1 |
/* |
2 |
* timer_unix.cpp - Time Manager emulation, Unix specific stuff |
3 |
* |
4 |
* Basilisk II (C) 1997-2008 Christian Bauer |
5 |
* |
6 |
* This program is free software; you can redistribute it and/or modify |
7 |
* it under the terms of the GNU General Public License as published by |
8 |
* the Free Software Foundation; either version 2 of the License, or |
9 |
* (at your option) any later version. |
10 |
* |
11 |
* This program is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
* GNU General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU General Public License |
17 |
* along with this program; if not, write to the Free Software |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
*/ |
20 |
|
21 |
#include "sysdeps.h" |
22 |
#include "macos_util.h" |
23 |
#include "timer.h" |
24 |
|
25 |
#include <errno.h> |
26 |
|
27 |
#define DEBUG 0 |
28 |
#include "debug.h" |
29 |
|
30 |
// For NetBSD with broken pthreads headers |
31 |
#ifndef CLOCK_REALTIME |
32 |
#define CLOCK_REALTIME 0 |
33 |
#endif |
34 |
|
35 |
#if defined(__MACH__) |
36 |
#include <mach/mach_host.h> |
37 |
#include <mach/clock.h> |
38 |
|
39 |
static clock_serv_t host_clock; |
40 |
static bool host_clock_inited = false; |
41 |
|
42 |
static inline void mach_current_time(tm_time_t &t) { |
43 |
if(!host_clock_inited) { |
44 |
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &host_clock); |
45 |
host_clock_inited = true; |
46 |
} |
47 |
|
48 |
clock_get_time(host_clock, &t); |
49 |
} |
50 |
#endif |
51 |
|
52 |
|
53 |
/* |
54 |
* Return microseconds since boot (64 bit) |
55 |
*/ |
56 |
|
57 |
void Microseconds(uint32 &hi, uint32 &lo) |
58 |
{ |
59 |
D(bug("Microseconds\n")); |
60 |
#if defined(HAVE_CLOCK_GETTIME) |
61 |
struct timespec t; |
62 |
clock_gettime(CLOCK_REALTIME, &t); |
63 |
uint64 tl = (uint64)t.tv_sec * 1000000 + t.tv_nsec / 1000; |
64 |
#elif defined(__MACH__) |
65 |
tm_time_t t; |
66 |
mach_current_time(t); |
67 |
uint64 tl = (uint64)t.tv_sec * 1000000 + t.tv_nsec / 1000; |
68 |
#else |
69 |
struct timeval t; |
70 |
gettimeofday(&t, NULL); |
71 |
uint64 tl = (uint64)t.tv_sec * 1000000 + t.tv_usec; |
72 |
#endif |
73 |
hi = tl >> 32; |
74 |
lo = tl; |
75 |
} |
76 |
|
77 |
|
78 |
/* |
79 |
* Return local date/time in Mac format (seconds since 1.1.1904) |
80 |
*/ |
81 |
|
82 |
uint32 TimerDateTime(void) |
83 |
{ |
84 |
return TimeToMacTime(time(NULL)); |
85 |
} |
86 |
|
87 |
|
88 |
/* |
89 |
* Get current time |
90 |
*/ |
91 |
|
92 |
void timer_current_time(tm_time_t &t) |
93 |
{ |
94 |
#ifdef HAVE_CLOCK_GETTIME |
95 |
clock_gettime(CLOCK_REALTIME, &t); |
96 |
#elif defined(__MACH__) |
97 |
mach_current_time(t); |
98 |
#else |
99 |
gettimeofday(&t, NULL); |
100 |
#endif |
101 |
} |
102 |
|
103 |
|
104 |
/* |
105 |
* Add times |
106 |
*/ |
107 |
|
108 |
void timer_add_time(tm_time_t &res, tm_time_t a, tm_time_t b) |
109 |
{ |
110 |
#if defined(HAVE_CLOCK_GETTIME) || defined(__MACH__) |
111 |
res.tv_sec = a.tv_sec + b.tv_sec; |
112 |
res.tv_nsec = a.tv_nsec + b.tv_nsec; |
113 |
if (res.tv_nsec >= 1000000000) { |
114 |
res.tv_sec++; |
115 |
res.tv_nsec -= 1000000000; |
116 |
} |
117 |
#else |
118 |
res.tv_sec = a.tv_sec + b.tv_sec; |
119 |
res.tv_usec = a.tv_usec + b.tv_usec; |
120 |
if (res.tv_usec >= 1000000) { |
121 |
res.tv_sec++; |
122 |
res.tv_usec -= 1000000; |
123 |
} |
124 |
#endif |
125 |
} |
126 |
|
127 |
|
128 |
/* |
129 |
* Subtract times |
130 |
*/ |
131 |
|
132 |
void timer_sub_time(tm_time_t &res, tm_time_t a, tm_time_t b) |
133 |
{ |
134 |
#if defined(HAVE_CLOCK_GETTIME) || defined(__MACH__) |
135 |
res.tv_sec = a.tv_sec - b.tv_sec; |
136 |
res.tv_nsec = a.tv_nsec - b.tv_nsec; |
137 |
if (res.tv_nsec < 0) { |
138 |
res.tv_sec--; |
139 |
res.tv_nsec += 1000000000; |
140 |
} |
141 |
#else |
142 |
res.tv_sec = a.tv_sec - b.tv_sec; |
143 |
res.tv_usec = a.tv_usec - b.tv_usec; |
144 |
if (res.tv_usec < 0) { |
145 |
res.tv_sec--; |
146 |
res.tv_usec += 1000000; |
147 |
} |
148 |
#endif |
149 |
} |
150 |
|
151 |
|
152 |
/* |
153 |
* Compare times (<0: a < b, =0: a = b, >0: a > b) |
154 |
*/ |
155 |
|
156 |
int timer_cmp_time(tm_time_t a, tm_time_t b) |
157 |
{ |
158 |
#if defined(HAVE_CLOCK_GETTIME) || defined(__MACH__) |
159 |
if (a.tv_sec == b.tv_sec) |
160 |
return a.tv_nsec - b.tv_nsec; |
161 |
else |
162 |
return a.tv_sec - b.tv_sec; |
163 |
#else |
164 |
if (a.tv_sec == b.tv_sec) |
165 |
return a.tv_usec - b.tv_usec; |
166 |
else |
167 |
return a.tv_sec - b.tv_sec; |
168 |
#endif |
169 |
} |
170 |
|
171 |
|
172 |
/* |
173 |
* Convert Mac time value (>0: microseconds, <0: microseconds) to tm_time_t |
174 |
*/ |
175 |
|
176 |
void timer_mac2host_time(tm_time_t &res, int32 mactime) |
177 |
{ |
178 |
#if defined(HAVE_CLOCK_GETTIME) || defined(__MACH__) |
179 |
if (mactime > 0) { |
180 |
// Time in milliseconds |
181 |
res.tv_sec = mactime / 1000; |
182 |
res.tv_nsec = (mactime % 1000) * 1000000; |
183 |
} else { |
184 |
// Time in negative microseconds |
185 |
res.tv_sec = -mactime / 1000000; |
186 |
res.tv_nsec = (-mactime % 1000000) * 1000; |
187 |
} |
188 |
#else |
189 |
if (mactime > 0) { |
190 |
// Time in milliseconds |
191 |
res.tv_sec = mactime / 1000; |
192 |
res.tv_usec = (mactime % 1000) * 1000; |
193 |
} else { |
194 |
// Time in negative microseconds |
195 |
res.tv_sec = -mactime / 1000000; |
196 |
res.tv_usec = -mactime % 1000000; |
197 |
} |
198 |
#endif |
199 |
} |
200 |
|
201 |
|
202 |
/* |
203 |
* Convert positive tm_time_t to Mac time value (>0: microseconds, <0: microseconds) |
204 |
* A negative input value for hosttime results in a zero return value |
205 |
* As long as the microseconds value fits in 32 bit, it must not be converted to milliseconds! |
206 |
*/ |
207 |
|
208 |
int32 timer_host2mac_time(tm_time_t hosttime) |
209 |
{ |
210 |
if (hosttime.tv_sec < 0) |
211 |
return 0; |
212 |
else { |
213 |
#if defined(HAVE_CLOCK_GETTIME) || defined(__MACH__) |
214 |
uint64 t = (uint64)hosttime.tv_sec * 1000000 + hosttime.tv_nsec / 1000; |
215 |
#else |
216 |
uint64 t = (uint64)hosttime.tv_sec * 1000000 + hosttime.tv_usec; |
217 |
#endif |
218 |
if (t > 0x7fffffff) |
219 |
return t / 1000; // Time in milliseconds |
220 |
else |
221 |
return -t; // Time in negative microseconds |
222 |
} |
223 |
} |
224 |
|
225 |
|
226 |
/* |
227 |
* Get current value of microsecond timer |
228 |
*/ |
229 |
|
230 |
uint64 GetTicks_usec(void) |
231 |
{ |
232 |
#ifdef HAVE_CLOCK_GETTIME |
233 |
struct timespec t; |
234 |
clock_gettime(CLOCK_REALTIME, &t); |
235 |
return (uint64)t.tv_sec * 1000000 + t.tv_nsec / 1000; |
236 |
#elif defined(__MACH__) |
237 |
tm_time_t t; |
238 |
mach_current_time(t); |
239 |
return (uint64)t.tv_sec * 1000000 + t.tv_nsec / 1000; |
240 |
#else |
241 |
struct timeval t; |
242 |
gettimeofday(&t, NULL); |
243 |
return (uint64)t.tv_sec * 1000000 + t.tv_usec; |
244 |
#endif |
245 |
} |
246 |
|
247 |
|
248 |
/* |
249 |
* Delay by specified number of microseconds (<1 second) |
250 |
* (adapted from SDL_Delay() source; this function is designed to provide |
251 |
* the highest accuracy possible) |
252 |
*/ |
253 |
|
254 |
#if defined(linux) |
255 |
// Linux select() changes its timeout parameter upon return to contain |
256 |
// the remaining time. Most other unixen leave it unchanged or undefined. |
257 |
#define SELECT_SETS_REMAINING |
258 |
#elif defined(__FreeBSD__) || defined(__sun__) || (defined(__MACH__) && defined(__APPLE__)) |
259 |
#define USE_NANOSLEEP |
260 |
#elif defined(HAVE_PTHREADS) && defined(sgi) |
261 |
// SGI pthreads has a bug when using pthreads+signals+nanosleep, |
262 |
// so instead of using nanosleep, wait on a CV which is never signalled. |
263 |
#include <pthread.h> |
264 |
#define USE_COND_TIMEDWAIT |
265 |
#endif |
266 |
|
267 |
void Delay_usec(uint32 usec) |
268 |
{ |
269 |
int was_error; |
270 |
|
271 |
#if defined(USE_NANOSLEEP) |
272 |
struct timespec elapsed, tv; |
273 |
#elif defined(USE_COND_TIMEDWAIT) |
274 |
// Use a local mutex and cv, so threads remain independent |
275 |
pthread_cond_t delay_cond = PTHREAD_COND_INITIALIZER; |
276 |
pthread_mutex_t delay_mutex = PTHREAD_MUTEX_INITIALIZER; |
277 |
struct timespec elapsed; |
278 |
uint64 future; |
279 |
#else |
280 |
struct timeval tv; |
281 |
#ifndef SELECT_SETS_REMAINING |
282 |
uint64 then, now, elapsed; |
283 |
#endif |
284 |
#endif |
285 |
|
286 |
// Set the timeout interval - Linux only needs to do this once |
287 |
#if defined(SELECT_SETS_REMAINING) |
288 |
tv.tv_sec = 0; |
289 |
tv.tv_usec = usec; |
290 |
#elif defined(USE_NANOSLEEP) |
291 |
elapsed.tv_sec = 0; |
292 |
elapsed.tv_nsec = usec * 1000; |
293 |
#elif defined(USE_COND_TIMEDWAIT) |
294 |
future = GetTicks_usec() + usec; |
295 |
elapsed.tv_sec = future / 1000000; |
296 |
elapsed.tv_nsec = (future % 1000000) * 1000; |
297 |
#else |
298 |
then = GetTicks_usec(); |
299 |
#endif |
300 |
|
301 |
do { |
302 |
errno = 0; |
303 |
#if defined(USE_NANOSLEEP) |
304 |
tv.tv_sec = elapsed.tv_sec; |
305 |
tv.tv_nsec = elapsed.tv_nsec; |
306 |
was_error = nanosleep(&tv, &elapsed); |
307 |
#elif defined(USE_COND_TIMEDWAIT) |
308 |
was_error = pthread_mutex_lock(&delay_mutex); |
309 |
was_error = pthread_cond_timedwait(&delay_cond, &delay_mutex, &elapsed); |
310 |
was_error = pthread_mutex_unlock(&delay_mutex); |
311 |
#else |
312 |
#ifndef SELECT_SETS_REMAINING |
313 |
// Calculate the time interval left (in case of interrupt) |
314 |
now = GetTicks_usec(); |
315 |
elapsed = now - then; |
316 |
then = now; |
317 |
if (elapsed >= usec) |
318 |
break; |
319 |
usec -= elapsed; |
320 |
tv.tv_sec = 0; |
321 |
tv.tv_usec = usec; |
322 |
#endif |
323 |
was_error = select(0, NULL, NULL, NULL, &tv); |
324 |
#endif |
325 |
} while (was_error && (errno == EINTR)); |
326 |
} |
327 |
|
328 |
|
329 |
/* |
330 |
* Suspend emulator thread, virtual CPU in idle mode |
331 |
*/ |
332 |
|
333 |
#ifdef HAVE_PTHREADS |
334 |
#if defined(HAVE_PTHREAD_COND_INIT) |
335 |
#define IDLE_USES_COND_WAIT 1 |
336 |
static pthread_mutex_t idle_lock = PTHREAD_MUTEX_INITIALIZER; |
337 |
static pthread_cond_t idle_cond = PTHREAD_COND_INITIALIZER; |
338 |
#elif defined(HAVE_SEM_INIT) |
339 |
#define IDLE_USES_SEMAPHORE 1 |
340 |
#include <semaphore.h> |
341 |
#ifdef HAVE_SPINLOCKS |
342 |
static spinlock_t idle_lock = SPIN_LOCK_UNLOCKED; |
343 |
#define LOCK_IDLE spin_lock(&idle_lock) |
344 |
#define UNLOCK_IDLE spin_unlock(&idle_lock) |
345 |
#else |
346 |
static pthread_mutex_t idle_lock = PTHREAD_MUTEX_INITIALIZER; |
347 |
#define LOCK_IDLE pthread_mutex_lock(&idle_lock) |
348 |
#define UNLOCK_IDLE pthread_mutex_unlock(&idle_lock) |
349 |
#endif |
350 |
static sem_t idle_sem; |
351 |
static int idle_sem_ok = -1; |
352 |
#endif |
353 |
#endif |
354 |
|
355 |
void idle_wait(void) |
356 |
{ |
357 |
#ifdef IDLE_USES_COND_WAIT |
358 |
pthread_mutex_lock(&idle_lock); |
359 |
pthread_cond_wait(&idle_cond, &idle_lock); |
360 |
pthread_mutex_unlock(&idle_lock); |
361 |
#else |
362 |
#ifdef IDLE_USES_SEMAPHORE |
363 |
LOCK_IDLE; |
364 |
if (idle_sem_ok < 0) |
365 |
idle_sem_ok = (sem_init(&idle_sem, 0, 0) == 0); |
366 |
if (idle_sem_ok > 0) { |
367 |
idle_sem_ok++; |
368 |
UNLOCK_IDLE; |
369 |
sem_wait(&idle_sem); |
370 |
return; |
371 |
} |
372 |
UNLOCK_IDLE; |
373 |
#endif |
374 |
|
375 |
// Fallback: sleep 10 ms |
376 |
Delay_usec(10000); |
377 |
#endif |
378 |
} |
379 |
|
380 |
|
381 |
/* |
382 |
* Resume execution of emulator thread, events just arrived |
383 |
*/ |
384 |
|
385 |
void idle_resume(void) |
386 |
{ |
387 |
#ifdef IDLE_USES_COND_WAIT |
388 |
pthread_cond_signal(&idle_cond); |
389 |
#else |
390 |
#ifdef IDLE_USES_SEMAPHORE |
391 |
LOCK_IDLE; |
392 |
if (idle_sem_ok > 1) { |
393 |
idle_sem_ok--; |
394 |
UNLOCK_IDLE; |
395 |
sem_post(&idle_sem); |
396 |
return; |
397 |
} |
398 |
UNLOCK_IDLE; |
399 |
#endif |
400 |
#endif |
401 |
} |