1 |
gbeauche |
1.1 |
/* |
2 |
|
|
* video_vosf.h - Video/graphics emulation, video on SEGV signals support |
3 |
|
|
* |
4 |
cebix |
1.37 |
* Basilisk II (C) 1997-2004 Christian Bauer |
5 |
gbeauche |
1.1 |
* |
6 |
|
|
* This program is free software; you can redistribute it and/or modify |
7 |
|
|
* it under the terms of the GNU General Public License as published by |
8 |
|
|
* the Free Software Foundation; either version 2 of the License, or |
9 |
|
|
* (at your option) any later version. |
10 |
|
|
* |
11 |
|
|
* This program is distributed in the hope that it will be useful, |
12 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
|
* GNU General Public License for more details. |
15 |
|
|
* |
16 |
|
|
* You should have received a copy of the GNU General Public License |
17 |
|
|
* along with this program; if not, write to the Free Software |
18 |
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
|
|
*/ |
20 |
|
|
|
21 |
|
|
#ifndef VIDEO_VOSF_H |
22 |
|
|
#define VIDEO_VOSF_H |
23 |
|
|
|
24 |
gbeauche |
1.34 |
// Note: this file must be #include'd only in video_x.cpp |
25 |
gbeauche |
1.1 |
#ifdef ENABLE_VOSF |
26 |
|
|
|
27 |
cebix |
1.19 |
#include <fcntl.h> |
28 |
|
|
#include <sys/mman.h> |
29 |
|
|
#include "sigsegv.h" |
30 |
|
|
#include "vm_alloc.h" |
31 |
|
|
|
32 |
gbeauche |
1.39 |
// Glue for SDL and X11 support |
33 |
gbeauche |
1.38 |
#ifdef USE_SDL_VIDEO |
34 |
|
|
#define MONITOR_INIT SDL_monitor_desc &monitor |
35 |
|
|
#define VIDEO_DRV_INIT driver_window *drv |
36 |
|
|
#define VIDEO_DRV_ROW_BYTES drv->s->pitch |
37 |
|
|
#define VIDEO_DRV_LOCK_PIXELS if (SDL_MUSTLOCK(drv->s)) SDL_LockSurface(drv->s) |
38 |
|
|
#define VIDEO_DRV_UNLOCK_PIXELS if (SDL_MUSTLOCK(drv->s)) SDL_UnlockSurface(drv->s) |
39 |
|
|
#else |
40 |
gbeauche |
1.39 |
#ifdef SHEEPSHAVER |
41 |
gbeauche |
1.38 |
#define MONITOR_INIT /* nothing */ |
42 |
gbeauche |
1.33 |
#define VIDEO_DRV_INIT /* nothing */ |
43 |
|
|
#define VIDEO_DRV_WINDOW the_win |
44 |
|
|
#define VIDEO_DRV_GC the_gc |
45 |
|
|
#define VIDEO_DRV_IMAGE img |
46 |
|
|
#define VIDEO_DRV_HAVE_SHM have_shm |
47 |
|
|
#else |
48 |
gbeauche |
1.38 |
#define MONITOR_INIT X11_monitor_desc &monitor |
49 |
gbeauche |
1.33 |
#define VIDEO_DRV_INIT driver_window *drv |
50 |
|
|
#define VIDEO_DRV_WINDOW drv->w |
51 |
|
|
#define VIDEO_DRV_GC drv->gc |
52 |
|
|
#define VIDEO_DRV_IMAGE drv->img |
53 |
|
|
#define VIDEO_DRV_HAVE_SHM drv->have_shm |
54 |
gbeauche |
1.38 |
#endif |
55 |
|
|
#define VIDEO_DRV_LOCK_PIXELS /* nothing */ |
56 |
|
|
#define VIDEO_DRV_UNLOCK_PIXELS /* nothing */ |
57 |
|
|
#define VIDEO_DRV_ROW_BYTES VIDEO_DRV_IMAGE->bytes_per_line |
58 |
gbeauche |
1.33 |
#endif |
59 |
|
|
|
60 |
cebix |
1.19 |
// Variables for Video on SEGV support |
61 |
gbeauche |
1.20 |
static uint8 *the_host_buffer; // Host frame buffer in VOSF mode |
62 |
cebix |
1.19 |
|
63 |
|
|
struct ScreenPageInfo { |
64 |
|
|
int top, bottom; // Mapping between this virtual page and Mac scanlines |
65 |
|
|
}; |
66 |
|
|
|
67 |
|
|
struct ScreenInfo { |
68 |
|
|
uintptr memStart; // Start address aligned to page boundary |
69 |
|
|
uint32 memLength; // Length of the memory addressed by the screen pages |
70 |
|
|
|
71 |
gbeauche |
1.27 |
uintptr pageSize; // Size of a page |
72 |
cebix |
1.19 |
int pageBits; // Shift count to get the page number |
73 |
|
|
uint32 pageCount; // Number of pages allocated to the screen |
74 |
|
|
|
75 |
|
|
bool dirty; // Flag: set if the frame buffer was touched |
76 |
|
|
char * dirtyPages; // Table of flags set if page was altered |
77 |
|
|
ScreenPageInfo * pageInfo; // Table of mappings page -> Mac scanlines |
78 |
|
|
}; |
79 |
|
|
|
80 |
|
|
static ScreenInfo mainBuffer; |
81 |
|
|
|
82 |
|
|
#define PFLAG_SET_VALUE 0x00 |
83 |
|
|
#define PFLAG_CLEAR_VALUE 0x01 |
84 |
|
|
#define PFLAG_SET_VALUE_4 0x00000000 |
85 |
|
|
#define PFLAG_CLEAR_VALUE_4 0x01010101 |
86 |
|
|
#define PFLAG_SET(page) mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE |
87 |
|
|
#define PFLAG_CLEAR(page) mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE |
88 |
|
|
#define PFLAG_ISSET(page) (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE) |
89 |
|
|
#define PFLAG_ISCLEAR(page) (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE) |
90 |
|
|
|
91 |
|
|
#ifdef UNALIGNED_PROFITABLE |
92 |
|
|
# define PFLAG_ISSET_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4) |
93 |
|
|
# define PFLAG_ISCLEAR_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4) |
94 |
|
|
#else |
95 |
|
|
# define PFLAG_ISSET_4(page) \ |
96 |
|
|
PFLAG_ISSET(page ) && PFLAG_ISSET(page+1) \ |
97 |
|
|
&& PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3) |
98 |
|
|
# define PFLAG_ISCLEAR_4(page) \ |
99 |
|
|
PFLAG_ISCLEAR(page ) && PFLAG_ISCLEAR(page+1) \ |
100 |
|
|
&& PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3) |
101 |
|
|
#endif |
102 |
|
|
|
103 |
|
|
// Set the selected page range [ first_page, last_page [ into the SET state |
104 |
|
|
#define PFLAG_SET_RANGE(first_page, last_page) \ |
105 |
|
|
memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \ |
106 |
|
|
(last_page) - (first_page)) |
107 |
|
|
|
108 |
|
|
// Set the selected page range [ first_page, last_page [ into the CLEAR state |
109 |
|
|
#define PFLAG_CLEAR_RANGE(first_page, last_page) \ |
110 |
|
|
memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \ |
111 |
|
|
(last_page) - (first_page)) |
112 |
|
|
|
113 |
|
|
#define PFLAG_SET_ALL do { \ |
114 |
|
|
PFLAG_SET_RANGE(0, mainBuffer.pageCount); \ |
115 |
|
|
mainBuffer.dirty = true; \ |
116 |
|
|
} while (0) |
117 |
|
|
|
118 |
|
|
#define PFLAG_CLEAR_ALL do { \ |
119 |
|
|
PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \ |
120 |
|
|
mainBuffer.dirty = false; \ |
121 |
|
|
} while (0) |
122 |
|
|
|
123 |
|
|
// Set the following macro definition to 1 if your system |
124 |
|
|
// provides a really fast strchr() implementation |
125 |
|
|
//#define HAVE_FAST_STRCHR 0 |
126 |
|
|
|
127 |
|
|
static inline int find_next_page_set(int page) |
128 |
|
|
{ |
129 |
|
|
#if HAVE_FAST_STRCHR |
130 |
|
|
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE); |
131 |
|
|
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
132 |
|
|
#else |
133 |
|
|
while (PFLAG_ISCLEAR_4(page)) |
134 |
|
|
page += 4; |
135 |
|
|
while (PFLAG_ISCLEAR(page)) |
136 |
|
|
page++; |
137 |
|
|
return page; |
138 |
|
|
#endif |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
static inline int find_next_page_clear(int page) |
142 |
|
|
{ |
143 |
|
|
#if HAVE_FAST_STRCHR |
144 |
|
|
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE); |
145 |
|
|
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
146 |
|
|
#else |
147 |
|
|
while (PFLAG_ISSET_4(page)) |
148 |
|
|
page += 4; |
149 |
|
|
while (PFLAG_ISSET(page)) |
150 |
|
|
page++; |
151 |
|
|
return page; |
152 |
|
|
#endif |
153 |
|
|
} |
154 |
|
|
|
155 |
gbeauche |
1.36 |
#ifdef HAVE_SPINLOCKS |
156 |
|
|
static spinlock_t vosf_lock = SPIN_LOCK_UNLOCKED; // Mutex to protect frame buffer (dirtyPages in fact) |
157 |
|
|
#define LOCK_VOSF spin_lock(&vosf_lock) |
158 |
|
|
#define UNLOCK_VOSF spin_unlock(&vosf_lock) |
159 |
|
|
#elif defined(HAVE_PTHREADS) |
160 |
cebix |
1.19 |
static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER; // Mutex to protect frame buffer (dirtyPages in fact) |
161 |
|
|
#define LOCK_VOSF pthread_mutex_lock(&vosf_lock); |
162 |
|
|
#define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock); |
163 |
|
|
#else |
164 |
|
|
#define LOCK_VOSF |
165 |
|
|
#define UNLOCK_VOSF |
166 |
|
|
#endif |
167 |
|
|
|
168 |
|
|
static int log_base_2(uint32 x) |
169 |
|
|
{ |
170 |
|
|
uint32 mask = 0x80000000; |
171 |
|
|
int l = 31; |
172 |
|
|
while (l >= 0 && (x & mask) == 0) { |
173 |
|
|
mask >>= 1; |
174 |
|
|
l--; |
175 |
|
|
} |
176 |
|
|
return l; |
177 |
|
|
} |
178 |
|
|
|
179 |
gbeauche |
1.20 |
// Extend size to page boundary |
180 |
|
|
static uint32 page_extend(uint32 size) |
181 |
|
|
{ |
182 |
|
|
const uint32 page_size = getpagesize(); |
183 |
|
|
const uint32 page_mask = page_size - 1; |
184 |
|
|
return (size + page_mask) & ~page_mask; |
185 |
|
|
} |
186 |
|
|
|
187 |
cebix |
1.19 |
|
188 |
|
|
/* |
189 |
gbeauche |
1.27 |
* Initialize the VOSF system (mainBuffer structure, SIGSEGV handler) |
190 |
cebix |
1.19 |
*/ |
191 |
|
|
|
192 |
gbeauche |
1.38 |
static bool video_vosf_init(MONITOR_INIT) |
193 |
cebix |
1.19 |
{ |
194 |
gbeauche |
1.33 |
VIDEO_MODE_INIT; |
195 |
cebix |
1.31 |
|
196 |
gbeauche |
1.27 |
const uintptr page_size = getpagesize(); |
197 |
|
|
const uintptr page_mask = page_size - 1; |
198 |
|
|
|
199 |
|
|
// Round up frame buffer base to page boundary |
200 |
|
|
mainBuffer.memStart = (((uintptr) the_buffer) + page_mask) & ~page_mask; |
201 |
|
|
|
202 |
|
|
// The frame buffer size shall already be aligned to page boundary (use page_extend) |
203 |
|
|
mainBuffer.memLength = the_buffer_size; |
204 |
|
|
|
205 |
|
|
mainBuffer.pageSize = page_size; |
206 |
|
|
mainBuffer.pageBits = log_base_2(mainBuffer.pageSize); |
207 |
|
|
mainBuffer.pageCount = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize; |
208 |
|
|
|
209 |
|
|
// The "2" more bytes requested are a safety net to insure the |
210 |
|
|
// loops in the update routines will terminate. |
211 |
|
|
// See "How can we deal with array overrun conditions ?" hereunder for further details. |
212 |
gbeauche |
1.29 |
mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2); |
213 |
|
|
if (mainBuffer.dirtyPages == NULL) |
214 |
gbeauche |
1.27 |
return false; |
215 |
cebix |
1.19 |
|
216 |
gbeauche |
1.27 |
PFLAG_CLEAR_ALL; |
217 |
|
|
PFLAG_CLEAR(mainBuffer.pageCount); |
218 |
|
|
PFLAG_SET(mainBuffer.pageCount+1); |
219 |
|
|
|
220 |
|
|
// Allocate and fill in pageInfo with start and end (inclusive) row in number of bytes |
221 |
gbeauche |
1.29 |
mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo)); |
222 |
|
|
if (mainBuffer.pageInfo == NULL) |
223 |
gbeauche |
1.27 |
return false; |
224 |
|
|
|
225 |
|
|
uint32 a = 0; |
226 |
cebix |
1.28 |
for (unsigned i = 0; i < mainBuffer.pageCount; i++) { |
227 |
gbeauche |
1.33 |
unsigned y1 = a / VIDEO_MODE_ROW_BYTES; |
228 |
|
|
if (y1 >= VIDEO_MODE_Y) |
229 |
|
|
y1 = VIDEO_MODE_Y - 1; |
230 |
|
|
|
231 |
|
|
unsigned y2 = (a + mainBuffer.pageSize) / VIDEO_MODE_ROW_BYTES; |
232 |
|
|
if (y2 >= VIDEO_MODE_Y) |
233 |
|
|
y2 = VIDEO_MODE_Y - 1; |
234 |
gbeauche |
1.27 |
|
235 |
|
|
mainBuffer.pageInfo[i].top = y1; |
236 |
|
|
mainBuffer.pageInfo[i].bottom = y2; |
237 |
|
|
|
238 |
|
|
a += mainBuffer.pageSize; |
239 |
|
|
if (a > mainBuffer.memLength) |
240 |
|
|
a = mainBuffer.memLength; |
241 |
|
|
} |
242 |
|
|
|
243 |
|
|
// We can now write-protect the frame buffer |
244 |
|
|
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
245 |
|
|
return false; |
246 |
|
|
|
247 |
|
|
// The frame buffer is sane, i.e. there is no write to it yet |
248 |
|
|
mainBuffer.dirty = false; |
249 |
|
|
return true; |
250 |
|
|
} |
251 |
cebix |
1.19 |
|
252 |
|
|
|
253 |
gbeauche |
1.27 |
/* |
254 |
|
|
* Deinitialize VOSF system |
255 |
|
|
*/ |
256 |
cebix |
1.19 |
|
257 |
gbeauche |
1.27 |
static void video_vosf_exit(void) |
258 |
|
|
{ |
259 |
gbeauche |
1.29 |
if (mainBuffer.pageInfo) { |
260 |
|
|
free(mainBuffer.pageInfo); |
261 |
|
|
mainBuffer.pageInfo = NULL; |
262 |
gbeauche |
1.27 |
} |
263 |
gbeauche |
1.29 |
if (mainBuffer.dirtyPages) { |
264 |
|
|
free(mainBuffer.dirtyPages); |
265 |
|
|
mainBuffer.dirtyPages = NULL; |
266 |
cebix |
1.19 |
} |
267 |
|
|
} |
268 |
|
|
|
269 |
|
|
|
270 |
gbeauche |
1.1 |
/* |
271 |
gbeauche |
1.20 |
* Screen fault handler |
272 |
gbeauche |
1.1 |
*/ |
273 |
|
|
|
274 |
gbeauche |
1.33 |
bool Screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
275 |
gbeauche |
1.1 |
{ |
276 |
gbeauche |
1.16 |
const uintptr addr = (uintptr)fault_address; |
277 |
|
|
|
278 |
gbeauche |
1.11 |
/* Someone attempted to write to the frame buffer. Make it writeable |
279 |
gbeauche |
1.20 |
* now so that the data could actually be written to. It will be made |
280 |
gbeauche |
1.11 |
* read-only back in one of the screen update_*() functions. |
281 |
|
|
*/ |
282 |
gbeauche |
1.27 |
if (((uintptr)addr - mainBuffer.memStart) < mainBuffer.memLength) { |
283 |
|
|
const int page = ((uintptr)addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
284 |
gbeauche |
1.11 |
LOCK_VOSF; |
285 |
|
|
PFLAG_SET(page); |
286 |
gbeauche |
1.27 |
vm_protect((char *)(addr & -mainBuffer.pageSize), mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE); |
287 |
gbeauche |
1.13 |
mainBuffer.dirty = true; |
288 |
gbeauche |
1.11 |
UNLOCK_VOSF; |
289 |
gbeauche |
1.16 |
return true; |
290 |
gbeauche |
1.1 |
} |
291 |
|
|
|
292 |
gbeauche |
1.11 |
/* Otherwise, we don't know how to handle the fault, let it crash */ |
293 |
gbeauche |
1.16 |
return false; |
294 |
gbeauche |
1.1 |
} |
295 |
|
|
|
296 |
gbeauche |
1.20 |
|
297 |
gbeauche |
1.1 |
/* |
298 |
|
|
* Update display for Windowed mode and VOSF |
299 |
|
|
*/ |
300 |
|
|
|
301 |
gbeauche |
1.12 |
/* How can we deal with array overrun conditions ? |
302 |
|
|
|
303 |
|
|
The state of the framebuffer pages that have been touched are maintained |
304 |
|
|
in the dirtyPages[] table. That table is (pageCount + 2) bytes long. |
305 |
|
|
|
306 |
|
|
Terminology |
307 |
|
|
|
308 |
|
|
"Last Page" denotes the pageCount-nth page, i.e. dirtyPages[pageCount - 1]. |
309 |
|
|
"CLEAR Page Guard" refers to the page following the Last Page but is always |
310 |
|
|
in the CLEAR state. "SET Page Guard" refers to the page following the CLEAR |
311 |
|
|
Page Guard but is always in the SET state. |
312 |
|
|
|
313 |
|
|
Rough process |
314 |
|
|
|
315 |
gbeauche |
1.13 |
The update routines must determine which pages have to be blitted to the |
316 |
gbeauche |
1.12 |
screen. This job consists in finding the first_page that was touched. |
317 |
|
|
i.e. find the next page that is SET. Then, finding how many pages were |
318 |
|
|
touched starting from first_page. i.e. find the next page that is CLEAR. |
319 |
|
|
|
320 |
gbeauche |
1.13 |
There are two cases to check: |
321 |
gbeauche |
1.12 |
|
322 |
|
|
- Last Page is CLEAR: find_next_page_set() will reach the SET Page Guard |
323 |
|
|
but it is beyond the valid pageCount value. Therefore, we exit from the |
324 |
|
|
update routine. |
325 |
|
|
|
326 |
|
|
- Last Page is SET: first_page equals (pageCount - 1) and |
327 |
|
|
find_next_page_clear() will reach the CLEAR Page Guard. We blit the last |
328 |
|
|
page to the screen. On the next iteration, page equals pageCount and |
329 |
|
|
find_next_page_set() will reach the SET Page Guard. We still safely exit |
330 |
|
|
from the update routine because the SET Page Guard position is greater |
331 |
|
|
than pageCount. |
332 |
|
|
*/ |
333 |
|
|
|
334 |
gbeauche |
1.33 |
static inline void update_display_window_vosf(VIDEO_DRV_INIT) |
335 |
gbeauche |
1.1 |
{ |
336 |
gbeauche |
1.33 |
VIDEO_MODE_INIT; |
337 |
cebix |
1.31 |
|
338 |
gbeauche |
1.1 |
int page = 0; |
339 |
|
|
for (;;) { |
340 |
cebix |
1.28 |
const unsigned first_page = find_next_page_set(page); |
341 |
gbeauche |
1.11 |
if (first_page >= mainBuffer.pageCount) |
342 |
gbeauche |
1.1 |
break; |
343 |
gbeauche |
1.11 |
|
344 |
|
|
page = find_next_page_clear(first_page); |
345 |
|
|
PFLAG_CLEAR_RANGE(first_page, page); |
346 |
cebix |
1.7 |
|
347 |
gbeauche |
1.1 |
// Make the dirty pages read-only again |
348 |
|
|
const int32 offset = first_page << mainBuffer.pageBits; |
349 |
|
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
350 |
gbeauche |
1.17 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
351 |
gbeauche |
1.1 |
|
352 |
|
|
// There is at least one line to update |
353 |
|
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
354 |
|
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
355 |
|
|
const int height = y2 - y1 + 1; |
356 |
gbeauche |
1.38 |
|
357 |
|
|
VIDEO_DRV_LOCK_PIXELS; |
358 |
|
|
|
359 |
gbeauche |
1.33 |
if (VIDEO_MODE_DEPTH < VIDEO_DEPTH_8BIT) { |
360 |
cebix |
1.6 |
|
361 |
|
|
// Update the_host_buffer and copy of the_buffer |
362 |
gbeauche |
1.33 |
const int src_bytes_per_row = VIDEO_MODE_ROW_BYTES; |
363 |
gbeauche |
1.38 |
const int dst_bytes_per_row = VIDEO_DRV_ROW_BYTES; |
364 |
gbeauche |
1.33 |
const int pixels_per_byte = VIDEO_MODE_X / src_bytes_per_row; |
365 |
cebix |
1.24 |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
366 |
cebix |
1.6 |
for (j = y1; j <= y2; j++) { |
367 |
gbeauche |
1.33 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, VIDEO_MODE_X / pixels_per_byte); |
368 |
cebix |
1.24 |
i1 += src_bytes_per_row; |
369 |
|
|
i2 += dst_bytes_per_row; |
370 |
cebix |
1.6 |
} |
371 |
|
|
|
372 |
|
|
} else { |
373 |
|
|
|
374 |
|
|
// Update the_host_buffer and copy of the_buffer |
375 |
gbeauche |
1.33 |
const int src_bytes_per_row = VIDEO_MODE_ROW_BYTES; |
376 |
gbeauche |
1.38 |
const int dst_bytes_per_row = VIDEO_DRV_ROW_BYTES; |
377 |
gbeauche |
1.33 |
const int bytes_per_pixel = src_bytes_per_row / VIDEO_MODE_X; |
378 |
cebix |
1.23 |
int i1 = y1 * src_bytes_per_row, i2 = y1 * dst_bytes_per_row, j; |
379 |
cebix |
1.6 |
for (j = y1; j <= y2; j++) { |
380 |
gbeauche |
1.33 |
Screen_blit(the_host_buffer + i2, the_buffer + i1, bytes_per_pixel * VIDEO_MODE_X); |
381 |
cebix |
1.23 |
i1 += src_bytes_per_row; |
382 |
|
|
i2 += dst_bytes_per_row; |
383 |
cebix |
1.6 |
} |
384 |
gbeauche |
1.1 |
} |
385 |
cebix |
1.15 |
|
386 |
gbeauche |
1.38 |
VIDEO_DRV_UNLOCK_PIXELS; |
387 |
|
|
|
388 |
|
|
#ifdef USE_SDL_VIDEO |
389 |
|
|
SDL_UpdateRect(drv->s, 0, y1, VIDEO_MODE_X, height); |
390 |
|
|
#else |
391 |
gbeauche |
1.33 |
if (VIDEO_DRV_HAVE_SHM) |
392 |
|
|
XShmPutImage(x_display, VIDEO_DRV_WINDOW, VIDEO_DRV_GC, VIDEO_DRV_IMAGE, 0, y1, 0, y1, VIDEO_MODE_X, height, 0); |
393 |
gbeauche |
1.1 |
else |
394 |
gbeauche |
1.33 |
XPutImage(x_display, VIDEO_DRV_WINDOW, VIDEO_DRV_GC, VIDEO_DRV_IMAGE, 0, y1, 0, y1, VIDEO_MODE_X, height); |
395 |
gbeauche |
1.38 |
#endif |
396 |
gbeauche |
1.1 |
} |
397 |
gbeauche |
1.13 |
mainBuffer.dirty = false; |
398 |
gbeauche |
1.1 |
} |
399 |
|
|
|
400 |
|
|
|
401 |
|
|
/* |
402 |
|
|
* Update display for DGA mode and VOSF |
403 |
gbeauche |
1.20 |
* (only in Real or Direct Addressing mode) |
404 |
gbeauche |
1.1 |
*/ |
405 |
|
|
|
406 |
|
|
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
407 |
|
|
static inline void update_display_dga_vosf(void) |
408 |
|
|
{ |
409 |
gbeauche |
1.33 |
VIDEO_MODE_INIT; |
410 |
cebix |
1.31 |
|
411 |
gbeauche |
1.1 |
int page = 0; |
412 |
|
|
for (;;) { |
413 |
cebix |
1.28 |
const unsigned first_page = find_next_page_set(page); |
414 |
gbeauche |
1.11 |
if (first_page >= mainBuffer.pageCount) |
415 |
gbeauche |
1.1 |
break; |
416 |
gbeauche |
1.11 |
|
417 |
|
|
page = find_next_page_clear(first_page); |
418 |
|
|
PFLAG_CLEAR_RANGE(first_page, page); |
419 |
|
|
|
420 |
gbeauche |
1.1 |
// Make the dirty pages read-only again |
421 |
|
|
const int32 offset = first_page << mainBuffer.pageBits; |
422 |
|
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
423 |
gbeauche |
1.17 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
424 |
gbeauche |
1.1 |
|
425 |
|
|
// I am sure that y2 >= y1 and depth != 1 |
426 |
|
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
427 |
|
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
428 |
|
|
|
429 |
gbeauche |
1.33 |
const int bytes_per_row = VIDEO_MODE_ROW_BYTES; |
430 |
|
|
const int bytes_per_pixel = VIDEO_MODE_ROW_BYTES / VIDEO_MODE_X; |
431 |
gbeauche |
1.1 |
int i, j; |
432 |
|
|
|
433 |
|
|
// Check for first column from left and first column |
434 |
|
|
// from right that have changed |
435 |
gbeauche |
1.33 |
int x1 = VIDEO_MODE_X * bytes_per_pixel - 1; |
436 |
gbeauche |
1.1 |
for (j = y1; j <= y2; j++) { |
437 |
|
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
438 |
|
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
439 |
|
|
for (i = 0; i < x1; i++) { |
440 |
|
|
if (p1[i] != p2[i]) { |
441 |
|
|
x1 = i; |
442 |
|
|
break; |
443 |
|
|
} |
444 |
|
|
} |
445 |
|
|
} |
446 |
|
|
x1 /= bytes_per_pixel; |
447 |
|
|
|
448 |
|
|
int x2 = x1 * bytes_per_pixel; |
449 |
|
|
for (j = y2; j >= y1; j--) { |
450 |
|
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
451 |
|
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
452 |
gbeauche |
1.33 |
for (i = VIDEO_MODE_X * bytes_per_pixel - 1; i > x2; i--) { |
453 |
gbeauche |
1.1 |
if (p1[i] != p2[i]) { |
454 |
|
|
x2 = i; |
455 |
|
|
break; |
456 |
|
|
} |
457 |
|
|
} |
458 |
|
|
} |
459 |
|
|
x2 /= bytes_per_pixel; |
460 |
|
|
|
461 |
|
|
// Update the_host_buffer and copy of the_buffer |
462 |
|
|
// There should be at least one pixel to copy |
463 |
gbeauche |
1.38 |
VIDEO_DRV_LOCK_PIXELS; |
464 |
gbeauche |
1.1 |
const int width = x2 - x1 + 1; |
465 |
|
|
i = y1 * bytes_per_row + x1 * bytes_per_pixel; |
466 |
|
|
for (j = y1; j <= y2; j++) { |
467 |
gbeauche |
1.13 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * width); |
468 |
gbeauche |
1.1 |
memcpy(the_buffer_copy + i, the_buffer + i, bytes_per_pixel * width); |
469 |
|
|
i += bytes_per_row; |
470 |
|
|
} |
471 |
gbeauche |
1.38 |
VIDEO_DRV_UNLOCK_PIXELS; |
472 |
gbeauche |
1.1 |
} |
473 |
gbeauche |
1.13 |
mainBuffer.dirty = false; |
474 |
gbeauche |
1.1 |
} |
475 |
|
|
#endif |
476 |
|
|
|
477 |
|
|
#endif /* ENABLE_VOSF */ |
478 |
|
|
|
479 |
|
|
#endif /* VIDEO_VOSF_H */ |