1 |
/* |
2 |
* video_vosf.h - Video/graphics emulation, video on SEGV signals support |
3 |
* |
4 |
* Basilisk II (C) 1997-2002 Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#ifndef VIDEO_VOSF_H |
22 |
#define VIDEO_VOSF_H |
23 |
|
24 |
// Note: this file is #include'd in video_x.cpp |
25 |
#ifdef ENABLE_VOSF |
26 |
|
27 |
#include <fcntl.h> |
28 |
#include <sys/mman.h> |
29 |
#include "sigsegv.h" |
30 |
#include "vm_alloc.h" |
31 |
|
32 |
#ifdef ENABLE_MON |
33 |
# include "mon.h" |
34 |
#endif |
35 |
|
36 |
// Variables for Video on SEGV support |
37 |
static uint8 *the_host_buffer; // Host frame buffer in VOSF mode |
38 |
|
39 |
struct ScreenPageInfo { |
40 |
int top, bottom; // Mapping between this virtual page and Mac scanlines |
41 |
}; |
42 |
|
43 |
struct ScreenInfo { |
44 |
uintptr memStart; // Start address aligned to page boundary |
45 |
uint32 memLength; // Length of the memory addressed by the screen pages |
46 |
|
47 |
uintptr pageSize; // Size of a page |
48 |
int pageBits; // Shift count to get the page number |
49 |
uint32 pageCount; // Number of pages allocated to the screen |
50 |
|
51 |
bool dirty; // Flag: set if the frame buffer was touched |
52 |
char * dirtyPages; // Table of flags set if page was altered |
53 |
ScreenPageInfo * pageInfo; // Table of mappings page -> Mac scanlines |
54 |
}; |
55 |
|
56 |
static ScreenInfo mainBuffer; |
57 |
|
58 |
#define PFLAG_SET_VALUE 0x00 |
59 |
#define PFLAG_CLEAR_VALUE 0x01 |
60 |
#define PFLAG_SET_VALUE_4 0x00000000 |
61 |
#define PFLAG_CLEAR_VALUE_4 0x01010101 |
62 |
#define PFLAG_SET(page) mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE |
63 |
#define PFLAG_CLEAR(page) mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE |
64 |
#define PFLAG_ISSET(page) (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE) |
65 |
#define PFLAG_ISCLEAR(page) (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE) |
66 |
|
67 |
#ifdef UNALIGNED_PROFITABLE |
68 |
# define PFLAG_ISSET_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4) |
69 |
# define PFLAG_ISCLEAR_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4) |
70 |
#else |
71 |
# define PFLAG_ISSET_4(page) \ |
72 |
PFLAG_ISSET(page ) && PFLAG_ISSET(page+1) \ |
73 |
&& PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3) |
74 |
# define PFLAG_ISCLEAR_4(page) \ |
75 |
PFLAG_ISCLEAR(page ) && PFLAG_ISCLEAR(page+1) \ |
76 |
&& PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3) |
77 |
#endif |
78 |
|
79 |
// Set the selected page range [ first_page, last_page [ into the SET state |
80 |
#define PFLAG_SET_RANGE(first_page, last_page) \ |
81 |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \ |
82 |
(last_page) - (first_page)) |
83 |
|
84 |
// Set the selected page range [ first_page, last_page [ into the CLEAR state |
85 |
#define PFLAG_CLEAR_RANGE(first_page, last_page) \ |
86 |
memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \ |
87 |
(last_page) - (first_page)) |
88 |
|
89 |
#define PFLAG_SET_ALL do { \ |
90 |
PFLAG_SET_RANGE(0, mainBuffer.pageCount); \ |
91 |
mainBuffer.dirty = true; \ |
92 |
} while (0) |
93 |
|
94 |
#define PFLAG_CLEAR_ALL do { \ |
95 |
PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \ |
96 |
mainBuffer.dirty = false; \ |
97 |
} while (0) |
98 |
|
99 |
// Set the following macro definition to 1 if your system |
100 |
// provides a really fast strchr() implementation |
101 |
//#define HAVE_FAST_STRCHR 0 |
102 |
|
103 |
static inline int find_next_page_set(int page) |
104 |
{ |
105 |
#if HAVE_FAST_STRCHR |
106 |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE); |
107 |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
108 |
#else |
109 |
while (PFLAG_ISCLEAR_4(page)) |
110 |
page += 4; |
111 |
while (PFLAG_ISCLEAR(page)) |
112 |
page++; |
113 |
return page; |
114 |
#endif |
115 |
} |
116 |
|
117 |
static inline int find_next_page_clear(int page) |
118 |
{ |
119 |
#if HAVE_FAST_STRCHR |
120 |
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE); |
121 |
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
122 |
#else |
123 |
while (PFLAG_ISSET_4(page)) |
124 |
page += 4; |
125 |
while (PFLAG_ISSET(page)) |
126 |
page++; |
127 |
return page; |
128 |
#endif |
129 |
} |
130 |
|
131 |
#ifdef HAVE_PTHREADS |
132 |
static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER; // Mutex to protect frame buffer (dirtyPages in fact) |
133 |
#define LOCK_VOSF pthread_mutex_lock(&vosf_lock); |
134 |
#define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock); |
135 |
#else |
136 |
#define LOCK_VOSF |
137 |
#define UNLOCK_VOSF |
138 |
#endif |
139 |
|
140 |
static int log_base_2(uint32 x) |
141 |
{ |
142 |
uint32 mask = 0x80000000; |
143 |
int l = 31; |
144 |
while (l >= 0 && (x & mask) == 0) { |
145 |
mask >>= 1; |
146 |
l--; |
147 |
} |
148 |
return l; |
149 |
} |
150 |
|
151 |
// Extend size to page boundary |
152 |
static uint32 page_extend(uint32 size) |
153 |
{ |
154 |
const uint32 page_size = getpagesize(); |
155 |
const uint32 page_mask = page_size - 1; |
156 |
return (size + page_mask) & ~page_mask; |
157 |
} |
158 |
|
159 |
|
160 |
/* |
161 |
* Initialize the VOSF system (mainBuffer structure, SIGSEGV handler) |
162 |
*/ |
163 |
|
164 |
static bool screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction); |
165 |
|
166 |
static bool video_vosf_init(void) |
167 |
{ |
168 |
const uintptr page_size = getpagesize(); |
169 |
const uintptr page_mask = page_size - 1; |
170 |
|
171 |
// Round up frame buffer base to page boundary |
172 |
mainBuffer.memStart = (((uintptr) the_buffer) + page_mask) & ~page_mask; |
173 |
|
174 |
// The frame buffer size shall already be aligned to page boundary (use page_extend) |
175 |
mainBuffer.memLength = the_buffer_size; |
176 |
|
177 |
mainBuffer.pageSize = page_size; |
178 |
mainBuffer.pageBits = log_base_2(mainBuffer.pageSize); |
179 |
mainBuffer.pageCount = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize; |
180 |
|
181 |
// The "2" more bytes requested are a safety net to insure the |
182 |
// loops in the update routines will terminate. |
183 |
// See "How can we deal with array overrun conditions ?" hereunder for further details. |
184 |
mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2); |
185 |
if (mainBuffer.dirtyPages == NULL) |
186 |
return false; |
187 |
|
188 |
PFLAG_CLEAR_ALL; |
189 |
PFLAG_CLEAR(mainBuffer.pageCount); |
190 |
PFLAG_SET(mainBuffer.pageCount+1); |
191 |
|
192 |
// Allocate and fill in pageInfo with start and end (inclusive) row in number of bytes |
193 |
mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo)); |
194 |
if (mainBuffer.pageInfo == NULL) |
195 |
return false; |
196 |
|
197 |
uint32 a = 0; |
198 |
for (unsigned i = 0; i < mainBuffer.pageCount; i++) { |
199 |
unsigned y1 = a / VideoMonitor.mode.bytes_per_row; |
200 |
if (y1 >= VideoMonitor.mode.y) |
201 |
y1 = VideoMonitor.mode.y - 1; |
202 |
|
203 |
unsigned y2 = (a + mainBuffer.pageSize) / VideoMonitor.mode.bytes_per_row; |
204 |
if (y2 >= VideoMonitor.mode.y) |
205 |
y2 = VideoMonitor.mode.y - 1; |
206 |
|
207 |
mainBuffer.pageInfo[i].top = y1; |
208 |
mainBuffer.pageInfo[i].bottom = y2; |
209 |
|
210 |
a += mainBuffer.pageSize; |
211 |
if (a > mainBuffer.memLength) |
212 |
a = mainBuffer.memLength; |
213 |
} |
214 |
|
215 |
// We can now write-protect the frame buffer |
216 |
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
217 |
return false; |
218 |
|
219 |
// Initialize the handler for SIGSEGV |
220 |
if (!sigsegv_install_handler(screen_fault_handler)) |
221 |
return false; |
222 |
|
223 |
// The frame buffer is sane, i.e. there is no write to it yet |
224 |
mainBuffer.dirty = false; |
225 |
return true; |
226 |
} |
227 |
|
228 |
|
229 |
/* |
230 |
* Deinitialize VOSF system |
231 |
*/ |
232 |
|
233 |
static void video_vosf_exit(void) |
234 |
{ |
235 |
if (mainBuffer.pageInfo) { |
236 |
free(mainBuffer.pageInfo); |
237 |
mainBuffer.pageInfo = NULL; |
238 |
} |
239 |
if (mainBuffer.dirtyPages) { |
240 |
free(mainBuffer.dirtyPages); |
241 |
mainBuffer.dirtyPages = NULL; |
242 |
} |
243 |
} |
244 |
|
245 |
|
246 |
/* |
247 |
* Screen fault handler |
248 |
*/ |
249 |
|
250 |
static bool screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
251 |
{ |
252 |
// D(bug("screen_fault_handler: ADDR=%p from IP=%p\n", fault_address, fault_instruction)); |
253 |
const uintptr addr = (uintptr)fault_address; |
254 |
|
255 |
/* Someone attempted to write to the frame buffer. Make it writeable |
256 |
* now so that the data could actually be written to. It will be made |
257 |
* read-only back in one of the screen update_*() functions. |
258 |
*/ |
259 |
if (((uintptr)addr - mainBuffer.memStart) < mainBuffer.memLength) { |
260 |
const int page = ((uintptr)addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
261 |
LOCK_VOSF; |
262 |
PFLAG_SET(page); |
263 |
vm_protect((char *)(addr & -mainBuffer.pageSize), mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE); |
264 |
mainBuffer.dirty = true; |
265 |
UNLOCK_VOSF; |
266 |
return true; |
267 |
} |
268 |
|
269 |
/* Otherwise, we don't know how to handle the fault, let it crash */ |
270 |
fprintf(stderr, "do_handle_screen_fault: unhandled address %p", fault_address); |
271 |
if (fault_instruction != SIGSEGV_INVALID_PC) |
272 |
fprintf(stderr, " [IP=%p]", fault_instruction); |
273 |
fprintf(stderr, "\n"); |
274 |
#if EMULATED_68K |
275 |
uaecptr nextpc; |
276 |
extern void m68k_dumpstate(uaecptr *nextpc); |
277 |
m68k_dumpstate(&nextpc); |
278 |
#endif |
279 |
VideoQuitFullScreen(); |
280 |
#ifdef ENABLE_MON |
281 |
char *arg[4] = {"mon", "-m", "-r", NULL}; |
282 |
mon(3, arg); |
283 |
QuitEmulator(); |
284 |
#endif |
285 |
return false; |
286 |
} |
287 |
|
288 |
|
289 |
/* |
290 |
* Update display for Windowed mode and VOSF |
291 |
*/ |
292 |
|
293 |
// From video_blit.cpp |
294 |
extern void (*Screen_blit)(uint8 * dest, const uint8 * source, uint32 length); |
295 |
extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order, video_depth mac_depth); |
296 |
extern uint32 ExpandMap[256]; |
297 |
|
298 |
/* How can we deal with array overrun conditions ? |
299 |
|
300 |
The state of the framebuffer pages that have been touched are maintained |
301 |
in the dirtyPages[] table. That table is (pageCount + 2) bytes long. |
302 |
|
303 |
Terminology |
304 |
|
305 |
"Last Page" denotes the pageCount-nth page, i.e. dirtyPages[pageCount - 1]. |
306 |
"CLEAR Page Guard" refers to the page following the Last Page but is always |
307 |
in the CLEAR state. "SET Page Guard" refers to the page following the CLEAR |
308 |
Page Guard but is always in the SET state. |
309 |
|
310 |
Rough process |
311 |
|
312 |
The update routines must determine which pages have to be blitted to the |
313 |
screen. This job consists in finding the first_page that was touched. |
314 |
i.e. find the next page that is SET. Then, finding how many pages were |
315 |
touched starting from first_page. i.e. find the next page that is CLEAR. |
316 |
|
317 |
There are two cases to check: |
318 |
|
319 |
- Last Page is CLEAR: find_next_page_set() will reach the SET Page Guard |
320 |
but it is beyond the valid pageCount value. Therefore, we exit from the |
321 |
update routine. |
322 |
|
323 |
- Last Page is SET: first_page equals (pageCount - 1) and |
324 |
find_next_page_clear() will reach the CLEAR Page Guard. We blit the last |
325 |
page to the screen. On the next iteration, page equals pageCount and |
326 |
find_next_page_set() will reach the SET Page Guard. We still safely exit |
327 |
from the update routine because the SET Page Guard position is greater |
328 |
than pageCount. |
329 |
*/ |
330 |
|
331 |
static inline void update_display_window_vosf(driver_window *drv) |
332 |
{ |
333 |
int page = 0; |
334 |
for (;;) { |
335 |
const unsigned first_page = find_next_page_set(page); |
336 |
if (first_page >= mainBuffer.pageCount) |
337 |
break; |
338 |
|
339 |
page = find_next_page_clear(first_page); |
340 |
PFLAG_CLEAR_RANGE(first_page, page); |
341 |
|
342 |
// Make the dirty pages read-only again |
343 |
const int32 offset = first_page << mainBuffer.pageBits; |
344 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
345 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
346 |
|
347 |
// There is at least one line to update |
348 |
const int y1 = mainBuffer.pageInfo[first_page].top; |
349 |
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
350 |
const int height = y2 - y1 + 1; |
351 |
|
352 |
if (VideoMonitor.mode.depth < VDEPTH_8BIT) { |
353 |
|
354 |
// Update the_host_buffer and copy of the_buffer |
355 |
const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row; |
356 |
const int dst_bytes_per_row = drv->img->bytes_per_line; |
357 |
const int pixels_per_byte = VideoMonitor.mode.x / src_bytes_per_row; |
358 |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
359 |
for (j = y1; j <= y2; j++) { |
360 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, VideoMonitor.mode.x / pixels_per_byte); |
361 |
i1 += src_bytes_per_row; |
362 |
i2 += dst_bytes_per_row; |
363 |
} |
364 |
|
365 |
} else { |
366 |
|
367 |
// Update the_host_buffer and copy of the_buffer |
368 |
const int src_bytes_per_row = VideoMonitor.mode.bytes_per_row; |
369 |
const int dst_bytes_per_row = drv->img->bytes_per_line; |
370 |
const int bytes_per_pixel = src_bytes_per_row / VideoMonitor.mode.x; |
371 |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
372 |
for (j = y1; j <= y2; j++) { |
373 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, bytes_per_pixel * VideoMonitor.mode.x); |
374 |
i1 += src_bytes_per_row; |
375 |
i2 += dst_bytes_per_row; |
376 |
} |
377 |
} |
378 |
|
379 |
if (drv->have_shm) |
380 |
XShmPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height, 0); |
381 |
else |
382 |
XPutImage(x_display, drv->w, drv->gc, drv->img, 0, y1, 0, y1, VideoMonitor.mode.x, height); |
383 |
} |
384 |
mainBuffer.dirty = false; |
385 |
} |
386 |
|
387 |
|
388 |
/* |
389 |
* Update display for DGA mode and VOSF |
390 |
* (only in Real or Direct Addressing mode) |
391 |
*/ |
392 |
|
393 |
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
394 |
static inline void update_display_dga_vosf(void) |
395 |
{ |
396 |
int page = 0; |
397 |
for (;;) { |
398 |
const unsigned first_page = find_next_page_set(page); |
399 |
if (first_page >= mainBuffer.pageCount) |
400 |
break; |
401 |
|
402 |
page = find_next_page_clear(first_page); |
403 |
PFLAG_CLEAR_RANGE(first_page, page); |
404 |
|
405 |
// Make the dirty pages read-only again |
406 |
const int32 offset = first_page << mainBuffer.pageBits; |
407 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
408 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
409 |
|
410 |
// I am sure that y2 >= y1 and depth != 1 |
411 |
const int y1 = mainBuffer.pageInfo[first_page].top; |
412 |
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
413 |
|
414 |
const int bytes_per_row = VideoMonitor.mode.bytes_per_row; |
415 |
const int bytes_per_pixel = VideoMonitor.mode.bytes_per_row / VideoMonitor.mode.x; |
416 |
int i, j; |
417 |
|
418 |
// Check for first column from left and first column |
419 |
// from right that have changed |
420 |
int x1 = VideoMonitor.mode.x * bytes_per_pixel - 1; |
421 |
for (j = y1; j <= y2; j++) { |
422 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
423 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
424 |
for (i = 0; i < x1; i++) { |
425 |
if (p1[i] != p2[i]) { |
426 |
x1 = i; |
427 |
break; |
428 |
} |
429 |
} |
430 |
} |
431 |
x1 /= bytes_per_pixel; |
432 |
|
433 |
int x2 = x1 * bytes_per_pixel; |
434 |
for (j = y2; j >= y1; j--) { |
435 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
436 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
437 |
for (i = VideoMonitor.mode.x * bytes_per_pixel - 1; i > x2; i--) { |
438 |
if (p1[i] != p2[i]) { |
439 |
x2 = i; |
440 |
break; |
441 |
} |
442 |
} |
443 |
} |
444 |
x2 /= bytes_per_pixel; |
445 |
|
446 |
// Update the_host_buffer and copy of the_buffer |
447 |
// There should be at least one pixel to copy |
448 |
const int width = x2 - x1 + 1; |
449 |
i = y1 * bytes_per_row + x1 * bytes_per_pixel; |
450 |
for (j = y1; j <= y2; j++) { |
451 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * width); |
452 |
memcpy(the_buffer_copy + i, the_buffer + i, bytes_per_pixel * width); |
453 |
i += bytes_per_row; |
454 |
} |
455 |
} |
456 |
mainBuffer.dirty = false; |
457 |
} |
458 |
#endif |
459 |
|
460 |
#endif /* ENABLE_VOSF */ |
461 |
|
462 |
#endif /* VIDEO_VOSF_H */ |