1 |
/* |
2 |
* video_vosf.h - Video/graphics emulation, video on SEGV signals support |
3 |
* |
4 |
* Basilisk II (C) 1997-2001 Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#ifndef VIDEO_VOSF_H |
22 |
#define VIDEO_VOSF_H |
23 |
|
24 |
// Note: this file is #include'd in video_x.cpp |
25 |
#ifdef ENABLE_VOSF |
26 |
|
27 |
/* |
28 |
* Page-aligned memory allocation |
29 |
*/ |
30 |
|
31 |
// Align on page boundaries |
32 |
static uintptr align_on_page_boundary(uintptr size) |
33 |
{ |
34 |
const uint32 page_size = getpagesize(); |
35 |
const uint32 page_mask = page_size - 1; |
36 |
return (size + page_mask) & ~page_mask; |
37 |
} |
38 |
|
39 |
// Allocate memory on page boundary |
40 |
static void * allocate_framebuffer(uint32 size, uint8 * hint = 0) |
41 |
{ |
42 |
// Remind that the system can allocate at 0x00000000... |
43 |
return mmap((caddr_t)hint, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, zero_fd, 0); |
44 |
} |
45 |
|
46 |
|
47 |
/* |
48 |
* Screen fault handler |
49 |
*/ |
50 |
|
51 |
const uintptr INVALID_PC = (uintptr)-1; |
52 |
|
53 |
static inline void do_handle_screen_fault(uintptr addr, uintptr pc = INVALID_PC) |
54 |
{ |
55 |
/* Someone attempted to write to the frame buffer. Make it writeable |
56 |
* now so that the data could actually be written. It will be made |
57 |
* read-only back in one of the screen update_*() functions. |
58 |
*/ |
59 |
if ((addr >= mainBuffer.memStart) && (addr < mainBuffer.memEnd)) { |
60 |
const int page = (addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
61 |
caddr_t page_ad = (caddr_t)(addr & ~(mainBuffer.pageSize - 1)); |
62 |
LOCK_VOSF; |
63 |
PFLAG_SET(page); |
64 |
mprotect(page_ad, mainBuffer.pageSize, PROT_READ | PROT_WRITE); |
65 |
mainBuffer.dirty = true; |
66 |
UNLOCK_VOSF; |
67 |
return; |
68 |
} |
69 |
|
70 |
/* Otherwise, we don't know how to handle the fault, let it crash */ |
71 |
fprintf(stderr, "do_handle_screen_fault: unhandled address 0x%08X", addr); |
72 |
if (pc != INVALID_PC) |
73 |
fprintf(stderr, " [IP=0x%08X]", pc); |
74 |
fprintf(stderr, "\n"); |
75 |
|
76 |
signal(SIGSEGV, SIG_DFL); |
77 |
} |
78 |
|
79 |
#if defined(HAVE_SIGINFO_T) |
80 |
|
81 |
static void Screen_fault_handler(int, siginfo_t * sip, void *) |
82 |
{ |
83 |
D(bug("Screen_fault_handler: ADDR=0x%08X\n", sip->si_addr)); |
84 |
do_handle_screen_fault((uintptr)sip->si_addr); |
85 |
} |
86 |
|
87 |
#elif defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
88 |
|
89 |
# if defined(__i386__) && defined(__linux__) |
90 |
static void Screen_fault_handler(int, struct sigcontext scs) |
91 |
{ |
92 |
D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs.cr2, scs.eip)); |
93 |
do_handle_screen_fault((uintptr)scs.cr2, (uintptr)scs.eip); |
94 |
} |
95 |
|
96 |
# elif defined(__m68k__) && defined(__NetBSD__) |
97 |
|
98 |
# include <m68k/frame.h> |
99 |
static void Screen_fault_handler(int, int code, struct sigcontext *scp) |
100 |
{ |
101 |
D(bug("Screen_fault_handler: ADDR=0x%08X\n", code)); |
102 |
struct sigstate { |
103 |
int ss_flags; |
104 |
struct frame ss_frame; |
105 |
}; |
106 |
struct sigstate *state = (struct sigstate *)scp->sc_ap; |
107 |
uintptr fault_addr; |
108 |
switch (state->ss_frame.f_format) { |
109 |
case 7: // 68040 access error |
110 |
// "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown |
111 |
fault_addr = state->ss_frame.f_fmt7.f_fa; |
112 |
break; |
113 |
default: |
114 |
fault_addr = (uintptr)code; |
115 |
break; |
116 |
} |
117 |
do_handle_screen_fault(fault_addr); |
118 |
} |
119 |
|
120 |
# elif defined(__powerpc__) && defined(__linux__) |
121 |
|
122 |
static void Screen_fault_handler(int, struct sigcontext_struct *scs) |
123 |
{ |
124 |
D(bug("Screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", scs->regs->dar, scs->regs->nip)); |
125 |
do_handle_screen_fault((uintptr)scs->regs->dar, (uintptr)scs->regs->nip); |
126 |
} |
127 |
|
128 |
# else |
129 |
# error "No suitable subterfuge for Video on SEGV signals" |
130 |
# endif |
131 |
#else |
132 |
# error "Can't do Video on SEGV signals" |
133 |
#endif |
134 |
|
135 |
|
136 |
/* |
137 |
* Screen fault handler initialization |
138 |
*/ |
139 |
|
140 |
#if defined(HAVE_SIGINFO_T) |
141 |
static bool Screen_fault_handler_init() |
142 |
{ |
143 |
// Setup SIGSEGV handler to process writes to frame buffer |
144 |
sigemptyset(&vosf_sa.sa_mask); |
145 |
vosf_sa.sa_sigaction = Screen_fault_handler; |
146 |
vosf_sa.sa_flags = SA_SIGINFO; |
147 |
return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0); |
148 |
} |
149 |
#elif defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
150 |
static bool Screen_fault_handler_init() |
151 |
{ |
152 |
// Setup SIGSEGV handler to process writes to frame buffer |
153 |
sigemptyset(&vosf_sa.sa_mask); |
154 |
vosf_sa.sa_handler = (void (*)(int)) Screen_fault_handler; |
155 |
#if !EMULATED_68K && defined(__NetBSD__) |
156 |
sigaddset(&vosf_sa.sa_mask, SIGALRM); |
157 |
vosf_sa.sa_flags = SA_ONSTACK; |
158 |
#else |
159 |
vosf_sa.sa_flags = 0; |
160 |
#endif |
161 |
return (sigaction(SIGSEGV, &vosf_sa, NULL) == 0); |
162 |
} |
163 |
#endif |
164 |
|
165 |
|
166 |
/* |
167 |
* Update display for Windowed mode and VOSF |
168 |
*/ |
169 |
|
170 |
// From video_blit.cpp |
171 |
extern void (*Screen_blit)(uint8 * dest, const uint8 * source, uint32 length); |
172 |
extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order); |
173 |
|
174 |
/* How can we deal with array overrun conditions ? |
175 |
|
176 |
The state of the framebuffer pages that have been touched are maintained |
177 |
in the dirtyPages[] table. That table is (pageCount + 2) bytes long. |
178 |
|
179 |
Terminology |
180 |
|
181 |
"Last Page" denotes the pageCount-nth page, i.e. dirtyPages[pageCount - 1]. |
182 |
"CLEAR Page Guard" refers to the page following the Last Page but is always |
183 |
in the CLEAR state. "SET Page Guard" refers to the page following the CLEAR |
184 |
Page Guard but is always in the SET state. |
185 |
|
186 |
Rough process |
187 |
|
188 |
The update routines must determine which pages have to be blitted to the |
189 |
screen. This job consists in finding the first_page that was touched. |
190 |
i.e. find the next page that is SET. Then, finding how many pages were |
191 |
touched starting from first_page. i.e. find the next page that is CLEAR. |
192 |
|
193 |
There are two cases to check: |
194 |
|
195 |
- Last Page is CLEAR: find_next_page_set() will reach the SET Page Guard |
196 |
but it is beyond the valid pageCount value. Therefore, we exit from the |
197 |
update routine. |
198 |
|
199 |
- Last Page is SET: first_page equals (pageCount - 1) and |
200 |
find_next_page_clear() will reach the CLEAR Page Guard. We blit the last |
201 |
page to the screen. On the next iteration, page equals pageCount and |
202 |
find_next_page_set() will reach the SET Page Guard. We still safely exit |
203 |
from the update routine because the SET Page Guard position is greater |
204 |
than pageCount. |
205 |
*/ |
206 |
|
207 |
static inline void update_display_window_vosf(void) |
208 |
{ |
209 |
int page = 0; |
210 |
for (;;) { |
211 |
const int first_page = find_next_page_set(page); |
212 |
if (first_page >= mainBuffer.pageCount) |
213 |
break; |
214 |
|
215 |
page = find_next_page_clear(first_page); |
216 |
PFLAG_CLEAR_RANGE(first_page, page); |
217 |
|
218 |
// Make the dirty pages read-only again |
219 |
const int32 offset = first_page << mainBuffer.pageBits; |
220 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
221 |
mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ); |
222 |
|
223 |
// There is at least one line to update |
224 |
const int y1 = mainBuffer.pageInfo[first_page].top; |
225 |
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
226 |
const int height = y2 - y1 + 1; |
227 |
|
228 |
const int bytes_per_row = VideoMonitor.bytes_per_row; |
229 |
const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x; |
230 |
int i, j; |
231 |
|
232 |
// Check for first column from left and first column |
233 |
// from right that have changed |
234 |
int x1, x2, width; |
235 |
if (depth == 1) { |
236 |
|
237 |
x1 = VideoMonitor.x - 1; |
238 |
for (j = y1; j <= y2; j++) { |
239 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
240 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
241 |
for (i = 0; i < (x1>>3); i++) { |
242 |
if (p1[i] != p2[i]) { |
243 |
x1 = i << 3; |
244 |
break; |
245 |
} |
246 |
} |
247 |
} |
248 |
|
249 |
x2 = x1; |
250 |
for (j = y2; j >= y1; j--) { |
251 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
252 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
253 |
for (i = (VideoMonitor.x>>3) - 1; i > (x2>>3); i--) { |
254 |
if (p1[i] != p2[i]) { |
255 |
x2 = (i << 3) + 7; |
256 |
break; |
257 |
} |
258 |
} |
259 |
} |
260 |
width = x2 - x1 + 1; |
261 |
|
262 |
// Update the_host_buffer and copy of the_buffer |
263 |
i = y1 * bytes_per_row + (x1 >> 3); |
264 |
for (j = y1; j <= y2; j++) { |
265 |
Screen_blit(the_host_buffer + i, the_buffer + i, width >> 3); |
266 |
memcpy(the_buffer_copy + i, the_buffer + i, width >> 3); |
267 |
i += bytes_per_row; |
268 |
} |
269 |
|
270 |
} else { |
271 |
|
272 |
x1 = VideoMonitor.x * bytes_per_pixel - 1; |
273 |
for (j = y1; j <= y2; j++) { |
274 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
275 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
276 |
for (i = 0; i < x1; i++) { |
277 |
if (p1[i] != p2[i]) { |
278 |
x1 = i; |
279 |
break; |
280 |
} |
281 |
} |
282 |
} |
283 |
x1 /= bytes_per_pixel; |
284 |
|
285 |
x2 = x1 * bytes_per_pixel; |
286 |
for (j = y2; j >= y1; j--) { |
287 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
288 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
289 |
for (i = VideoMonitor.x * bytes_per_pixel - 1; i > x2; i--) { |
290 |
if (p1[i] != p2[i]) { |
291 |
x2 = i; |
292 |
break; |
293 |
} |
294 |
} |
295 |
} |
296 |
x2 /= bytes_per_pixel; |
297 |
width = x2 - x1 + 1; |
298 |
|
299 |
// Update the_host_buffer and copy of the_buffer |
300 |
i = y1 * bytes_per_row + x1 * bytes_per_pixel; |
301 |
for (j = y1; j <= y2; j++) { |
302 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * width); |
303 |
memcpy(the_buffer_copy + i, the_buffer + i, bytes_per_pixel * width); |
304 |
i += bytes_per_row; |
305 |
} |
306 |
} |
307 |
|
308 |
if (have_shm) |
309 |
XShmPutImage(x_display, the_win, the_gc, img, x1, y1, x1, y1, width, height, 0); |
310 |
else |
311 |
XPutImage(x_display, the_win, the_gc, img, x1, y1, x1, y1, width, height); |
312 |
} |
313 |
mainBuffer.dirty = false; |
314 |
} |
315 |
|
316 |
|
317 |
/* |
318 |
* Update display for DGA mode and VOSF |
319 |
* (only in Direct Addressing mode) |
320 |
*/ |
321 |
|
322 |
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
323 |
static inline void update_display_dga_vosf(void) |
324 |
{ |
325 |
int page = 0; |
326 |
for (;;) { |
327 |
const int first_page = find_next_page_set(page); |
328 |
if (first_page >= mainBuffer.pageCount) |
329 |
break; |
330 |
|
331 |
page = find_next_page_clear(first_page); |
332 |
PFLAG_CLEAR_RANGE(first_page, page); |
333 |
|
334 |
// Make the dirty pages read-only again |
335 |
const int32 offset = first_page << mainBuffer.pageBits; |
336 |
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
337 |
mprotect((caddr_t)(mainBuffer.memStart + offset), length, PROT_READ); |
338 |
|
339 |
// I am sure that y2 >= y1 and depth != 1 |
340 |
const int y1 = mainBuffer.pageInfo[first_page].top; |
341 |
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
342 |
|
343 |
const int bytes_per_row = VideoMonitor.bytes_per_row; |
344 |
const int bytes_per_pixel = VideoMonitor.bytes_per_row / VideoMonitor.x; |
345 |
int i, j; |
346 |
|
347 |
// Check for first column from left and first column |
348 |
// from right that have changed |
349 |
int x1 = VideoMonitor.x * bytes_per_pixel - 1; |
350 |
for (j = y1; j <= y2; j++) { |
351 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
352 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
353 |
for (i = 0; i < x1; i++) { |
354 |
if (p1[i] != p2[i]) { |
355 |
x1 = i; |
356 |
break; |
357 |
} |
358 |
} |
359 |
} |
360 |
x1 /= bytes_per_pixel; |
361 |
|
362 |
int x2 = x1 * bytes_per_pixel; |
363 |
for (j = y2; j >= y1; j--) { |
364 |
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
365 |
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
366 |
for (i = VideoMonitor.x * bytes_per_pixel - 1; i > x2; i--) { |
367 |
if (p1[i] != p2[i]) { |
368 |
x2 = i; |
369 |
break; |
370 |
} |
371 |
} |
372 |
} |
373 |
x2 /= bytes_per_pixel; |
374 |
|
375 |
// Update the_host_buffer and copy of the_buffer |
376 |
// There should be at least one pixel to copy |
377 |
const int width = x2 - x1 + 1; |
378 |
i = y1 * bytes_per_row + x1 * bytes_per_pixel; |
379 |
for (j = y1; j <= y2; j++) { |
380 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * width); |
381 |
memcpy(the_buffer_copy + i, the_buffer + i, bytes_per_pixel * width); |
382 |
i += bytes_per_row; |
383 |
} |
384 |
} |
385 |
mainBuffer.dirty = false; |
386 |
} |
387 |
#endif |
388 |
|
389 |
#endif /* ENABLE_VOSF */ |
390 |
|
391 |
#endif /* VIDEO_VOSF_H */ |