1 |
/* |
2 |
* sigsegv.cpp - SIGSEGV signals support |
3 |
* |
4 |
* Derived from Bruno Haible's work on his SIGSEGV library for clisp |
5 |
* <http://clisp.sourceforge.net/> |
6 |
* |
7 |
* MacOS X support derived from the post by Timothy J. Wood to the |
8 |
* omnigroup macosx-dev list: |
9 |
* Mach Exception Handlers 101 (Was Re: ptrace, gdb) |
10 |
* tjw@omnigroup.com Sun, 4 Jun 2000 |
11 |
* www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html |
12 |
* |
13 |
* Basilisk II (C) 1997-2002 Christian Bauer |
14 |
* |
15 |
* This program is free software; you can redistribute it and/or modify |
16 |
* it under the terms of the GNU General Public License as published by |
17 |
* the Free Software Foundation; either version 2 of the License, or |
18 |
* (at your option) any later version. |
19 |
* |
20 |
* This program is distributed in the hope that it will be useful, |
21 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
22 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
23 |
* GNU General Public License for more details. |
24 |
* |
25 |
* You should have received a copy of the GNU General Public License |
26 |
* along with this program; if not, write to the Free Software |
27 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
28 |
*/ |
29 |
|
30 |
#ifdef HAVE_UNISTD_H |
31 |
#include <unistd.h> |
32 |
#endif |
33 |
|
34 |
#ifdef HAVE_CONFIG_H |
35 |
#include "config.h" |
36 |
#endif |
37 |
|
38 |
#include <list> |
39 |
#include <signal.h> |
40 |
#include "sigsegv.h" |
41 |
|
42 |
#ifndef NO_STD_NAMESPACE |
43 |
using std::list; |
44 |
#endif |
45 |
|
46 |
// Return value type of a signal handler (standard type if not defined) |
47 |
#ifndef RETSIGTYPE |
48 |
#define RETSIGTYPE void |
49 |
#endif |
50 |
|
51 |
// Type of the system signal handler |
52 |
typedef RETSIGTYPE (*signal_handler)(int); |
53 |
|
54 |
// User's SIGSEGV handler |
55 |
static sigsegv_fault_handler_t sigsegv_fault_handler = 0; |
56 |
|
57 |
// Function called to dump state if we can't handle the fault |
58 |
static sigsegv_state_dumper_t sigsegv_state_dumper = 0; |
59 |
|
60 |
// Actual SIGSEGV handler installer |
61 |
static bool sigsegv_do_install_handler(int sig); |
62 |
|
63 |
|
64 |
/* |
65 |
* Instruction decoding aids |
66 |
*/ |
67 |
|
68 |
// Transfer size |
69 |
enum transfer_size_t { |
70 |
SIZE_UNKNOWN, |
71 |
SIZE_BYTE, |
72 |
SIZE_WORD, // 2 bytes |
73 |
SIZE_LONG, // 4 bytes |
74 |
SIZE_QUAD, // 8 bytes |
75 |
}; |
76 |
|
77 |
// Transfer type |
78 |
typedef sigsegv_transfer_type_t transfer_type_t; |
79 |
|
80 |
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) |
81 |
// Addressing mode |
82 |
enum addressing_mode_t { |
83 |
MODE_UNKNOWN, |
84 |
MODE_NORM, |
85 |
MODE_U, |
86 |
MODE_X, |
87 |
MODE_UX |
88 |
}; |
89 |
|
90 |
// Decoded instruction |
91 |
struct instruction_t { |
92 |
transfer_type_t transfer_type; |
93 |
transfer_size_t transfer_size; |
94 |
addressing_mode_t addr_mode; |
95 |
unsigned int addr; |
96 |
char ra, rd; |
97 |
}; |
98 |
|
99 |
static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr) |
100 |
{ |
101 |
// Get opcode and divide into fields |
102 |
unsigned int opcode = *((unsigned int *)nip); |
103 |
unsigned int primop = opcode >> 26; |
104 |
unsigned int exop = (opcode >> 1) & 0x3ff; |
105 |
unsigned int ra = (opcode >> 16) & 0x1f; |
106 |
unsigned int rb = (opcode >> 11) & 0x1f; |
107 |
unsigned int rd = (opcode >> 21) & 0x1f; |
108 |
signed int imm = (signed short)(opcode & 0xffff); |
109 |
|
110 |
// Analyze opcode |
111 |
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; |
112 |
transfer_size_t transfer_size = SIZE_UNKNOWN; |
113 |
addressing_mode_t addr_mode = MODE_UNKNOWN; |
114 |
switch (primop) { |
115 |
case 31: |
116 |
switch (exop) { |
117 |
case 23: // lwzx |
118 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; |
119 |
case 55: // lwzux |
120 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; |
121 |
case 87: // lbzx |
122 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; |
123 |
case 119: // lbzux |
124 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; |
125 |
case 151: // stwx |
126 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; |
127 |
case 183: // stwux |
128 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; |
129 |
case 215: // stbx |
130 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; |
131 |
case 247: // stbux |
132 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; |
133 |
case 279: // lhzx |
134 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
135 |
case 311: // lhzux |
136 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
137 |
case 343: // lhax |
138 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
139 |
case 375: // lhaux |
140 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
141 |
case 407: // sthx |
142 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; |
143 |
case 439: // sthux |
144 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; |
145 |
} |
146 |
break; |
147 |
|
148 |
case 32: // lwz |
149 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; |
150 |
case 33: // lwzu |
151 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; |
152 |
case 34: // lbz |
153 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; |
154 |
case 35: // lbzu |
155 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; |
156 |
case 36: // stw |
157 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; |
158 |
case 37: // stwu |
159 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; |
160 |
case 38: // stb |
161 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; |
162 |
case 39: // stbu |
163 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; |
164 |
case 40: // lhz |
165 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
166 |
case 41: // lhzu |
167 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
168 |
case 42: // lha |
169 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
170 |
case 43: // lhau |
171 |
transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
172 |
case 44: // sth |
173 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; |
174 |
case 45: // sthu |
175 |
transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; |
176 |
} |
177 |
|
178 |
// Calculate effective address |
179 |
unsigned int addr = 0; |
180 |
switch (addr_mode) { |
181 |
case MODE_X: |
182 |
case MODE_UX: |
183 |
if (ra == 0) |
184 |
addr = gpr[rb]; |
185 |
else |
186 |
addr = gpr[ra] + gpr[rb]; |
187 |
break; |
188 |
case MODE_NORM: |
189 |
case MODE_U: |
190 |
if (ra == 0) |
191 |
addr = (signed int)(signed short)imm; |
192 |
else |
193 |
addr = gpr[ra] + (signed int)(signed short)imm; |
194 |
break; |
195 |
default: |
196 |
break; |
197 |
} |
198 |
|
199 |
// Commit decoded instruction |
200 |
instruction->addr = addr; |
201 |
instruction->addr_mode = addr_mode; |
202 |
instruction->transfer_type = transfer_type; |
203 |
instruction->transfer_size = transfer_size; |
204 |
instruction->ra = ra; |
205 |
instruction->rd = rd; |
206 |
} |
207 |
#endif |
208 |
|
209 |
|
210 |
/* |
211 |
* OS-dependant SIGSEGV signals support section |
212 |
*/ |
213 |
|
214 |
#if HAVE_SIGINFO_T |
215 |
// Generic extended signal handler |
216 |
#if defined(__NetBSD__) || defined(__FreeBSD__) |
217 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
218 |
#else |
219 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
220 |
#endif |
221 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp |
222 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp |
223 |
#define SIGSEGV_FAULT_HANDLER_ARGS sip, scp |
224 |
#define SIGSEGV_FAULT_ADDRESS sip->si_addr |
225 |
#if defined(__sun__) |
226 |
#if (defined(sparc) || defined(__sparc__)) |
227 |
#include <sys/ucontext.h> |
228 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
229 |
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC] |
230 |
#endif |
231 |
#endif |
232 |
#if defined(__FreeBSD__) |
233 |
#if (defined(i386) || defined(__i386__)) |
234 |
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip) |
235 |
#define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */ |
236 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
237 |
#endif |
238 |
#endif |
239 |
#if defined(__linux__) |
240 |
#if (defined(i386) || defined(__i386__)) |
241 |
#include <sys/ucontext.h> |
242 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
243 |
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */ |
244 |
#define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS |
245 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
246 |
#endif |
247 |
#if (defined(x86_64) || defined(__x86_64__)) |
248 |
#include <sys/ucontext.h> |
249 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) |
250 |
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */ |
251 |
#define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS |
252 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
253 |
#endif |
254 |
#if (defined(ia64) || defined(__ia64__)) |
255 |
#define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */ |
256 |
#endif |
257 |
#if (defined(powerpc) || defined(__powerpc__)) |
258 |
#include <sys/ucontext.h> |
259 |
#define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs) |
260 |
#define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip) |
261 |
#define SIGSEGV_REGISTER_FILE (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr) |
262 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
263 |
#endif |
264 |
#endif |
265 |
#endif |
266 |
|
267 |
#if HAVE_SIGCONTEXT_SUBTERFUGE |
268 |
// Linux kernels prior to 2.4 ? |
269 |
#if defined(__linux__) |
270 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
271 |
#if (defined(i386) || defined(__i386__)) |
272 |
#include <asm/sigcontext.h> |
273 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs |
274 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp |
275 |
#define SIGSEGV_FAULT_HANDLER_ARGS &scs |
276 |
#define SIGSEGV_FAULT_ADDRESS scp->cr2 |
277 |
#define SIGSEGV_FAULT_INSTRUCTION scp->eip |
278 |
#define SIGSEGV_REGISTER_FILE (unsigned long *)scp |
279 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
280 |
#endif |
281 |
#if (defined(sparc) || defined(__sparc__)) |
282 |
#include <asm/sigcontext.h> |
283 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr |
284 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr |
285 |
#define SIGSEGV_FAULT_ADDRESS addr |
286 |
#endif |
287 |
#if (defined(powerpc) || defined(__powerpc__)) |
288 |
#include <asm/sigcontext.h> |
289 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp |
290 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, scp |
291 |
#define SIGSEGV_FAULT_ADDRESS scp->regs->dar |
292 |
#define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip |
293 |
#define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr) |
294 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
295 |
#endif |
296 |
#if (defined(alpha) || defined(__alpha__)) |
297 |
#include <asm/sigcontext.h> |
298 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
299 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
300 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
301 |
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc |
302 |
#endif |
303 |
#endif |
304 |
|
305 |
// Irix 5 or 6 on MIPS |
306 |
#if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4)) |
307 |
#include <ucontext.h> |
308 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
309 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
310 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_badvaddr |
311 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
312 |
#endif |
313 |
|
314 |
// HP-UX |
315 |
#if (defined(hpux) || defined(__hpux__)) |
316 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
317 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
318 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21 |
319 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS) |
320 |
#endif |
321 |
|
322 |
// OSF/1 on Alpha |
323 |
#if defined(__osf__) |
324 |
#include <ucontext.h> |
325 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
326 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
327 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0 |
328 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
329 |
#endif |
330 |
|
331 |
// AIX |
332 |
#if defined(_AIX) |
333 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
334 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
335 |
#define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr |
336 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
337 |
#endif |
338 |
|
339 |
// NetBSD |
340 |
#if defined(__NetBSD__) |
341 |
#if (defined(m68k) || defined(__m68k__)) |
342 |
#include <m68k/frame.h> |
343 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
344 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
345 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
346 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
347 |
|
348 |
// Use decoding scheme from BasiliskII/m68k native |
349 |
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
350 |
{ |
351 |
struct sigstate { |
352 |
int ss_flags; |
353 |
struct frame ss_frame; |
354 |
}; |
355 |
struct sigstate *state = (struct sigstate *)scp->sc_ap; |
356 |
char *fault_addr; |
357 |
switch (state->ss_frame.f_format) { |
358 |
case 7: /* 68040 access error */ |
359 |
/* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */ |
360 |
fault_addr = state->ss_frame.f_fmt7.f_fa; |
361 |
break; |
362 |
default: |
363 |
fault_addr = (char *)code; |
364 |
break; |
365 |
} |
366 |
return (sigsegv_address_t)fault_addr; |
367 |
} |
368 |
#endif |
369 |
#if (defined(alpha) || defined(__alpha__)) |
370 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
371 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
372 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
373 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
374 |
#endif |
375 |
#if (defined(i386) || defined(__i386__)) |
376 |
#error "FIXME: need to decode instruction and compute EA" |
377 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
378 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
379 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) |
380 |
#endif |
381 |
#endif |
382 |
#if defined(__FreeBSD__) |
383 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
384 |
#if (defined(i386) || defined(__i386__)) |
385 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr |
386 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr |
387 |
#define SIGSEGV_FAULT_ADDRESS addr |
388 |
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip |
389 |
#define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi) |
390 |
#define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction |
391 |
#endif |
392 |
#endif |
393 |
|
394 |
// Extract fault address out of a sigcontext |
395 |
#if (defined(alpha) || defined(__alpha__)) |
396 |
// From Boehm's GC 6.0alpha8 |
397 |
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
398 |
{ |
399 |
unsigned int instruction = *((unsigned int *)(scp->sc_pc)); |
400 |
unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f]; |
401 |
fault_address += (signed long)(signed short)(instruction & 0xffff); |
402 |
return (sigsegv_address_t)fault_address; |
403 |
} |
404 |
#endif |
405 |
|
406 |
|
407 |
// MacOS X, not sure which version this works in. Under 10.1 |
408 |
// vm_protect does not appear to work from a signal handler. Under |
409 |
// 10.2 signal handlers get siginfo type arguments but the si_addr |
410 |
// field is the address of the faulting instruction and not the |
411 |
// address that caused the SIGBUS. Maybe this works in 10.0? In any |
412 |
// case with Mach exception handlers there is a way to do what this |
413 |
// was meant to do. |
414 |
#ifndef HAVE_MACH_EXCEPTIONS |
415 |
#if defined(__APPLE__) && defined(__MACH__) |
416 |
#if (defined(ppc) || defined(__ppc__)) |
417 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp |
418 |
#define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp |
419 |
#define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) |
420 |
#define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir |
421 |
#define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) |
422 |
#define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2] |
423 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
424 |
|
425 |
// Use decoding scheme from SheepShaver |
426 |
static sigsegv_address_t get_fault_address(struct sigcontext *scp) |
427 |
{ |
428 |
unsigned int nip = (unsigned int) scp->sc_ir; |
429 |
unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2]; |
430 |
instruction_t instr; |
431 |
|
432 |
powerpc_decode_instruction(&instr, nip, gpr); |
433 |
return (sigsegv_address_t)instr.addr; |
434 |
} |
435 |
#endif |
436 |
#endif |
437 |
#endif |
438 |
#endif |
439 |
|
440 |
#if HAVE_MACH_EXCEPTIONS |
441 |
|
442 |
// This can easily be extended to other Mach systems, but really who |
443 |
// uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU |
444 |
// Mach 2.5/3.0? |
445 |
#if defined(__APPLE__) && defined(__MACH__) |
446 |
|
447 |
#include <sys/types.h> |
448 |
#include <stdlib.h> |
449 |
#include <stdio.h> |
450 |
#include <pthread.h> |
451 |
|
452 |
/* |
453 |
* If you are familiar with MIG then you will understand the frustration |
454 |
* that was necessary to get these embedded into C++ code by hand. |
455 |
*/ |
456 |
extern "C" { |
457 |
#include <mach/mach.h> |
458 |
#include <mach/mach_error.h> |
459 |
|
460 |
extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *); |
461 |
extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t, |
462 |
mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t); |
463 |
extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t, |
464 |
exception_type_t, exception_data_t, mach_msg_type_number_t); |
465 |
extern kern_return_t exception_raise_state(mach_port_t, exception_type_t, |
466 |
exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, |
467 |
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); |
468 |
extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, |
469 |
exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, |
470 |
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); |
471 |
} |
472 |
|
473 |
// Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE |
474 |
#define HANDLER_COUNT 64 |
475 |
|
476 |
// structure to tuck away existing exception handlers |
477 |
typedef struct _ExceptionPorts { |
478 |
mach_msg_type_number_t maskCount; |
479 |
exception_mask_t masks[HANDLER_COUNT]; |
480 |
exception_handler_t handlers[HANDLER_COUNT]; |
481 |
exception_behavior_t behaviors[HANDLER_COUNT]; |
482 |
thread_state_flavor_t flavors[HANDLER_COUNT]; |
483 |
} ExceptionPorts; |
484 |
|
485 |
// exception handler thread |
486 |
static pthread_t exc_thread; |
487 |
|
488 |
// place where old exception handler info is stored |
489 |
static ExceptionPorts ports; |
490 |
|
491 |
// our exception port |
492 |
static mach_port_t _exceptionPort = MACH_PORT_NULL; |
493 |
|
494 |
#define MACH_CHECK_ERROR(name,ret) \ |
495 |
if (ret != KERN_SUCCESS) { \ |
496 |
mach_error(#name, ret); \ |
497 |
exit (1); \ |
498 |
} |
499 |
|
500 |
#define SIGSEGV_FAULT_ADDRESS code[1] |
501 |
#define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(thread, state) |
502 |
#define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE) |
503 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, ppc_thread_state_t *state |
504 |
#define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state |
505 |
#define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction |
506 |
#define SIGSEGV_REGISTER_FILE &state->srr0, &state->r0 |
507 |
|
508 |
// Given a suspended thread, stuff the current instruction and |
509 |
// registers into state. |
510 |
// |
511 |
// It would have been nice to have this be ppc/x86 independant which |
512 |
// could have been done easily with a thread_state_t instead of |
513 |
// ppc_thread_state_t, but because of the way this is called it is |
514 |
// easier to do it this way. |
515 |
#if (defined(ppc) || defined(__ppc__)) |
516 |
static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state) |
517 |
{ |
518 |
kern_return_t krc; |
519 |
mach_msg_type_number_t count; |
520 |
|
521 |
count = MACHINE_THREAD_STATE_COUNT; |
522 |
krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count); |
523 |
MACH_CHECK_ERROR (thread_get_state, krc); |
524 |
|
525 |
return (sigsegv_address_t)state->srr0; |
526 |
} |
527 |
#endif |
528 |
|
529 |
// Since there can only be one exception thread running at any time |
530 |
// this is not a problem. |
531 |
#define MSG_SIZE 512 |
532 |
static char msgbuf[MSG_SIZE]; |
533 |
static char replybuf[MSG_SIZE]; |
534 |
|
535 |
/* |
536 |
* This is the entry point for the exception handler thread. The job |
537 |
* of this thread is to wait for exception messages on the exception |
538 |
* port that was setup beforehand and to pass them on to exc_server. |
539 |
* exc_server is a MIG generated function that is a part of Mach. |
540 |
* Its job is to decide what to do with the exception message. In our |
541 |
* case exc_server calls catch_exception_raise on our behalf. After |
542 |
* exc_server returns, it is our responsibility to send the reply. |
543 |
*/ |
544 |
static void * |
545 |
handleExceptions(void *priv) |
546 |
{ |
547 |
mach_msg_header_t *msg, *reply; |
548 |
kern_return_t krc; |
549 |
|
550 |
msg = (mach_msg_header_t *)msgbuf; |
551 |
reply = (mach_msg_header_t *)replybuf; |
552 |
|
553 |
for (;;) { |
554 |
krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE, |
555 |
_exceptionPort, 0, MACH_PORT_NULL); |
556 |
MACH_CHECK_ERROR(mach_msg, krc); |
557 |
|
558 |
if (!exc_server(msg, reply)) { |
559 |
fprintf(stderr, "exc_server hated the message\n"); |
560 |
exit(1); |
561 |
} |
562 |
|
563 |
krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, |
564 |
msg->msgh_local_port, 0, MACH_PORT_NULL); |
565 |
if (krc != KERN_SUCCESS) { |
566 |
fprintf(stderr, "Error sending message to original reply port, krc = %d, %s", |
567 |
krc, mach_error_string(krc)); |
568 |
exit(1); |
569 |
} |
570 |
} |
571 |
} |
572 |
#endif |
573 |
#endif |
574 |
|
575 |
|
576 |
/* |
577 |
* Instruction skipping |
578 |
*/ |
579 |
|
580 |
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
581 |
// Decode and skip X86 instruction |
582 |
#if (defined(i386) || defined(__i386__)) || defined(__x86_64__) |
583 |
#if defined(__linux__) |
584 |
enum { |
585 |
#if (defined(i386) || defined(__i386__)) |
586 |
X86_REG_EIP = 14, |
587 |
X86_REG_EAX = 11, |
588 |
X86_REG_ECX = 10, |
589 |
X86_REG_EDX = 9, |
590 |
X86_REG_EBX = 8, |
591 |
X86_REG_ESP = 7, |
592 |
X86_REG_EBP = 6, |
593 |
X86_REG_ESI = 5, |
594 |
X86_REG_EDI = 4 |
595 |
#endif |
596 |
#if defined(__x86_64__) |
597 |
X86_REG_R8 = 0, |
598 |
X86_REG_R9 = 1, |
599 |
X86_REG_R10 = 2, |
600 |
X86_REG_R11 = 3, |
601 |
X86_REG_R12 = 4, |
602 |
X86_REG_R13 = 5, |
603 |
X86_REG_R14 = 6, |
604 |
X86_REG_R15 = 7, |
605 |
X86_REG_EDI = 8, |
606 |
X86_REG_ESI = 9, |
607 |
X86_REG_EBP = 10, |
608 |
X86_REG_EBX = 11, |
609 |
X86_REG_EDX = 12, |
610 |
X86_REG_EAX = 13, |
611 |
X86_REG_ECX = 14, |
612 |
X86_REG_ESP = 15, |
613 |
X86_REG_EIP = 16 |
614 |
#endif |
615 |
}; |
616 |
#endif |
617 |
#if defined(__NetBSD__) || defined(__FreeBSD__) |
618 |
enum { |
619 |
#if (defined(i386) || defined(__i386__)) |
620 |
X86_REG_EIP = 10, |
621 |
X86_REG_EAX = 7, |
622 |
X86_REG_ECX = 6, |
623 |
X86_REG_EDX = 5, |
624 |
X86_REG_EBX = 4, |
625 |
X86_REG_ESP = 13, |
626 |
X86_REG_EBP = 2, |
627 |
X86_REG_ESI = 1, |
628 |
X86_REG_EDI = 0 |
629 |
#endif |
630 |
}; |
631 |
#endif |
632 |
// FIXME: this is partly redundant with the instruction decoding phase |
633 |
// to discover transfer type and register number |
634 |
static inline int ix86_step_over_modrm(unsigned char * p) |
635 |
{ |
636 |
int mod = (p[0] >> 6) & 3; |
637 |
int rm = p[0] & 7; |
638 |
int offset = 0; |
639 |
|
640 |
// ModR/M Byte |
641 |
switch (mod) { |
642 |
case 0: // [reg] |
643 |
if (rm == 5) return 4; // disp32 |
644 |
break; |
645 |
case 1: // disp8[reg] |
646 |
offset = 1; |
647 |
break; |
648 |
case 2: // disp32[reg] |
649 |
offset = 4; |
650 |
break; |
651 |
case 3: // register |
652 |
return 0; |
653 |
} |
654 |
|
655 |
// SIB Byte |
656 |
if (rm == 4) { |
657 |
if (mod == 0 && (p[1] & 7) == 5) |
658 |
offset = 5; // disp32[index] |
659 |
else |
660 |
offset++; |
661 |
} |
662 |
|
663 |
return offset; |
664 |
} |
665 |
|
666 |
static bool ix86_skip_instruction(unsigned long * regs) |
667 |
{ |
668 |
unsigned char * eip = (unsigned char *)regs[X86_REG_EIP]; |
669 |
|
670 |
if (eip == 0) |
671 |
return false; |
672 |
|
673 |
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; |
674 |
transfer_size_t transfer_size = SIZE_LONG; |
675 |
|
676 |
int reg = -1; |
677 |
int len = 0; |
678 |
|
679 |
#if DEBUG |
680 |
printf("IP: %p [%02x %02x %02x %02x...]\n", |
681 |
eip, eip[0], eip[1], eip[2], eip[3]); |
682 |
#endif |
683 |
|
684 |
// Operand size prefix |
685 |
if (*eip == 0x66) { |
686 |
eip++; |
687 |
len++; |
688 |
transfer_size = SIZE_WORD; |
689 |
} |
690 |
|
691 |
// REX prefix |
692 |
#if defined(__x86_64__) |
693 |
struct rex_t { |
694 |
unsigned char W; |
695 |
unsigned char R; |
696 |
unsigned char X; |
697 |
unsigned char B; |
698 |
}; |
699 |
rex_t rex = { 0, 0, 0, 0 }; |
700 |
bool has_rex = false; |
701 |
if ((*eip & 0xf0) == 0x40) { |
702 |
has_rex = true; |
703 |
const unsigned char b = *eip; |
704 |
rex.W = b & (1 << 3); |
705 |
rex.R = b & (1 << 2); |
706 |
rex.X = b & (1 << 1); |
707 |
rex.B = b & (1 << 0); |
708 |
#if DEBUG |
709 |
printf("REX: %c,%c,%c,%c\n", |
710 |
rex.W ? 'W' : '_', |
711 |
rex.R ? 'R' : '_', |
712 |
rex.X ? 'X' : '_', |
713 |
rex.B ? 'B' : '_'); |
714 |
#endif |
715 |
eip++; |
716 |
len++; |
717 |
if (rex.W) |
718 |
transfer_size = SIZE_QUAD; |
719 |
} |
720 |
#else |
721 |
const bool has_rex = false; |
722 |
#endif |
723 |
|
724 |
// Decode instruction |
725 |
switch (eip[0]) { |
726 |
case 0x0f: |
727 |
switch (eip[1]) { |
728 |
case 0xb6: // MOVZX r32, r/m8 |
729 |
case 0xb7: // MOVZX r32, r/m16 |
730 |
switch (eip[2] & 0xc0) { |
731 |
case 0x80: |
732 |
reg = (eip[2] >> 3) & 7; |
733 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
734 |
break; |
735 |
case 0x40: |
736 |
reg = (eip[2] >> 3) & 7; |
737 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
738 |
break; |
739 |
case 0x00: |
740 |
reg = (eip[2] >> 3) & 7; |
741 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
742 |
break; |
743 |
} |
744 |
len += 3 + ix86_step_over_modrm(eip + 2); |
745 |
break; |
746 |
} |
747 |
break; |
748 |
case 0x8a: // MOV r8, r/m8 |
749 |
transfer_size = SIZE_BYTE; |
750 |
case 0x8b: // MOV r32, r/m32 (or 16-bit operation) |
751 |
switch (eip[1] & 0xc0) { |
752 |
case 0x80: |
753 |
reg = (eip[1] >> 3) & 7; |
754 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
755 |
break; |
756 |
case 0x40: |
757 |
reg = (eip[1] >> 3) & 7; |
758 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
759 |
break; |
760 |
case 0x00: |
761 |
reg = (eip[1] >> 3) & 7; |
762 |
transfer_type = SIGSEGV_TRANSFER_LOAD; |
763 |
break; |
764 |
} |
765 |
len += 2 + ix86_step_over_modrm(eip + 1); |
766 |
break; |
767 |
case 0x88: // MOV r/m8, r8 |
768 |
transfer_size = SIZE_BYTE; |
769 |
case 0x89: // MOV r/m32, r32 (or 16-bit operation) |
770 |
switch (eip[1] & 0xc0) { |
771 |
case 0x80: |
772 |
reg = (eip[1] >> 3) & 7; |
773 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
774 |
break; |
775 |
case 0x40: |
776 |
reg = (eip[1] >> 3) & 7; |
777 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
778 |
break; |
779 |
case 0x00: |
780 |
reg = (eip[1] >> 3) & 7; |
781 |
transfer_type = SIGSEGV_TRANSFER_STORE; |
782 |
break; |
783 |
} |
784 |
len += 2 + ix86_step_over_modrm(eip + 1); |
785 |
break; |
786 |
} |
787 |
|
788 |
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { |
789 |
// Unknown machine code, let it crash. Then patch the decoder |
790 |
return false; |
791 |
} |
792 |
|
793 |
#if defined(__x86_64__) |
794 |
if (rex.R) |
795 |
reg += 8; |
796 |
#endif |
797 |
|
798 |
if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) { |
799 |
static const int x86_reg_map[] = { |
800 |
X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX, |
801 |
X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI, |
802 |
#if defined(__x86_64__) |
803 |
X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11, |
804 |
X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15, |
805 |
#endif |
806 |
}; |
807 |
|
808 |
if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1)) |
809 |
return false; |
810 |
|
811 |
// Set 0 to the relevant register part |
812 |
// NOTE: this is only valid for MOV alike instructions |
813 |
int rloc = x86_reg_map[reg]; |
814 |
switch (transfer_size) { |
815 |
case SIZE_BYTE: |
816 |
if (!has_rex && reg >= 4) |
817 |
regs[rloc - 4] = (regs[rloc - 4] & ~0xff00L); |
818 |
else |
819 |
regs[rloc] = (regs[rloc] & ~0xffL); |
820 |
break; |
821 |
case SIZE_WORD: |
822 |
regs[rloc] = (regs[rloc] & ~0xffffL); |
823 |
break; |
824 |
case SIZE_LONG: |
825 |
case SIZE_QUAD: // zero-extension |
826 |
regs[rloc] = 0; |
827 |
break; |
828 |
} |
829 |
} |
830 |
|
831 |
#if DEBUG |
832 |
printf("%08x: %s %s access", regs[X86_REG_EIP], |
833 |
transfer_size == SIZE_BYTE ? "byte" : |
834 |
transfer_size == SIZE_WORD ? "word" : |
835 |
transfer_size == SIZE_LONG ? "long" : |
836 |
transfer_size == SIZE_QUAD ? "quad" : "unknown", |
837 |
transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); |
838 |
|
839 |
if (reg != -1) { |
840 |
static const char * x86_byte_reg_str_map[] = { |
841 |
"al", "cl", "dl", "bl", |
842 |
"spl", "bpl", "sil", "dil", |
843 |
"r8b", "r9b", "r10b", "r11b", |
844 |
"r12b", "r13b", "r14b", "r15b", |
845 |
"ah", "ch", "dh", "bh", |
846 |
}; |
847 |
static const char * x86_word_reg_str_map[] = { |
848 |
"ax", "cx", "dx", "bx", |
849 |
"sp", "bp", "si", "di", |
850 |
"r8w", "r9w", "r10w", "r11w", |
851 |
"r12w", "r13w", "r14w", "r15w", |
852 |
}; |
853 |
static const char *x86_long_reg_str_map[] = { |
854 |
"eax", "ecx", "edx", "ebx", |
855 |
"esp", "ebp", "esi", "edi", |
856 |
"r8d", "r9d", "r10d", "r11d", |
857 |
"r12d", "r13d", "r14d", "r15d", |
858 |
}; |
859 |
static const char *x86_quad_reg_str_map[] = { |
860 |
"rax", "rcx", "rdx", "rbx", |
861 |
"rsp", "rbp", "rsi", "rdi", |
862 |
"r8", "r9", "r10", "r11", |
863 |
"r12", "r13", "r14", "r15", |
864 |
}; |
865 |
const char * reg_str = NULL; |
866 |
switch (transfer_size) { |
867 |
case SIZE_BYTE: |
868 |
reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg]; |
869 |
break; |
870 |
case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break; |
871 |
case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break; |
872 |
case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break; |
873 |
} |
874 |
if (reg_str) |
875 |
printf(" %s register %%%s", |
876 |
transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", |
877 |
reg_str); |
878 |
} |
879 |
printf(", %d bytes instruction\n", len); |
880 |
#endif |
881 |
|
882 |
regs[X86_REG_EIP] += len; |
883 |
return true; |
884 |
} |
885 |
#endif |
886 |
|
887 |
// Decode and skip PPC instruction |
888 |
#if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) |
889 |
static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs) |
890 |
{ |
891 |
instruction_t instr; |
892 |
powerpc_decode_instruction(&instr, *nip_p, regs); |
893 |
|
894 |
if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { |
895 |
// Unknown machine code, let it crash. Then patch the decoder |
896 |
return false; |
897 |
} |
898 |
|
899 |
#if DEBUG |
900 |
printf("%08x: %s %s access", *nip_p, |
901 |
instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long", |
902 |
instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); |
903 |
|
904 |
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) |
905 |
printf(" r%d (ra = %08x)\n", instr.ra, instr.addr); |
906 |
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) |
907 |
printf(" r%d (rd = 0)\n", instr.rd); |
908 |
#endif |
909 |
|
910 |
if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) |
911 |
regs[instr.ra] = instr.addr; |
912 |
if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) |
913 |
regs[instr.rd] = 0; |
914 |
|
915 |
*nip_p += 4; |
916 |
return true; |
917 |
} |
918 |
#endif |
919 |
#endif |
920 |
|
921 |
// Fallbacks |
922 |
#ifndef SIGSEGV_FAULT_INSTRUCTION |
923 |
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC |
924 |
#endif |
925 |
#ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1 |
926 |
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST |
927 |
#endif |
928 |
#ifndef SIGSEGV_FAULT_HANDLER_INVOKE |
929 |
#define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP) |
930 |
#endif |
931 |
|
932 |
// SIGSEGV recovery supported ? |
933 |
#if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS) |
934 |
#define HAVE_SIGSEGV_RECOVERY |
935 |
#endif |
936 |
|
937 |
|
938 |
/* |
939 |
* SIGSEGV global handler |
940 |
*/ |
941 |
|
942 |
#if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS) |
943 |
// This function handles the badaccess to memory. |
944 |
// It is called from the signal handler or the exception handler. |
945 |
static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1) |
946 |
{ |
947 |
sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS; |
948 |
sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION; |
949 |
|
950 |
// Call user's handler and reinstall the global handler, if required |
951 |
switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) { |
952 |
case SIGSEGV_RETURN_SUCCESS: |
953 |
return true; |
954 |
|
955 |
#if HAVE_SIGSEGV_SKIP_INSTRUCTION |
956 |
case SIGSEGV_RETURN_SKIP_INSTRUCTION: |
957 |
// Call the instruction skipper with the register file |
958 |
// available |
959 |
if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) { |
960 |
#ifdef HAVE_MACH_EXCEPTIONS |
961 |
// Unlike UNIX signals where the thread state |
962 |
// is modified off of the stack, in Mach we |
963 |
// need to actually call thread_set_state to |
964 |
// have the register values updated. |
965 |
kern_return_t krc; |
966 |
|
967 |
krc = thread_set_state(thread, |
968 |
MACHINE_THREAD_STATE, (thread_state_t)state, |
969 |
MACHINE_THREAD_STATE_COUNT); |
970 |
MACH_CHECK_ERROR (thread_get_state, krc); |
971 |
#endif |
972 |
return true; |
973 |
} |
974 |
break; |
975 |
#endif |
976 |
} |
977 |
|
978 |
// We can't do anything with the fault_address, dump state? |
979 |
if (sigsegv_state_dumper != 0) |
980 |
sigsegv_state_dumper(fault_address, fault_instruction); |
981 |
|
982 |
return false; |
983 |
} |
984 |
#endif |
985 |
|
986 |
|
987 |
/* |
988 |
* There are two mechanisms for handling a bad memory access, |
989 |
* Mach exceptions and UNIX signals. The implementation specific |
990 |
* code appears below. Its reponsibility is to call handle_badaccess |
991 |
* which is the routine that handles the fault in an implementation |
992 |
* agnostic manner. The implementation specific code below is then |
993 |
* reponsible for checking whether handle_badaccess was able |
994 |
* to handle the memory access error and perform any implementation |
995 |
* specific tasks necessary afterwards. |
996 |
*/ |
997 |
|
998 |
#ifdef HAVE_MACH_EXCEPTIONS |
999 |
/* |
1000 |
* We need to forward all exceptions that we do not handle. |
1001 |
* This is important, there are many exceptions that may be |
1002 |
* handled by other exception handlers. For example debuggers |
1003 |
* use exceptions and the exception hander is in another |
1004 |
* process in such a case. (Timothy J. Wood states in his |
1005 |
* message to the list that he based this code on that from |
1006 |
* gdb for Darwin.) |
1007 |
*/ |
1008 |
static inline kern_return_t |
1009 |
forward_exception(mach_port_t thread_port, |
1010 |
mach_port_t task_port, |
1011 |
exception_type_t exception_type, |
1012 |
exception_data_t exception_data, |
1013 |
mach_msg_type_number_t data_count, |
1014 |
ExceptionPorts *oldExceptionPorts) |
1015 |
{ |
1016 |
kern_return_t kret; |
1017 |
unsigned int portIndex; |
1018 |
mach_port_t port; |
1019 |
exception_behavior_t behavior; |
1020 |
thread_state_flavor_t flavor; |
1021 |
thread_state_t thread_state; |
1022 |
mach_msg_type_number_t thread_state_count; |
1023 |
|
1024 |
for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) { |
1025 |
if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) { |
1026 |
// This handler wants the exception |
1027 |
break; |
1028 |
} |
1029 |
} |
1030 |
|
1031 |
if (portIndex >= oldExceptionPorts->maskCount) { |
1032 |
fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type); |
1033 |
return KERN_FAILURE; |
1034 |
} |
1035 |
|
1036 |
port = oldExceptionPorts->handlers[portIndex]; |
1037 |
behavior = oldExceptionPorts->behaviors[portIndex]; |
1038 |
flavor = oldExceptionPorts->flavors[portIndex]; |
1039 |
|
1040 |
/* |
1041 |
fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor); |
1042 |
*/ |
1043 |
|
1044 |
if (behavior != EXCEPTION_DEFAULT) { |
1045 |
thread_state_count = THREAD_STATE_MAX; |
1046 |
kret = thread_get_state (thread_port, flavor, thread_state, |
1047 |
&thread_state_count); |
1048 |
MACH_CHECK_ERROR (thread_get_state, kret); |
1049 |
} |
1050 |
|
1051 |
switch (behavior) { |
1052 |
case EXCEPTION_DEFAULT: |
1053 |
// fprintf(stderr, "forwarding to exception_raise\n"); |
1054 |
kret = exception_raise(port, thread_port, task_port, exception_type, |
1055 |
exception_data, data_count); |
1056 |
MACH_CHECK_ERROR (exception_raise, kret); |
1057 |
break; |
1058 |
case EXCEPTION_STATE: |
1059 |
// fprintf(stderr, "forwarding to exception_raise_state\n"); |
1060 |
kret = exception_raise_state(port, exception_type, exception_data, |
1061 |
data_count, &flavor, |
1062 |
thread_state, thread_state_count, |
1063 |
thread_state, &thread_state_count); |
1064 |
MACH_CHECK_ERROR (exception_raise_state, kret); |
1065 |
break; |
1066 |
case EXCEPTION_STATE_IDENTITY: |
1067 |
// fprintf(stderr, "forwarding to exception_raise_state_identity\n"); |
1068 |
kret = exception_raise_state_identity(port, thread_port, task_port, |
1069 |
exception_type, exception_data, |
1070 |
data_count, &flavor, |
1071 |
thread_state, thread_state_count, |
1072 |
thread_state, &thread_state_count); |
1073 |
MACH_CHECK_ERROR (exception_raise_state_identity, kret); |
1074 |
break; |
1075 |
default: |
1076 |
fprintf(stderr, "forward_exception got unknown behavior\n"); |
1077 |
break; |
1078 |
} |
1079 |
|
1080 |
if (behavior != EXCEPTION_DEFAULT) { |
1081 |
kret = thread_set_state (thread_port, flavor, thread_state, |
1082 |
thread_state_count); |
1083 |
MACH_CHECK_ERROR (thread_set_state, kret); |
1084 |
} |
1085 |
|
1086 |
return KERN_SUCCESS; |
1087 |
} |
1088 |
|
1089 |
/* |
1090 |
* This is the code that actually handles the exception. |
1091 |
* It is called by exc_server. For Darwin 5 Apple changed |
1092 |
* this a bit from how this family of functions worked in |
1093 |
* Mach. If you are familiar with that it is a little |
1094 |
* different. The main variation that concerns us here is |
1095 |
* that code is an array of exception specific codes and |
1096 |
* codeCount is a count of the number of codes in the code |
1097 |
* array. In typical Mach all exceptions have a code |
1098 |
* and sub-code. It happens to be the case that for a |
1099 |
* EXC_BAD_ACCESS exception the first entry is the type of |
1100 |
* bad access that occurred and the second entry is the |
1101 |
* faulting address so these entries correspond exactly to |
1102 |
* how the code and sub-code are used on Mach. |
1103 |
* |
1104 |
* This is a MIG interface. No code in Basilisk II should |
1105 |
* call this directley. This has to have external C |
1106 |
* linkage because that is what exc_server expects. |
1107 |
*/ |
1108 |
kern_return_t |
1109 |
catch_exception_raise(mach_port_t exception_port, |
1110 |
mach_port_t thread, |
1111 |
mach_port_t task, |
1112 |
exception_type_t exception, |
1113 |
exception_data_t code, |
1114 |
mach_msg_type_number_t codeCount) |
1115 |
{ |
1116 |
ppc_thread_state_t state; |
1117 |
kern_return_t krc; |
1118 |
|
1119 |
if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) { |
1120 |
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) |
1121 |
return KERN_SUCCESS; |
1122 |
} |
1123 |
|
1124 |
// In Mach we do not need to remove the exception handler. |
1125 |
// If we forward the exception, eventually some exception handler |
1126 |
// will take care of this exception. |
1127 |
krc = forward_exception(thread, task, exception, code, codeCount, &ports); |
1128 |
|
1129 |
return krc; |
1130 |
} |
1131 |
#endif |
1132 |
|
1133 |
#ifdef HAVE_SIGSEGV_RECOVERY |
1134 |
// Handle bad memory accesses with signal handler |
1135 |
static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST) |
1136 |
{ |
1137 |
// Call handler and reinstall the global handler, if required |
1138 |
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) { |
1139 |
#if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL)) |
1140 |
sigsegv_do_install_handler(sig); |
1141 |
#endif |
1142 |
return; |
1143 |
} |
1144 |
|
1145 |
// Failure: reinstall default handler for "safe" crash |
1146 |
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL); |
1147 |
SIGSEGV_ALL_SIGNALS |
1148 |
#undef FAULT_HANDLER |
1149 |
} |
1150 |
#endif |
1151 |
|
1152 |
|
1153 |
/* |
1154 |
* SIGSEGV handler initialization |
1155 |
*/ |
1156 |
|
1157 |
#if defined(HAVE_SIGINFO_T) |
1158 |
static bool sigsegv_do_install_handler(int sig) |
1159 |
{ |
1160 |
// Setup SIGSEGV handler to process writes to frame buffer |
1161 |
#ifdef HAVE_SIGACTION |
1162 |
struct sigaction sigsegv_sa; |
1163 |
sigemptyset(&sigsegv_sa.sa_mask); |
1164 |
sigsegv_sa.sa_sigaction = sigsegv_handler; |
1165 |
sigsegv_sa.sa_flags = SA_SIGINFO; |
1166 |
return (sigaction(sig, &sigsegv_sa, 0) == 0); |
1167 |
#else |
1168 |
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); |
1169 |
#endif |
1170 |
} |
1171 |
#endif |
1172 |
|
1173 |
#if defined(HAVE_SIGCONTEXT_SUBTERFUGE) |
1174 |
static bool sigsegv_do_install_handler(int sig) |
1175 |
{ |
1176 |
// Setup SIGSEGV handler to process writes to frame buffer |
1177 |
#ifdef HAVE_SIGACTION |
1178 |
struct sigaction sigsegv_sa; |
1179 |
sigemptyset(&sigsegv_sa.sa_mask); |
1180 |
sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler; |
1181 |
sigsegv_sa.sa_flags = 0; |
1182 |
#if !EMULATED_68K && defined(__NetBSD__) |
1183 |
sigaddset(&sigsegv_sa.sa_mask, SIGALRM); |
1184 |
sigsegv_sa.sa_flags |= SA_ONSTACK; |
1185 |
#endif |
1186 |
return (sigaction(sig, &sigsegv_sa, 0) == 0); |
1187 |
#else |
1188 |
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); |
1189 |
#endif |
1190 |
} |
1191 |
#endif |
1192 |
|
1193 |
#if defined(HAVE_MACH_EXCEPTIONS) |
1194 |
static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) |
1195 |
{ |
1196 |
/* |
1197 |
* Except for the exception port functions, this should be |
1198 |
* pretty much stock Mach. If later you choose to support |
1199 |
* other Mach's besides Darwin, just check for __MACH__ |
1200 |
* here and __APPLE__ where the actual differences are. |
1201 |
*/ |
1202 |
#if defined(__APPLE__) && defined(__MACH__) |
1203 |
if (sigsegv_fault_handler != NULL) { |
1204 |
sigsegv_fault_handler = handler; |
1205 |
return true; |
1206 |
} |
1207 |
|
1208 |
kern_return_t krc; |
1209 |
|
1210 |
// create the the exception port |
1211 |
krc = mach_port_allocate(mach_task_self(), |
1212 |
MACH_PORT_RIGHT_RECEIVE, &_exceptionPort); |
1213 |
if (krc != KERN_SUCCESS) { |
1214 |
mach_error("mach_port_allocate", krc); |
1215 |
return false; |
1216 |
} |
1217 |
|
1218 |
// add a port send right |
1219 |
krc = mach_port_insert_right(mach_task_self(), |
1220 |
_exceptionPort, _exceptionPort, |
1221 |
MACH_MSG_TYPE_MAKE_SEND); |
1222 |
if (krc != KERN_SUCCESS) { |
1223 |
mach_error("mach_port_insert_right", krc); |
1224 |
return false; |
1225 |
} |
1226 |
|
1227 |
// get the old exception ports |
1228 |
ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]); |
1229 |
krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks, |
1230 |
&ports.maskCount, ports.handlers, ports.behaviors, ports.flavors); |
1231 |
if (krc != KERN_SUCCESS) { |
1232 |
mach_error("thread_get_exception_ports", krc); |
1233 |
return false; |
1234 |
} |
1235 |
|
1236 |
// set the new exception port |
1237 |
// |
1238 |
// We could have used EXCEPTION_STATE_IDENTITY instead of |
1239 |
// EXCEPTION_DEFAULT to get the thread state in the initial |
1240 |
// message, but it turns out that in the common case this is not |
1241 |
// neccessary. If we need it we can later ask for it from the |
1242 |
// suspended thread. |
1243 |
// |
1244 |
// Even with THREAD_STATE_NONE, Darwin provides the program |
1245 |
// counter in the thread state. The comments in the header file |
1246 |
// seem to imply that you can count on the GPR's on an exception |
1247 |
// as well but just to be safe I use MACHINE_THREAD_STATE because |
1248 |
// you have to ask for all of the GPR's anyway just to get the |
1249 |
// program counter. In any case because of update effective |
1250 |
// address from immediate and update address from effective |
1251 |
// addresses of ra and rb modes (as good an name as any for these |
1252 |
// addressing modes) used in PPC instructions, you will need the |
1253 |
// GPR state anyway. |
1254 |
krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort, |
1255 |
EXCEPTION_DEFAULT, MACHINE_THREAD_STATE); |
1256 |
if (krc != KERN_SUCCESS) { |
1257 |
mach_error("thread_set_exception_ports", krc); |
1258 |
return false; |
1259 |
} |
1260 |
|
1261 |
// create the exception handler thread |
1262 |
if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) { |
1263 |
(void)fprintf(stderr, "creation of exception thread failed\n"); |
1264 |
return false; |
1265 |
} |
1266 |
|
1267 |
// do not care about the exception thread any longer, let is run standalone |
1268 |
(void)pthread_detach(exc_thread); |
1269 |
|
1270 |
sigsegv_fault_handler = handler; |
1271 |
return true; |
1272 |
#else |
1273 |
return false; |
1274 |
#endif |
1275 |
} |
1276 |
#endif |
1277 |
|
1278 |
bool sigsegv_install_handler(sigsegv_fault_handler_t handler) |
1279 |
{ |
1280 |
#if defined(HAVE_SIGSEGV_RECOVERY) |
1281 |
bool success = true; |
1282 |
#define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig); |
1283 |
SIGSEGV_ALL_SIGNALS |
1284 |
#undef FAULT_HANDLER |
1285 |
if (success) |
1286 |
sigsegv_fault_handler = handler; |
1287 |
return success; |
1288 |
#elif defined(HAVE_MACH_EXCEPTIONS) |
1289 |
return sigsegv_do_install_handler(handler); |
1290 |
#else |
1291 |
// FAIL: no siginfo_t nor sigcontext subterfuge is available |
1292 |
return false; |
1293 |
#endif |
1294 |
} |
1295 |
|
1296 |
|
1297 |
/* |
1298 |
* SIGSEGV handler deinitialization |
1299 |
*/ |
1300 |
|
1301 |
void sigsegv_deinstall_handler(void) |
1302 |
{ |
1303 |
// We do nothing for Mach exceptions, the thread would need to be |
1304 |
// suspended if not already so, and we might mess with other |
1305 |
// exception handlers that came after we registered ours. There is |
1306 |
// no need to remove the exception handler, in fact this function is |
1307 |
// not called anywhere in Basilisk II. |
1308 |
#ifdef HAVE_SIGSEGV_RECOVERY |
1309 |
sigsegv_fault_handler = 0; |
1310 |
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL); |
1311 |
SIGSEGV_ALL_SIGNALS |
1312 |
#undef FAULT_HANDLER |
1313 |
#endif |
1314 |
} |
1315 |
|
1316 |
|
1317 |
/* |
1318 |
* Set callback function when we cannot handle the fault |
1319 |
*/ |
1320 |
|
1321 |
void sigsegv_set_dump_state(sigsegv_state_dumper_t handler) |
1322 |
{ |
1323 |
sigsegv_state_dumper = handler; |
1324 |
} |
1325 |
|
1326 |
|
1327 |
/* |
1328 |
* Test program used for configure/test |
1329 |
*/ |
1330 |
|
1331 |
#ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY |
1332 |
#include <stdio.h> |
1333 |
#include <stdlib.h> |
1334 |
#include <fcntl.h> |
1335 |
#include <sys/mman.h> |
1336 |
#include "vm_alloc.h" |
1337 |
|
1338 |
const int REF_INDEX = 123; |
1339 |
const int REF_VALUE = 45; |
1340 |
|
1341 |
static int page_size; |
1342 |
static volatile char * page = 0; |
1343 |
static volatile int handler_called = 0; |
1344 |
|
1345 |
#ifdef __GNUC__ |
1346 |
// Code range where we expect the fault to come from |
1347 |
static void *b_region, *e_region; |
1348 |
#endif |
1349 |
|
1350 |
static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) |
1351 |
{ |
1352 |
handler_called++; |
1353 |
if ((fault_address - REF_INDEX) != page) |
1354 |
exit(10); |
1355 |
#ifdef __GNUC__ |
1356 |
// Make sure reported fault instruction address falls into |
1357 |
// expected code range |
1358 |
if (instruction_address != SIGSEGV_INVALID_PC |
1359 |
&& ((instruction_address < (sigsegv_address_t)b_region) || |
1360 |
(instruction_address >= (sigsegv_address_t)e_region))) |
1361 |
exit(11); |
1362 |
#endif |
1363 |
if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0) |
1364 |
exit(12); |
1365 |
return SIGSEGV_RETURN_SUCCESS; |
1366 |
} |
1367 |
|
1368 |
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
1369 |
static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) |
1370 |
{ |
1371 |
if (((unsigned long)fault_address - (unsigned long)page) < page_size) { |
1372 |
#ifdef __GNUC__ |
1373 |
// Make sure reported fault instruction address falls into |
1374 |
// expected code range |
1375 |
if (instruction_address != SIGSEGV_INVALID_PC |
1376 |
&& ((instruction_address < (sigsegv_address_t)b_region) || |
1377 |
(instruction_address >= (sigsegv_address_t)e_region))) |
1378 |
return SIGSEGV_RETURN_FAILURE; |
1379 |
#endif |
1380 |
return SIGSEGV_RETURN_SKIP_INSTRUCTION; |
1381 |
} |
1382 |
|
1383 |
return SIGSEGV_RETURN_FAILURE; |
1384 |
} |
1385 |
|
1386 |
// More sophisticated tests for instruction skipper |
1387 |
static bool arch_insn_skipper_tests() |
1388 |
{ |
1389 |
#if (defined(i386) || defined(__i386__)) || defined(__x86_64__) |
1390 |
static const unsigned char code[] = { |
1391 |
0x8a, 0x00, // mov (%eax),%al |
1392 |
0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch |
1393 |
0x88, 0x20, // mov %ah,(%eax) |
1394 |
0x88, 0x08, // mov %cl,(%eax) |
1395 |
0x66, 0x8b, 0x00, // mov (%eax),%ax |
1396 |
0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx |
1397 |
0x66, 0x89, 0x00, // mov %ax,(%eax) |
1398 |
0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1) |
1399 |
0x8b, 0x00, // mov (%eax),%eax |
1400 |
0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx |
1401 |
0x89, 0x00, // mov %eax,(%eax) |
1402 |
0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1) |
1403 |
#if defined(__x86_64__) |
1404 |
0x44, 0x8a, 0x00, // mov (%rax),%r8b |
1405 |
0x44, 0x8a, 0x20, // mov (%rax),%r12b |
1406 |
0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil |
1407 |
0x44, 0x88, 0x00, // mov %r8b,(%rax) |
1408 |
0x44, 0x88, 0x20, // mov %r12b,(%rax) |
1409 |
0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1) |
1410 |
0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w |
1411 |
0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx |
1412 |
0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax) |
1413 |
0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1) |
1414 |
0x44, 0x8b, 0x00, // mov (%rax),%r8d |
1415 |
0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx |
1416 |
0x44, 0x89, 0x00, // mov %r8d,(%rax) |
1417 |
0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1) |
1418 |
0x48, 0x8b, 0x08, // mov (%rax),%rcx |
1419 |
0x4c, 0x8b, 0x18, // mov (%rax),%r11 |
1420 |
0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx |
1421 |
0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11 |
1422 |
0x48, 0x89, 0x08, // mov %rcx,(%rax) |
1423 |
0x4c, 0x89, 0x18, // mov %r11,(%rax) |
1424 |
0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1) |
1425 |
0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1) |
1426 |
#endif |
1427 |
0 // end |
1428 |
}; |
1429 |
const int N_REGS = 20; |
1430 |
unsigned long regs[N_REGS]; |
1431 |
for (int i = 0; i < N_REGS; i++) |
1432 |
regs[i] = i; |
1433 |
const unsigned long start_code = (unsigned long)&code; |
1434 |
regs[X86_REG_EIP] = start_code; |
1435 |
while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1) |
1436 |
&& ix86_skip_instruction(regs)) |
1437 |
; /* simply iterate */ |
1438 |
return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1); |
1439 |
#endif |
1440 |
return true; |
1441 |
} |
1442 |
#endif |
1443 |
|
1444 |
int main(void) |
1445 |
{ |
1446 |
if (vm_init() < 0) |
1447 |
return 1; |
1448 |
|
1449 |
page_size = getpagesize(); |
1450 |
if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED) |
1451 |
return 2; |
1452 |
|
1453 |
memset((void *)page, 0, page_size); |
1454 |
if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0) |
1455 |
return 3; |
1456 |
|
1457 |
if (!sigsegv_install_handler(sigsegv_test_handler)) |
1458 |
return 4; |
1459 |
|
1460 |
#ifdef __GNUC__ |
1461 |
b_region = &&L_b_region1; |
1462 |
e_region = &&L_e_region1; |
1463 |
#endif |
1464 |
L_b_region1: |
1465 |
page[REF_INDEX] = REF_VALUE; |
1466 |
if (page[REF_INDEX] != REF_VALUE) |
1467 |
exit(20); |
1468 |
page[REF_INDEX] = REF_VALUE; |
1469 |
L_e_region1: |
1470 |
|
1471 |
if (handler_called != 1) |
1472 |
return 5; |
1473 |
|
1474 |
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION |
1475 |
if (!sigsegv_install_handler(sigsegv_insn_handler)) |
1476 |
return 6; |
1477 |
|
1478 |
if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0) |
1479 |
return 7; |
1480 |
|
1481 |
for (int i = 0; i < page_size; i++) |
1482 |
page[i] = (i + 1) % page_size; |
1483 |
|
1484 |
if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0) |
1485 |
return 8; |
1486 |
|
1487 |
#define TEST_SKIP_INSTRUCTION(TYPE) do { \ |
1488 |
const unsigned long TAG = 0x12345678 | \ |
1489 |
(sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \ |
1490 |
TYPE data = *((TYPE *)(page + sizeof(TYPE))); \ |
1491 |
volatile unsigned long effect = data + TAG; \ |
1492 |
if (effect != TAG) \ |
1493 |
return 9; \ |
1494 |
} while (0) |
1495 |
|
1496 |
#ifdef __GNUC__ |
1497 |
b_region = &&L_b_region2; |
1498 |
e_region = &&L_e_region2; |
1499 |
#endif |
1500 |
L_b_region2: |
1501 |
TEST_SKIP_INSTRUCTION(unsigned char); |
1502 |
TEST_SKIP_INSTRUCTION(unsigned short); |
1503 |
TEST_SKIP_INSTRUCTION(unsigned int); |
1504 |
TEST_SKIP_INSTRUCTION(unsigned long); |
1505 |
L_e_region2: |
1506 |
#endif |
1507 |
|
1508 |
if (!arch_insn_skipper_tests()) |
1509 |
return 20; |
1510 |
|
1511 |
vm_exit(); |
1512 |
return 0; |
1513 |
} |
1514 |
#endif |