1 |
gbeauche |
1.1 |
/* |
2 |
|
|
* video_vosf.h - Video/graphics emulation, video on SEGV signals support |
3 |
|
|
* |
4 |
gbeauche |
1.13 |
* Basilisk II (C) 1997-2001 Christian Bauer |
5 |
gbeauche |
1.1 |
* |
6 |
|
|
* This program is free software; you can redistribute it and/or modify |
7 |
|
|
* it under the terms of the GNU General Public License as published by |
8 |
|
|
* the Free Software Foundation; either version 2 of the License, or |
9 |
|
|
* (at your option) any later version. |
10 |
|
|
* |
11 |
|
|
* This program is distributed in the hope that it will be useful, |
12 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
|
* GNU General Public License for more details. |
15 |
|
|
* |
16 |
|
|
* You should have received a copy of the GNU General Public License |
17 |
|
|
* along with this program; if not, write to the Free Software |
18 |
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
|
|
*/ |
20 |
|
|
|
21 |
|
|
#ifndef VIDEO_VOSF_H |
22 |
|
|
#define VIDEO_VOSF_H |
23 |
|
|
|
24 |
|
|
// Note: this file is #include'd in video_x.cpp |
25 |
|
|
#ifdef ENABLE_VOSF |
26 |
|
|
|
27 |
cebix |
1.19 |
#include <fcntl.h> |
28 |
|
|
#include <sys/mman.h> |
29 |
|
|
#include "sigsegv.h" |
30 |
|
|
#include "vm_alloc.h" |
31 |
|
|
|
32 |
|
|
#ifdef ENABLE_MON |
33 |
|
|
# include "mon.h" |
34 |
|
|
#endif |
35 |
|
|
|
36 |
|
|
// Variables for Video on SEGV support |
37 |
gbeauche |
1.20 |
static uint8 *the_host_buffer; // Host frame buffer in VOSF mode |
38 |
|
|
static uint32 the_buffer_size; // Size of allocated the_buffer |
39 |
cebix |
1.19 |
|
40 |
|
|
struct ScreenPageInfo { |
41 |
|
|
int top, bottom; // Mapping between this virtual page and Mac scanlines |
42 |
|
|
}; |
43 |
|
|
|
44 |
|
|
struct ScreenInfo { |
45 |
|
|
uintptr memBase; // Real start address |
46 |
|
|
uintptr memStart; // Start address aligned to page boundary |
47 |
|
|
uintptr memEnd; // Address of one-past-the-end of the screen |
48 |
|
|
uint32 memLength; // Length of the memory addressed by the screen pages |
49 |
|
|
|
50 |
|
|
uint32 pageSize; // Size of a page |
51 |
|
|
int pageBits; // Shift count to get the page number |
52 |
|
|
uint32 pageCount; // Number of pages allocated to the screen |
53 |
|
|
|
54 |
|
|
bool dirty; // Flag: set if the frame buffer was touched |
55 |
|
|
char * dirtyPages; // Table of flags set if page was altered |
56 |
|
|
ScreenPageInfo * pageInfo; // Table of mappings page -> Mac scanlines |
57 |
|
|
}; |
58 |
|
|
|
59 |
|
|
static ScreenInfo mainBuffer; |
60 |
|
|
|
61 |
|
|
#define PFLAG_SET_VALUE 0x00 |
62 |
|
|
#define PFLAG_CLEAR_VALUE 0x01 |
63 |
|
|
#define PFLAG_SET_VALUE_4 0x00000000 |
64 |
|
|
#define PFLAG_CLEAR_VALUE_4 0x01010101 |
65 |
|
|
#define PFLAG_SET(page) mainBuffer.dirtyPages[page] = PFLAG_SET_VALUE |
66 |
|
|
#define PFLAG_CLEAR(page) mainBuffer.dirtyPages[page] = PFLAG_CLEAR_VALUE |
67 |
|
|
#define PFLAG_ISSET(page) (mainBuffer.dirtyPages[page] == PFLAG_SET_VALUE) |
68 |
|
|
#define PFLAG_ISCLEAR(page) (mainBuffer.dirtyPages[page] != PFLAG_SET_VALUE) |
69 |
|
|
|
70 |
|
|
#ifdef UNALIGNED_PROFITABLE |
71 |
|
|
# define PFLAG_ISSET_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_SET_VALUE_4) |
72 |
|
|
# define PFLAG_ISCLEAR_4(page) (*((uint32 *)(mainBuffer.dirtyPages + (page))) == PFLAG_CLEAR_VALUE_4) |
73 |
|
|
#else |
74 |
|
|
# define PFLAG_ISSET_4(page) \ |
75 |
|
|
PFLAG_ISSET(page ) && PFLAG_ISSET(page+1) \ |
76 |
|
|
&& PFLAG_ISSET(page+2) && PFLAG_ISSET(page+3) |
77 |
|
|
# define PFLAG_ISCLEAR_4(page) \ |
78 |
|
|
PFLAG_ISCLEAR(page ) && PFLAG_ISCLEAR(page+1) \ |
79 |
|
|
&& PFLAG_ISCLEAR(page+2) && PFLAG_ISCLEAR(page+3) |
80 |
|
|
#endif |
81 |
|
|
|
82 |
|
|
// Set the selected page range [ first_page, last_page [ into the SET state |
83 |
|
|
#define PFLAG_SET_RANGE(first_page, last_page) \ |
84 |
|
|
memset(mainBuffer.dirtyPages + (first_page), PFLAG_SET_VALUE, \ |
85 |
|
|
(last_page) - (first_page)) |
86 |
|
|
|
87 |
|
|
// Set the selected page range [ first_page, last_page [ into the CLEAR state |
88 |
|
|
#define PFLAG_CLEAR_RANGE(first_page, last_page) \ |
89 |
|
|
memset(mainBuffer.dirtyPages + (first_page), PFLAG_CLEAR_VALUE, \ |
90 |
|
|
(last_page) - (first_page)) |
91 |
|
|
|
92 |
|
|
#define PFLAG_SET_ALL do { \ |
93 |
|
|
PFLAG_SET_RANGE(0, mainBuffer.pageCount); \ |
94 |
|
|
mainBuffer.dirty = true; \ |
95 |
|
|
} while (0) |
96 |
|
|
|
97 |
|
|
#define PFLAG_CLEAR_ALL do { \ |
98 |
|
|
PFLAG_CLEAR_RANGE(0, mainBuffer.pageCount); \ |
99 |
|
|
mainBuffer.dirty = false; \ |
100 |
|
|
} while (0) |
101 |
|
|
|
102 |
|
|
// Set the following macro definition to 1 if your system |
103 |
|
|
// provides a really fast strchr() implementation |
104 |
|
|
//#define HAVE_FAST_STRCHR 0 |
105 |
|
|
|
106 |
|
|
static inline int find_next_page_set(int page) |
107 |
|
|
{ |
108 |
|
|
#if HAVE_FAST_STRCHR |
109 |
|
|
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_SET_VALUE); |
110 |
|
|
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
111 |
|
|
#else |
112 |
|
|
while (PFLAG_ISCLEAR_4(page)) |
113 |
|
|
page += 4; |
114 |
|
|
while (PFLAG_ISCLEAR(page)) |
115 |
|
|
page++; |
116 |
|
|
return page; |
117 |
|
|
#endif |
118 |
|
|
} |
119 |
|
|
|
120 |
|
|
static inline int find_next_page_clear(int page) |
121 |
|
|
{ |
122 |
|
|
#if HAVE_FAST_STRCHR |
123 |
|
|
char *match = strchr(mainBuffer.dirtyPages + page, PFLAG_CLEAR_VALUE); |
124 |
|
|
return match ? match - mainBuffer.dirtyPages : mainBuffer.pageCount; |
125 |
|
|
#else |
126 |
|
|
while (PFLAG_ISSET_4(page)) |
127 |
|
|
page += 4; |
128 |
|
|
while (PFLAG_ISSET(page)) |
129 |
|
|
page++; |
130 |
|
|
return page; |
131 |
|
|
#endif |
132 |
|
|
} |
133 |
|
|
|
134 |
|
|
#ifdef HAVE_PTHREADS |
135 |
|
|
static pthread_mutex_t vosf_lock = PTHREAD_MUTEX_INITIALIZER; // Mutex to protect frame buffer (dirtyPages in fact) |
136 |
|
|
#define LOCK_VOSF pthread_mutex_lock(&vosf_lock); |
137 |
|
|
#define UNLOCK_VOSF pthread_mutex_unlock(&vosf_lock); |
138 |
|
|
#else |
139 |
|
|
#define LOCK_VOSF |
140 |
|
|
#define UNLOCK_VOSF |
141 |
|
|
#endif |
142 |
|
|
|
143 |
|
|
static int log_base_2(uint32 x) |
144 |
|
|
{ |
145 |
|
|
uint32 mask = 0x80000000; |
146 |
|
|
int l = 31; |
147 |
|
|
while (l >= 0 && (x & mask) == 0) { |
148 |
|
|
mask >>= 1; |
149 |
|
|
l--; |
150 |
|
|
} |
151 |
|
|
return l; |
152 |
|
|
} |
153 |
|
|
|
154 |
gbeauche |
1.20 |
// Extend size to page boundary |
155 |
|
|
static uint32 page_extend(uint32 size) |
156 |
|
|
{ |
157 |
|
|
const uint32 page_size = getpagesize(); |
158 |
|
|
const uint32 page_mask = page_size - 1; |
159 |
|
|
return (size + page_mask) & ~page_mask; |
160 |
|
|
} |
161 |
|
|
|
162 |
cebix |
1.19 |
|
163 |
|
|
/* |
164 |
|
|
* Initialize mainBuffer structure |
165 |
|
|
*/ |
166 |
|
|
|
167 |
|
|
static bool video_init_buffer(void) |
168 |
|
|
{ |
169 |
|
|
if (use_vosf) { |
170 |
|
|
const uint32 page_size = getpagesize(); |
171 |
|
|
const uint32 page_mask = page_size - 1; |
172 |
|
|
|
173 |
|
|
mainBuffer.memBase = (uintptr) the_buffer; |
174 |
gbeauche |
1.20 |
// Round up frame buffer base to page boundary |
175 |
cebix |
1.19 |
mainBuffer.memStart = (uintptr)((((unsigned long) the_buffer) + page_mask) & ~page_mask); |
176 |
|
|
mainBuffer.memLength = the_buffer_size; |
177 |
|
|
mainBuffer.memEnd = mainBuffer.memStart + mainBuffer.memLength; |
178 |
|
|
|
179 |
|
|
mainBuffer.pageSize = page_size; |
180 |
|
|
mainBuffer.pageCount = (mainBuffer.memLength + page_mask)/mainBuffer.pageSize; |
181 |
|
|
mainBuffer.pageBits = log_base_2(mainBuffer.pageSize); |
182 |
|
|
|
183 |
|
|
if (mainBuffer.dirtyPages) { |
184 |
|
|
free(mainBuffer.dirtyPages); |
185 |
|
|
mainBuffer.dirtyPages = NULL; |
186 |
|
|
} |
187 |
|
|
|
188 |
|
|
mainBuffer.dirtyPages = (char *) malloc(mainBuffer.pageCount + 2); |
189 |
|
|
|
190 |
|
|
if (mainBuffer.pageInfo) { |
191 |
|
|
free(mainBuffer.pageInfo); |
192 |
|
|
mainBuffer.pageInfo = NULL; |
193 |
|
|
} |
194 |
|
|
|
195 |
|
|
mainBuffer.pageInfo = (ScreenPageInfo *) malloc(mainBuffer.pageCount * sizeof(ScreenPageInfo)); |
196 |
|
|
|
197 |
|
|
if ((mainBuffer.dirtyPages == 0) || (mainBuffer.pageInfo == 0)) |
198 |
|
|
return false; |
199 |
|
|
|
200 |
|
|
mainBuffer.dirty = false; |
201 |
|
|
|
202 |
|
|
PFLAG_CLEAR_ALL; |
203 |
|
|
// Safety net to insure the loops in the update routines will terminate |
204 |
gbeauche |
1.20 |
// See "How can we deal with array overrun conditions ?" hereunder for further details |
205 |
cebix |
1.19 |
PFLAG_CLEAR(mainBuffer.pageCount); |
206 |
|
|
PFLAG_SET(mainBuffer.pageCount+1); |
207 |
|
|
|
208 |
|
|
uint32 a = 0; |
209 |
|
|
for (int i = 0; i < mainBuffer.pageCount; i++) { |
210 |
|
|
int y1 = a / VideoMonitor.mode.bytes_per_row; |
211 |
|
|
if (y1 >= VideoMonitor.mode.y) |
212 |
|
|
y1 = VideoMonitor.mode.y - 1; |
213 |
|
|
|
214 |
|
|
int y2 = (a + mainBuffer.pageSize) / VideoMonitor.mode.bytes_per_row; |
215 |
|
|
if (y2 >= VideoMonitor.mode.y) |
216 |
|
|
y2 = VideoMonitor.mode.y - 1; |
217 |
|
|
|
218 |
|
|
mainBuffer.pageInfo[i].top = y1; |
219 |
|
|
mainBuffer.pageInfo[i].bottom = y2; |
220 |
|
|
|
221 |
|
|
a += mainBuffer.pageSize; |
222 |
|
|
if (a > mainBuffer.memLength) |
223 |
|
|
a = mainBuffer.memLength; |
224 |
|
|
} |
225 |
|
|
|
226 |
|
|
// We can now write-protect the frame buffer |
227 |
|
|
if (vm_protect((char *)mainBuffer.memStart, mainBuffer.memLength, VM_PAGE_READ) != 0) |
228 |
|
|
return false; |
229 |
|
|
} |
230 |
|
|
return true; |
231 |
|
|
} |
232 |
|
|
|
233 |
|
|
|
234 |
gbeauche |
1.1 |
/* |
235 |
gbeauche |
1.20 |
* Screen fault handler |
236 |
gbeauche |
1.1 |
*/ |
237 |
|
|
|
238 |
gbeauche |
1.16 |
static bool screen_fault_handler(sigsegv_address_t fault_address, sigsegv_address_t fault_instruction) |
239 |
gbeauche |
1.1 |
{ |
240 |
gbeauche |
1.16 |
D(bug("screen_fault_handler: ADDR=0x%08X from IP=0x%08X\n", fault_address, fault_instruction)); |
241 |
|
|
const uintptr addr = (uintptr)fault_address; |
242 |
|
|
|
243 |
gbeauche |
1.11 |
/* Someone attempted to write to the frame buffer. Make it writeable |
244 |
gbeauche |
1.20 |
* now so that the data could actually be written to. It will be made |
245 |
gbeauche |
1.11 |
* read-only back in one of the screen update_*() functions. |
246 |
|
|
*/ |
247 |
|
|
if ((addr >= mainBuffer.memStart) && (addr < mainBuffer.memEnd)) { |
248 |
|
|
const int page = (addr - mainBuffer.memStart) >> mainBuffer.pageBits; |
249 |
gbeauche |
1.17 |
caddr_t page_ad = (caddr_t)(addr & -mainBuffer.pageSize); |
250 |
gbeauche |
1.11 |
LOCK_VOSF; |
251 |
|
|
PFLAG_SET(page); |
252 |
gbeauche |
1.17 |
vm_protect((char *)page_ad, mainBuffer.pageSize, VM_PAGE_READ | VM_PAGE_WRITE); |
253 |
gbeauche |
1.13 |
mainBuffer.dirty = true; |
254 |
gbeauche |
1.11 |
UNLOCK_VOSF; |
255 |
gbeauche |
1.16 |
return true; |
256 |
gbeauche |
1.1 |
} |
257 |
|
|
|
258 |
gbeauche |
1.11 |
/* Otherwise, we don't know how to handle the fault, let it crash */ |
259 |
|
|
fprintf(stderr, "do_handle_screen_fault: unhandled address 0x%08X", addr); |
260 |
gbeauche |
1.16 |
if (fault_instruction != SIGSEGV_INVALID_PC) |
261 |
|
|
fprintf(stderr, " [IP=0x%08X]", fault_instruction); |
262 |
gbeauche |
1.11 |
fprintf(stderr, "\n"); |
263 |
cebix |
1.19 |
#if EMULATED_68K |
264 |
|
|
uaecptr nextpc; |
265 |
|
|
extern void m68k_dumpstate(uaecptr *nextpc); |
266 |
|
|
m68k_dumpstate(&nextpc); |
267 |
|
|
#endif |
268 |
|
|
#ifdef ENABLE_MON |
269 |
|
|
char *arg[4] = {"mon", "-m", "-r", NULL}; |
270 |
|
|
mon(3, arg); |
271 |
|
|
QuitEmulator(); |
272 |
|
|
#endif |
273 |
gbeauche |
1.16 |
return false; |
274 |
gbeauche |
1.1 |
} |
275 |
|
|
|
276 |
gbeauche |
1.20 |
|
277 |
gbeauche |
1.1 |
/* |
278 |
|
|
* Update display for Windowed mode and VOSF |
279 |
|
|
*/ |
280 |
|
|
|
281 |
gbeauche |
1.13 |
// From video_blit.cpp |
282 |
|
|
extern void (*Screen_blit)(uint8 * dest, const uint8 * source, uint32 length); |
283 |
|
|
extern bool Screen_blitter_init(XVisualInfo * visual_info, bool native_byte_order); |
284 |
|
|
|
285 |
gbeauche |
1.12 |
/* How can we deal with array overrun conditions ? |
286 |
|
|
|
287 |
|
|
The state of the framebuffer pages that have been touched are maintained |
288 |
|
|
in the dirtyPages[] table. That table is (pageCount + 2) bytes long. |
289 |
|
|
|
290 |
|
|
Terminology |
291 |
|
|
|
292 |
|
|
"Last Page" denotes the pageCount-nth page, i.e. dirtyPages[pageCount - 1]. |
293 |
|
|
"CLEAR Page Guard" refers to the page following the Last Page but is always |
294 |
|
|
in the CLEAR state. "SET Page Guard" refers to the page following the CLEAR |
295 |
|
|
Page Guard but is always in the SET state. |
296 |
|
|
|
297 |
|
|
Rough process |
298 |
|
|
|
299 |
gbeauche |
1.13 |
The update routines must determine which pages have to be blitted to the |
300 |
gbeauche |
1.12 |
screen. This job consists in finding the first_page that was touched. |
301 |
|
|
i.e. find the next page that is SET. Then, finding how many pages were |
302 |
|
|
touched starting from first_page. i.e. find the next page that is CLEAR. |
303 |
|
|
|
304 |
gbeauche |
1.13 |
There are two cases to check: |
305 |
gbeauche |
1.12 |
|
306 |
|
|
- Last Page is CLEAR: find_next_page_set() will reach the SET Page Guard |
307 |
|
|
but it is beyond the valid pageCount value. Therefore, we exit from the |
308 |
|
|
update routine. |
309 |
|
|
|
310 |
|
|
- Last Page is SET: first_page equals (pageCount - 1) and |
311 |
|
|
find_next_page_clear() will reach the CLEAR Page Guard. We blit the last |
312 |
|
|
page to the screen. On the next iteration, page equals pageCount and |
313 |
|
|
find_next_page_set() will reach the SET Page Guard. We still safely exit |
314 |
|
|
from the update routine because the SET Page Guard position is greater |
315 |
|
|
than pageCount. |
316 |
|
|
*/ |
317 |
|
|
|
318 |
gbeauche |
1.1 |
static inline void update_display_window_vosf(void) |
319 |
|
|
{ |
320 |
|
|
int page = 0; |
321 |
|
|
for (;;) { |
322 |
gbeauche |
1.11 |
const int first_page = find_next_page_set(page); |
323 |
|
|
if (first_page >= mainBuffer.pageCount) |
324 |
gbeauche |
1.1 |
break; |
325 |
gbeauche |
1.11 |
|
326 |
|
|
page = find_next_page_clear(first_page); |
327 |
|
|
PFLAG_CLEAR_RANGE(first_page, page); |
328 |
cebix |
1.7 |
|
329 |
gbeauche |
1.1 |
// Make the dirty pages read-only again |
330 |
|
|
const int32 offset = first_page << mainBuffer.pageBits; |
331 |
|
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
332 |
gbeauche |
1.17 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
333 |
gbeauche |
1.1 |
|
334 |
|
|
// There is at least one line to update |
335 |
|
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
336 |
|
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
337 |
|
|
const int height = y2 - y1 + 1; |
338 |
|
|
|
339 |
cebix |
1.18 |
const int bytes_per_row = VideoMonitor.mode.bytes_per_row; |
340 |
|
|
const int bytes_per_pixel = VideoMonitor.mode.bytes_per_row / VideoMonitor.mode.x; |
341 |
cebix |
1.15 |
int i = y1 * bytes_per_row, j; |
342 |
gbeauche |
1.1 |
|
343 |
cebix |
1.19 |
if (VideoMonitor.mode.depth == VDEPTH_1BIT) { |
344 |
cebix |
1.6 |
|
345 |
|
|
// Update the_host_buffer and copy of the_buffer |
346 |
|
|
for (j = y1; j <= y2; j++) { |
347 |
cebix |
1.18 |
Screen_blit(the_host_buffer + i, the_buffer + i, VideoMonitor.mode.x >> 3); |
348 |
cebix |
1.6 |
i += bytes_per_row; |
349 |
|
|
} |
350 |
|
|
|
351 |
|
|
} else { |
352 |
|
|
|
353 |
|
|
// Update the_host_buffer and copy of the_buffer |
354 |
|
|
for (j = y1; j <= y2; j++) { |
355 |
cebix |
1.18 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * VideoMonitor.mode.x); |
356 |
cebix |
1.6 |
i += bytes_per_row; |
357 |
|
|
} |
358 |
gbeauche |
1.1 |
} |
359 |
cebix |
1.15 |
|
360 |
gbeauche |
1.1 |
if (have_shm) |
361 |
cebix |
1.18 |
XShmPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.mode.x, height, 0); |
362 |
gbeauche |
1.1 |
else |
363 |
cebix |
1.18 |
XPutImage(x_display, the_win, the_gc, img, 0, y1, 0, y1, VideoMonitor.mode.x, height); |
364 |
gbeauche |
1.1 |
} |
365 |
gbeauche |
1.13 |
mainBuffer.dirty = false; |
366 |
gbeauche |
1.1 |
} |
367 |
|
|
|
368 |
|
|
|
369 |
|
|
/* |
370 |
|
|
* Update display for DGA mode and VOSF |
371 |
gbeauche |
1.20 |
* (only in Real or Direct Addressing mode) |
372 |
gbeauche |
1.1 |
*/ |
373 |
|
|
|
374 |
|
|
#if REAL_ADDRESSING || DIRECT_ADDRESSING |
375 |
|
|
static inline void update_display_dga_vosf(void) |
376 |
|
|
{ |
377 |
|
|
int page = 0; |
378 |
|
|
for (;;) { |
379 |
gbeauche |
1.11 |
const int first_page = find_next_page_set(page); |
380 |
|
|
if (first_page >= mainBuffer.pageCount) |
381 |
gbeauche |
1.1 |
break; |
382 |
gbeauche |
1.11 |
|
383 |
|
|
page = find_next_page_clear(first_page); |
384 |
|
|
PFLAG_CLEAR_RANGE(first_page, page); |
385 |
|
|
|
386 |
gbeauche |
1.1 |
// Make the dirty pages read-only again |
387 |
|
|
const int32 offset = first_page << mainBuffer.pageBits; |
388 |
|
|
const uint32 length = (page - first_page) << mainBuffer.pageBits; |
389 |
gbeauche |
1.17 |
vm_protect((char *)mainBuffer.memStart + offset, length, VM_PAGE_READ); |
390 |
gbeauche |
1.1 |
|
391 |
|
|
// I am sure that y2 >= y1 and depth != 1 |
392 |
|
|
const int y1 = mainBuffer.pageInfo[first_page].top; |
393 |
|
|
const int y2 = mainBuffer.pageInfo[page - 1].bottom; |
394 |
|
|
|
395 |
cebix |
1.18 |
const int bytes_per_row = VideoMonitor.mode.bytes_per_row; |
396 |
|
|
const int bytes_per_pixel = VideoMonitor.mode.bytes_per_row / VideoMonitor.mode.x; |
397 |
gbeauche |
1.1 |
int i, j; |
398 |
|
|
|
399 |
|
|
// Check for first column from left and first column |
400 |
|
|
// from right that have changed |
401 |
cebix |
1.18 |
int x1 = VideoMonitor.mode.x * bytes_per_pixel - 1; |
402 |
gbeauche |
1.1 |
for (j = y1; j <= y2; j++) { |
403 |
|
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
404 |
|
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
405 |
|
|
for (i = 0; i < x1; i++) { |
406 |
|
|
if (p1[i] != p2[i]) { |
407 |
|
|
x1 = i; |
408 |
|
|
break; |
409 |
|
|
} |
410 |
|
|
} |
411 |
|
|
} |
412 |
|
|
x1 /= bytes_per_pixel; |
413 |
|
|
|
414 |
|
|
int x2 = x1 * bytes_per_pixel; |
415 |
|
|
for (j = y2; j >= y1; j--) { |
416 |
|
|
uint8 * const p1 = &the_buffer[j * bytes_per_row]; |
417 |
|
|
uint8 * const p2 = &the_buffer_copy[j * bytes_per_row]; |
418 |
cebix |
1.18 |
for (i = VideoMonitor.mode.x * bytes_per_pixel - 1; i > x2; i--) { |
419 |
gbeauche |
1.1 |
if (p1[i] != p2[i]) { |
420 |
|
|
x2 = i; |
421 |
|
|
break; |
422 |
|
|
} |
423 |
|
|
} |
424 |
|
|
} |
425 |
|
|
x2 /= bytes_per_pixel; |
426 |
|
|
|
427 |
|
|
// Update the_host_buffer and copy of the_buffer |
428 |
|
|
// There should be at least one pixel to copy |
429 |
|
|
const int width = x2 - x1 + 1; |
430 |
|
|
i = y1 * bytes_per_row + x1 * bytes_per_pixel; |
431 |
|
|
for (j = y1; j <= y2; j++) { |
432 |
gbeauche |
1.13 |
Screen_blit(the_host_buffer + i, the_buffer + i, bytes_per_pixel * width); |
433 |
gbeauche |
1.1 |
memcpy(the_buffer_copy + i, the_buffer + i, bytes_per_pixel * width); |
434 |
|
|
i += bytes_per_row; |
435 |
|
|
} |
436 |
|
|
} |
437 |
gbeauche |
1.13 |
mainBuffer.dirty = false; |
438 |
gbeauche |
1.1 |
} |
439 |
|
|
#endif |
440 |
|
|
|
441 |
|
|
#endif /* ENABLE_VOSF */ |
442 |
|
|
|
443 |
|
|
#endif /* VIDEO_VOSF_H */ |