24 |
|
// Note: this file is #include'd in video_x.cpp |
25 |
|
#ifdef ENABLE_VOSF |
26 |
|
|
27 |
< |
/* |
28 |
< |
* Page-aligned memory allocation |
29 |
< |
*/ |
27 |
> |
#include <fcntl.h> |
28 |
> |
#include <sys/mman.h> |
29 |
> |
#include "sigsegv.h" |
30 |
> |
#include "vm_alloc.h" |
31 |
> |
|
32 |
> |
#ifdef ENABLE_MON |
33 |
> |
# include "mon.h" |
34 |
> |
#endif |
35 |
> |
|
36 |
> |
// Variables for Video on SEGV support |
37 |
> |
static uint8 *the_host_buffer; // Host frame buffer in VOSF mode |
38 |
> |
static uint32 the_buffer_size; // Size of allocated the_buffer |
39 |
> |
|
40 |
> |
struct ScreenPageInfo { |
41 |
> |
int top, bottom; // Mapping between this virtual page and Mac scanlines |
42 |
> |
}; |
43 |
> |
|
44 |
> |
struct ScreenInfo { |
45 |
> |
uintptr memBase; // Real start address |
46 |
> |
uintptr memStart; // Start address aligned to page boundary |
47 |
> |
uintptr memEnd; // Address of one-past-the-end of the screen |
48 |
> |
uint32 memLength; // Length of the memory addressed by the screen pages |
49 |
> |
|
50 |
> |
uint32 pageSize; // Size of a page |
51 |
> |
int pageBits; // Shift count to get the page number |
52 |
> |
uint32 pageCount; // Number of pages allocated to the screen |
53 |
> |
|
54 |
> |
bool dirty; // Flag: set if the frame buffer was touched |
55 |
> |
char * dirtyPages; // Table of flags set if page was altered |
56 |
> |
ScreenPageInfo * pageInfo; // Table of mappings page -> Mac scanlines |
57 |
> |
}; |
58 |
> |
|
59 |
> |
static ScreenInfo mainBuffer; |
60 |
> |
|
61 |
> |
#define PFLAG_SET_VALUE 0x00 |
62 |
> |
#define PFLAG_CLEAR_VALUE 0x01 |
63 |
> |
#define PFLAG_SET_VALUE_4 0x00000000 |
64 |
> |
#define PFLAG_CLEAR_VALUE_4 0x01010101 |
65 |
> |
#define PFLAG_SET(page) mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE |
66 |
> |
#define PFLAG_CLEAR(page) mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE |
67 |
> |
#define PFLAG_ISSET(page) (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE) |
68 |
> |
#define PFLAG_ISCLEAR(page) (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE) |
69 |
> |
|
70 |
> |
#ifdef UNALIGNED_PROFITABLE |
71 |
> |
# define PFLAG_ISSET_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4) |
72 |
> |
# define PFLAG_ISCLEAR_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4) |
73 |
> |
#else |
74 |
> |
# define PFLAG_ISSET_4(page) \ |
75 |
> |
PFLAG_ISSET(page ) && PFLAG_ISSET(page+1) \ |
76 |
> |
&& PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3) |
77 |
> |
# define PFLAG_ISCLEAR_4(page) \ |
78 |
> |
PFLAG_ISCLEAR(page ) && PFLAG_ISCLEAR(page+1) \ |
79 |
> |
&& PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3) |
80 |
> |
#endif |
81 |
> |
|
82 |
> |
// Set the selected page range [ first_page, last_page [ into the SET state |
83 |
> |
#define PFLAG_SET_RANGE(first_page, last_page) \ |
84 |
> |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \ |
85 |
> |
(last_page) - (first_page)) |
86 |
> |
|
87 |
> |
// Set the selected page range [ first_page, last_page [ into the CLEAR state |
88 |
> |
#define PFLAG_CLEAR_RANGE(first_page, last_page) \ |
89 |
> |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \ |
90 |
> |
(last_page) - (first_page)) |
91 |
> |
|
92 |
> |
#define PFLAG_SET_ALL do { \ |
93 |
> |
PFLAG_SET_RANGE(0, mainBuffer.pageCount); \ |
94 |
> |
mainBuffer.dirty = true; \ |
95 |
> |
} while (0) |
96 |
> |
|
97 |
> |
#define PFLAG_CLEAR_ALL do { \ |
98 |
> |
PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \ |
99 |
> |
mainBuffer.dirty = false; \ |
100 |
> |
} while (0) |
101 |
> |
|
102 |
> |
// Set the following macro definition to 1 if your system |
103 |
> |
// provides a really fast strchr() implementation |
104 |
> |
//#define HAVE_FAST_STRCHR 0 |
105 |
> |
|
106 |
> |
static inline int find_next_page_set(int page) |
107 |
> |
{ |
108 |
> |
#if HAVE_FAST_STRCHR |
109 |
> |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE); |
110 |
> |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
111 |
> |
#else |
112 |
> |
while (PFLAG_ISCLEAR_4(page)) |
113 |
> |
page += 4; |
114 |
> |
while (PFLAG_ISCLEAR(page)) |
115 |
> |
page++; |
116 |
> |
return page; |
117 |
> |
#endif |
118 |
> |
} |
119 |
> |
|
120 |
> |
static inline int find_next_page_clear(int page) |
121 |
> |
{ |
122 |
> |
#if HAVE_FAST_STRCHR |
123 |
> |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE); |
124 |
> |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
125 |
> |
#else |
126 |
> |
while (PFLAG_ISSET_4(page)) |
127 |
> |
page += 4; |
128 |
> |
while (PFLAG_ISSET(page)) |
129 |
> |
page++; |
130 |
> |
return page; |
131 |
> |
#endif |
132 |
> |
} |
133 |
> |
|
134 |
> |
#ifdef HAVE_PTHREADS |
135 |
> |
static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER; // Mutex to protect frame buffer (dirtyPages in fact) |
136 |
> |
#define LOCK_VOSF pthread_mutex_lock(&vosf_lock); |
137 |
> |
#define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock); |
138 |
> |
#else |
139 |
> |
#define LOCK_VOSF |
140 |
> |
#define UNLOCK_VOSF |
141 |
> |
#endif |
142 |
|
|
143 |
< |
// Align on page boundaries |
144 |
< |
static uintptr align_on_page_boundary(uintptr size) |
143 |
> |
static int log_base_2(uint32 x) |
144 |
> |
{ |
145 |
> |
uint32 mask = 0x80000000; |
146 |
> |
int l = 31; |
147 |
> |
while (l >= 0 && (x & mask) == 0) { |
148 |
> |
mask >>= 1; |
149 |
> |
l--; |
150 |
> |
} |
151 |
> |
return l; |
152 |
> |
} |
153 |
> |
|
154 |
> |
// Extend size to page boundary |
155 |
> |
static uint32 page_extend(uint32 size) |
156 |
|
{ |
157 |
|
const uint32 page_size = getpagesize(); |
158 |
|
const uint32 page_mask = page_size - 1; |
159 |
|
return (size + page_mask) & ~page_mask; |
160 |
|
} |
161 |
|
|
162 |
< |
// Allocate memory on page boundary |
163 |
< |
static void * allocate_framebuffer(uint32 size, uint8 * hint = 0) |
162 |
> |
|
163 |
> |
/* |
164 |
> |
* Initialize mainBuffer structure |
165 |
> |
*/ |
166 |
> |
|
167 |
> |
static bool video_init_buffer(void) |
168 |
|
{ |
169 |
< |
// Remind that the system can allocate at 0x00000000... |
170 |
< |
return mmap((caddr_t)hint, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, zero_fd, 0); |
169 |
> |
if (use_vosf) { |
170 |
> |
const uint32 page_size = getpagesize(); |
171 |
> |
const uint32 page_mask = page_size - 1; |
172 |
> |
|
173 |
> |
mainBuffer.memBase = (uintptr) the_buffer; |
174 |
> |
// Round up frame buffer base to page boundary |
175 |
> |
mainBuffer.memStart = (uintptr)((((unsigned long) the_buffer) + page_mask) & ~page_mask); |
176 |
> |
mainBuffer.memLength = the_buffer_size; |
177 |
> |
mainBuffer.memEnd = mainBuffer.memStart + mainBuffer.memLength; |
178 |
> |
|
179 |
> |
mainBuffer.pageSize = page_size; |
180 |
> |
mainBuffer.pageCount = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize; |
181 |
> |
mainBuffer.pageBits = log_base_2(mainBuffer.pageSize); |
182 |
> |
|
183 |
> |
if (mainBuffer.dirtyPages) { |
184 |
> |
free(mainBuffer.dirtyPages); |
185 |
> |
mainBuffer.dirtyPages = NULL; |
186 |
> |
} |
187 |
> |
|
188 |
> |
mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2); |
189 |
> |
|
190 |
> |
if (mainBuffer.pageInfo) { |
191 |
> |
free(mainBuffer.pageInfo); |
192 |
> |
mainBuffer.pageInfo = NULL; |
193 |
> |
} |
194 |
> |
|
195 |
> |
mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo)); |
196 |
> |
|
197 |
> |
if ((mainBuffer.dirtyPages == NULL) || (mainBuffer.pageInfo == NULL)) |
198 |
> |
return false; |
199 |
> |
|
200 |
> |
mainBuffer.dirty = false; |
201 |
> |
|
202 |
> |
PFLAG_CLEAR_ALL; |
203 |
> |
// Safety net to insure the loops in the update routines will terminate |
204 |
> |
// See "How can we deal with array overrun conditions ?" hereunder for further details |
205 |
> |
PFLAG_CLEAR(mainBuffer.pageCount); |
206 |
> |
PFLAG_SET(mainBuffer.pageCount+1); |
207 |
> |
|
208 |
> |
uint32 a = 0; |
209 |
> |
for (int i = 0; i < mainBuffer.pageCount; i++) { |
210 |
> |
int y1 = a / VideoMonitor.mode.bytes_per_row; |
211 |
> |
if (y1 >= VideoMonitor.mode.y) |
212 |
> |
y1 = VideoMonitor.mode.y - 1; |
213 |
> |
|
214 |
> |
int y2 = (a + mainBuffer.pageSize) / VideoMonitor.mode.bytes_per_row; |
215 |
> |
if (y2 >= VideoMonitor.mode.y) |
216 |
> |
y2 = VideoMonitor.mode.y - 1; |
217 |
> |
|
218 |
> |
mainBuffer.pageInfo[i].top = y1; |
219 |
> |
mainBuffer.pageInfo[i].bottom = y2; |
220 |
> |
|
221 |
> |
a += mainBuffer.pageSize; |
222 |
> |
if (a > mainBuffer.memLength) |
223 |
> |
a = mainBuffer.memLength; |
224 |
> |
} |
225 |
> |
|
226 |
> |
// We can now write-protect the frame buffer |
227 |
> |
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
228 |
> |
return false; |
229 |
> |
} |
230 |
> |
return true; |
231 |
|
} |
232 |
|
|
233 |
|
|
234 |
|
/* |
235 |
< |
* Screen fault handler |
235 |
> |
* Screen fault handler |
236 |
|
*/ |
237 |
|
|
238 |
< |
const uintptr INVALID_PC = (uintptr)-1; |
52 |
< |
|
53 |
< |
static inline void do_handle_screen_fault(uintptr addr, uintptr pc = INVALID_PC) |
238 |
> |
static bool screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
239 |
|
{ |
240 |
+ |
// D(bug("screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", fault_address, fault_instruction)); |
241 |
+ |
const uintptr addr = (uintptr)fault_address; |
242 |
+ |
|
243 |
|
/* Someone attempted to write to the frame buffer. Make it writeable |
244 |
< |
* now so that the data could actually be written. It will be made |
244 |
> |
* now so that the data could actually be written to. It will be made |
245 |
|
* read-only back in one of the screen update_*() functions. |
246 |
|
*/ |
247 |
|
if ((addr >= mainBuffer.memStart) && (addr < mainBuffer.memEnd)) { |
248 |
|
const int page = (addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
249 |
< |
caddr_t page_ad = (caddr_t)(addr & ~(mainBuffer.pageSize - 1)); |
249 |
> |
caddr_t page_ad = (caddr_t)(addr & -mainBuffer.pageSize); |
250 |
|
LOCK_VOSF; |
251 |
|
PFLAG_SET(page); |
252 |
< |
mprotect(page_ad, mainBuffer.pageSize, PROT_READ | PROT_WRITE); |
252 |
> |
vm_protect((char *)page_ad, mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE); |
253 |
|
mainBuffer.dirty = true; |
254 |
|
UNLOCK_VOSF; |
255 |
< |
return; |
255 |
> |
return true; |
256 |
|
} |
257 |
|
|
258 |
|
/* Otherwise, we don't know how to handle the fault, let it crash */ |
259 |
|
fprintf(stderr, "do_handle_screen_fault: unhandled address 0x%08X", addr); |
260 |
< |
if (pc != INVALID_PC) |
261 |
< |
fprintf(stderr, " [IP=0x%08X]", pc); |
260 |
> |
if (fault_instruction != SIGSEGV_INVALID_PC) |
261 |
> |
fprintf(stderr, " [IP=0x%08X]", fault_instruction); |
262 |
|
fprintf(stderr, "\n"); |
263 |
< |
|
264 |
< |
signal(SIGSEGV, SIG_DFL); |
265 |
< |
} |
266 |
< |
|
79 |
< |
#if defined(HAVE_SIGINFO_T) |
80 |
< |
|
81 |
< |
static void Screen_fault_handler(int, siginfo_t * sip, void *) |
82 |
< |
{ |
83 |
< |
D(bug("Screen_fault_handler: ADDR=0x%08X\n", sip->si_addr)); |
84 |
< |
do_handle_screen_fault((uintptr)sip->si_addr); |
85 |
< |
} |
86 |
< |
|
87 |
< |
#elif defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
88 |
< |
|
89 |
< |
# if defined(__i386__) && defined(__linux__) |
90 |
< |
static void Screen_fault_handler(int, struct sigcontext scs) |
91 |
< |
{ |
92 |
< |
D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs.cr2, scs.eip)); |
93 |
< |
do_handle_screen_fault((uintptr)scs.cr2, (uintptr)scs.eip); |
94 |
< |
} |
95 |
< |
|
96 |
< |
# elif defined(__m68k__) && defined(__NetBSD__) |
97 |
< |
|
98 |
< |
# include <m68k/frame.h> |
99 |
< |
static void Screen_fault_handler(int, int code, struct sigcontext *scp) |
100 |
< |
{ |
101 |
< |
D(bug("Screen_fault_handler: ADDR=0x%08X\n", code)); |
102 |
< |
struct sigstate { |
103 |
< |
int ss_flags; |
104 |
< |
struct frame ss_frame; |
105 |
< |
}; |
106 |
< |
struct sigstate *state = (struct sigstate *)scp->sc_ap; |
107 |
< |
uintptr fault_addr; |
108 |
< |
switch (state->ss_frame.f_format) { |
109 |
< |
case 7: // 68040 access error |
110 |
< |
// "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown |
111 |
< |
fault_addr = state->ss_frame.f_fmt7.f_fa; |
112 |
< |
break; |
113 |
< |
default: |
114 |
< |
fault_addr = (uintptr)code; |
115 |
< |
break; |
116 |
< |
} |
117 |
< |
do_handle_screen_fault(fault_addr); |
118 |
< |
} |
119 |
< |
|
120 |
< |
# elif defined(__powerpc__) && defined(__linux__) |
121 |
< |
|
122 |
< |
static void Screen_fault_handler(int, struct sigcontext_struct *scs) |
123 |
< |
{ |
124 |
< |
D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs->regs->dar, scs->regs->nip)); |
125 |
< |
do_handle_screen_fault((uintptr)scs->regs->dar, (uintptr)scs->regs->nip); |
126 |
< |
} |
127 |
< |
|
128 |
< |
# else |
129 |
< |
# error "No suitable subterfuge for Video on SEGV signals" |
130 |
< |
# endif |
131 |
< |
#else |
132 |
< |
# error "Can't do Video on SEGV signals" |
263 |
> |
#if EMULATED_68K |
264 |
> |
uaecptr nextpc; |
265 |
> |
extern void m68k_dumpstate(uaecptr *nextpc); |
266 |
> |
m68k_dumpstate(&nextpc); |
267 |
|
#endif |
268 |
< |
|
269 |
< |
|
270 |
< |
/* |
271 |
< |
* Screen fault handler initialization |
272 |
< |
*/ |
139 |
< |
|
140 |
< |
#if defined(HAVE_SIGINFO_T) |
141 |
< |
static bool Screen_fault_handler_init() |
142 |
< |
{ |
143 |
< |
// Setup SIGSEGV handler to process writes to frame buffer |
144 |
< |
sigemptyset(&vosf_sa.sa_mask); |
145 |
< |
vosf_sa.sa_sigaction = Screen_fault_handler; |
146 |
< |
vosf_sa.sa_flags = SA_SIGINFO; |
147 |
< |
return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0); |
148 |
< |
} |
149 |
< |
#elif defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
150 |
< |
static bool Screen_fault_handler_init() |
151 |
< |
{ |
152 |
< |
// Setup SIGSEGV handler to process writes to frame buffer |
153 |
< |
sigemptyset(&vosf_sa.sa_mask); |
154 |
< |
vosf_sa.sa_handler = (void (*)(int)) Screen_fault_handler; |
155 |
< |
#if !EMULATED_68K && defined(__NetBSD__) |
156 |
< |
sigaddset(&vosf_sa.sa_mask, SIGALRM); |
157 |
< |
vosf_sa.sa_flags = SA_ONSTACK; |
158 |
< |
#else |
159 |
< |
vosf_sa.sa_flags = 0; |
268 |
> |
VideoQuitFullScreen(); |
269 |
> |
#ifdef ENABLE_MON |
270 |
> |
char *arg[4] = {"mon", "-m", "-r", NULL}; |
271 |
> |
mon(3, arg); |
272 |
> |
QuitEmulator(); |
273 |
|
#endif |
274 |
< |
return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0); |
274 |
> |
return false; |
275 |
|
} |
163 |
– |
#endif |
276 |
|
|
277 |
|
|
278 |
|
/* |
281 |
|
|
282 |
|
// From video_blit.cpp |
283 |
|
extern void (*Screen_blit)(uint8 * dest, const uint8 * source, uint32 length); |
284 |
< |
extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order); |
284 |
> |
extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order, video_depth mac_depth); |
285 |
> |
extern uint32 ExpandMap[256]; |
286 |
|
|
287 |
|
/* How can we deal with array overrun conditions ? |
288 |
|
|
317 |
|
than pageCount. |
318 |
|
*/ |
319 |
|
|
320 |
< |
static inline void update_display_window_vosf(void) |
320 |
> |
static inline void update_display_window_vosf(driver_window *drv) |
321 |
|
{ |
322 |
|
int page = 0; |
323 |
|
for (;;) { |
331 |
|
// Make the dirty pages read-only again |
332 |
|
const int32 offset = first_page << mainBuffer.pageBits; |
333 |
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
334 |
< |
mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ); |
334 |
> |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
335 |
|
|
336 |
|
// There is at least one line to update |
337 |
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
338 |
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
339 |
|
const int height = y2 - y1 + 1; |
340 |
|
|
341 |
< |
const int bytes_per_row = VideoMonitor.bytes_per_row; |
229 |
< |
const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x; |
230 |
< |
int i = y1 * bytes_per_row, j; |
231 |
< |
|
232 |
< |
if (depth == 1) { |
341 |
> |
if (VideoMonitor.mode.depth < VDEPTH_8BIT) { |
342 |
|
|
343 |
|
// Update the_host_buffer and copy of the_buffer |
344 |
+ |
const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row; |
345 |
+ |
const int dst_bytes_per_row = drv->img->bytes_per_line; |
346 |
+ |
const int pixels_per_byte = VideoMonitor.mode.x / src_bytes_per_row; |
347 |
+ |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
348 |
|
for (j = y1; j <= y2; j++) { |
349 |
< |
Screen_blit(the_host_buffer + i, the_buffer + i, VideoMonitor.x >> 3); |
350 |
< |
i += bytes_per_row; |
349 |
> |
Screen_blit(the_host_buffer + i2, the_buffer + i1, VideoMonitor.mode.x / pixels_per_byte); |
350 |
> |
i1 += src_bytes_per_row; |
351 |
> |
i2 += dst_bytes_per_row; |
352 |
|
} |
353 |
|
|
354 |
|
} else { |
355 |
|
|
356 |
|
// Update the_host_buffer and copy of the_buffer |
357 |
+ |
const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row; |
358 |
+ |
const int dst_bytes_per_row = drv->img->bytes_per_line; |
359 |
+ |
const int bytes_per_pixel = src_bytes_per_row / VideoMonitor.mode.x; |
360 |
+ |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
361 |
|
for (j = y1; j <= y2; j++) { |
362 |
< |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * VideoMonitor.x); |
363 |
< |
i += bytes_per_row; |
362 |
> |
Screen_blit(the_host_buffer + i2, the_buffer + i1, bytes_per_pixel * VideoMonitor.mode.x); |
363 |
> |
i1 += src_bytes_per_row; |
364 |
> |
i2 += dst_bytes_per_row; |
365 |
|
} |
366 |
|
} |
367 |
|
|
368 |
< |
if (have_shm) |
369 |
< |
XShmPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.x, height, 0); |
368 |
> |
if (drv->have_shm) |
369 |
> |
XShmPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height, 0); |
370 |
|
else |
371 |
< |
XPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.x, height); |
371 |
> |
XPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height); |
372 |
|
} |
254 |
– |
|
373 |
|
mainBuffer.dirty = false; |
374 |
|
} |
375 |
|
|
376 |
|
|
377 |
|
/* |
378 |
|
* Update display for DGA mode and VOSF |
379 |
< |
* (only in Direct Addressing mode) |
379 |
> |
* (only in Real or Direct Addressing mode) |
380 |
|
*/ |
381 |
|
|
382 |
|
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
394 |
|
// Make the dirty pages read-only again |
395 |
|
const int32 offset = first_page << mainBuffer.pageBits; |
396 |
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
397 |
< |
mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ); |
397 |
> |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
398 |
|
|
399 |
|
// I am sure that y2 >= y1 and depth != 1 |
400 |
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
401 |
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
402 |
|
|
403 |
< |
const int bytes_per_row = VideoMonitor.bytes_per_row; |
404 |
< |
const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x; |
403 |
> |
const int bytes_per_row = VideoMonitor.mode.bytes_per_row; |
404 |
> |
const int bytes_per_pixel = VideoMonitor.mode.bytes_per_row / VideoMonitor.mode.x; |
405 |
|
int i, j; |
406 |
|
|
407 |
|
// Check for first column from left and first column |
408 |
|
// from right that have changed |
409 |
< |
int x1 = VideoMonitor.x * bytes_per_pixel - 1; |
409 |
> |
int x1 = VideoMonitor.mode.x * bytes_per_pixel - 1; |
410 |
|
for (j = y1; j <= y2; j++) { |
411 |
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
412 |
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
423 |
|
for (j = y2; j >= y1; j--) { |
424 |
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
425 |
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
426 |
< |
for (i = VideoMonitor.x * bytes_per_pixel - 1; i > x2; i--) { |
426 |
> |
for (i = VideoMonitor.mode.x * bytes_per_pixel - 1; i > x2; i--) { |
427 |
|
if (p1[i] != p2[i]) { |
428 |
|
x2 = i; |
429 |
|
break; |