the SET Page Guard |
377 |
but it is beyond the valid pageCount value. Therefore, we exit from the |
378 |
update routine. |
379 |
|
380 |
- Last Page is SET: first_page equals (pageCount - 1) and |
381 |
find_next_page_clear() will reach the CLEAR Page Guard. We blit the last |
382 |
page to the screen. On the next iteration, page equals pageCount and |
383 |
find_next_page_set() will reach the SET Page Guard. We still safely exit |
384 |
from the update routine because the SET Page Guard position is greater |
385 |
than pageCount. |
386 |
*/ |
387 |
|
388 |
static void update_display_window_vosf(VIDEO_DRV_WIN_INIT) |
389 |
{ |
390 |
VIDEO_MODE_INIT; |
391 |
|
392 |
int page = 0; |
393 |
for (;;) { |
394 |
const unsigned first_page = find_next_page_set(page); |
395 |
if (first_page >= mainBuffer.pageCount) |
396 |
break; |
397 |
|
398 |
page = find_next_page_clear(first_page); |
399 |
PFLAG_CLEAR_RANGE(first_page, page); |
400 |
|
401 |
// Make the dirty pages read-only again |
402 |
const int32 offset = first_page << mainBuffer.pageBits; |
403 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
404 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
405 |
|
406 |
// There is at least one line to update |
407 |
const int y1 = mainBuffer.pageInfo[first_page].top; |
408 |
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
409 |
const int height = y2 - y1 + 1; |
410 |
|
411 |
// Update the_host_buffer |
412 |
VIDEO_DRV_LOCK_PIXELS; |
413 |
const int src_bytes_per_row = VIDEO_MODE_ROW_BYTES; |
414 |
const int dst_bytes_per_row = VIDEO_DRV_ROW_BYTES; |
415 |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
416 |
for (j = y1; j <= y2; j++) { |
417 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, src_bytes_per_row); |
418 |
i1 += src_bytes_per_row; |
419 |
i2 += dst_bytes_per_row; |
420 |
} |
421 |
VIDEO_DRV_UNLOCK_PIXELS; |
422 |
|
423 |
#ifdef USE_SDL_VIDEO |
424 |
SDL_UpdateRect(drv->s, 0, y1, VIDEO_MODE_X, height); |
425 |
#else |
426 |
if (VIDEO_DRV_HAVE_SHM) |
427 |
XShmPutImage(x_display, VIDEO_DRV_WINDOW, VIDEO_DRV_GC, VIDEO_DRV_IMAGE, 0, y1, 0, y1, VIDEO_MODE_X, height, 0); |
428 |
else |
429 |
XPutImage(x_display, VIDEO_DRV_WINDOW, VIDEO_DRV_GC, VIDEO_DRV_IMAGE, 0, y1, 0, y1, VIDEO_MODE_X, height); |
430 |
#endif |
431 |
} |
432 |
mainBuffer.dirty = false; |
433 |
} |
434 |
|
435 |
|
436 |
/* |
437 |
* Update display for DGA mode and VOSF |
438 |
* (only in Real or Direct Addressing mode) |
439 |
*/ |
440 |
|
441 |
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
442 |
static void update_display_dga_vosf(VIDEO_DRV_DGA_INIT) |
443 |
{ |
444 |
VIDEO_MODE_INIT; |
445 |
|
446 |
// Compute number of bytes per row, take care to virtual screens |
447 |
const int src_bytes_per_row = VIDEO_MODE_ROW_BYTES; |
448 |
const int dst_bytes_per_row = TrivialBytesPerRow(VIDEO_MODE_X, DepthModeForPixelDepth(VIDEO_DRV_DEPTH)); |
449 |
const int scr_bytes_per_row = VIDEO_DRV_ROW_BYTES; |
450 |
assert(dst_bytes_per_row <= scr_bytes_per_row); |
451 |
const int scr_bytes_left = scr_bytes_per_row - dst_bytes_per_row; |
452 |
|
453 |
// Full screen update requested? |
454 |
if (mainBuffer.very_dirty) { |
455 |
PFLAG_CLEAR_ALL; |
456 |
vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ); |
457 |
memcpy(the_buffer_copy, the_buffer, VIDEO_MODE_ROW_BYTES * VIDEO_MODE_Y); |
458 |
VIDEO_DRV_LOCK_PIXELS; |
459 |
int i1 = 0, i2 = 0; |
460 |
for (int j = 0; j < VIDEO_MODE_Y; j++) { |
461 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, src_bytes_per_row); |
462 |
i1 += src_bytes_per_row; |
463 |
i2 += scr_bytes_per_row; |
464 |
} |
465 |
#ifdef USE_SDL_VIDEO |
466 |
SDL_UpdateRect(drv->s, 0, 0, VIDEO_MODE_X, VIDEO_MODE_Y); |
467 |
#endif |
468 |
VIDEO_DRV_UNLOCK_PIXELS; |
469 |
return; |
470 |
} |
471 |
|
472 |
// Setup partial blitter (use 64-pixel wide chunks) |
473 |
const int n_pixels = 64; |
474 |
const int n_chunks = VIDEO_MODE_X / n_pixels; |
475 |
const int src_chunk_size = src_bytes_per_row / n_chunks; |
476 |
const int dst_chunk_size = dst_bytes_per_row / n_chunks; |
477 |
const int src_chunk_size_left = src_bytes_per_row - (n_chunks * src_chunk_size); |
478 |
const int dst_chunk_size_left = dst_bytes_per_row - (n_chunks * dst_chunk_size); |
479 |
|
480 |
int page = 0, last_scanline = -1; |
481 |
for (;;) { |
482 |
const unsigned first_page = find_next_page_set(page); |
483 |
if (first_page >= mainBuffer.pageCount) |
484 |
break; |
485 |
|
486 |
page = find_next_page_clear(first_page); |
487 |
PFLAG_CLEAR_RANGE(first_page, page); |
488 |
|
489 |
// Make the dirty pages read-only again |
490 |
const int32 offset = first_page << mainBuffer.pageBits; |
491 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
492 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
493 |
|
494 |
// Optimized for scanlines, don't process overlapping lines again |
495 |
int y1 = mainBuffer.pageInfo[first_page].top; |
496 |
int y2 = mainBuffer.pageInfo[page - 1].bottom; |
497 |
if (y1 <= last_scanline && ++y1 >= VIDEO_MODE_Y) |
498 |
continue; |
499 |
if (y2 <= last_scanline && ++y2 >= VIDEO_MODE_Y) |
500 |
continue; |
501 |
last_scanline = y2; |
502 |
|
503 |
// Update the_host_buffer and copy of the_buffer, one line at a time |
504 |
int i1 = y1 * src_bytes_per_row; |
505 |
int i2 = y1 * scr_bytes_per_row; |
506 |
VIDEO_DRV_LOCK_PIXELS; |
507 |
for (int j = y1; j <= y2; j++) { |
508 |
for (int i = 0; i < n_chunks; i++) { |
509 |
if (memcmp(the_buffer_copy + i1, the_buffer + i1, src_chunk_size) != 0) { |
510 |
memcpy(the_buffer_copy + i1, the_buffer + i1, src_chunk_size); |
511 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, src_chunk_size); |
512 |
#ifdef USE_SDL_VIDEO |
513 |
SDL_UpdateRect(drv->s, i * n_pixels, j, n_pixels, 1); |
514 |
#endif |
515 |
} |
516 |
i1 += src_chunk_size; |
517 |
i2 += dst_chunk_size; |
518 |
} |
519 |
if (src_chunk_size_left && dst_chunk_size_left) { |
520 |
if (memcmp(the_buffer_copy + i1, the_buffer + i1, src_chunk_size_left) != 0) { |
521 |
memcpy(the_buffer_copy + i1, the_buffer + i1, src_chunk_size_left); |
522 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, src_chunk_size_left); |
523 |
} |
524 |
i1 += src_chunk_size_left; |
525 |
i2 += dst_chunk_size_left; |
526 |
} |
527 |
i2 += scr_bytes_left; |
528 |
} |
529 |
VIDEO_DRV_UNLOCK_PIXELS; |
530 |
} |
531 |
mainBuffer.dirty = false; |
532 |
} |
533 |
#endif |
534 |
|
535 |
#endif /* ENABLE_VOSF */ |
536 |
|
537 |
#endif /* VIDEO_VOSF_H */ |