ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.9 by gbeauche, 2002-03-16T21:36:12Z vs.
Revision 1.90 by asvitkine, 2010-03-10T01:05:49Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
50   #endif
51  
52 + // Size of an unsigned integer large enough to hold all bits of a pointer
53 + // NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In
54 + // particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?)
55 + #if defined(HAVE_WIN32_VM)
56 + // Windows is either ILP32 or LLP64
57 + #include <BaseTsd.h>
58 + typedef UINT_PTR sigsegv_uintptr_t;
59 + #else
60 + // Other systems are sane enough to follow ILP32 or LP64 models
61 + typedef unsigned long sigsegv_uintptr_t;
62 + #endif
63 +
64   // Type of the system signal handler
65   typedef RETSIGTYPE (*signal_handler)(int);
66  
67   // User's SIGSEGV handler
68 < static sigsegv_handler_t sigsegv_user_handler = 0;
68 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
69 >
70 > // Function called to dump state if we can't handle the fault
71 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
72  
73   // Actual SIGSEGV handler installer
74   static bool sigsegv_do_install_handler(int sig);
75  
76  
77   /*
78 + *  Instruction decoding aids
79 + */
80 +
81 + // Transfer type
82 + enum transfer_type_t {
83 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
84 +        SIGSEGV_TRANSFER_LOAD           = 1,
85 +        SIGSEGV_TRANSFER_STORE          = 2
86 + };
87 +
88 + // Transfer size
89 + enum transfer_size_t {
90 +        SIZE_UNKNOWN,
91 +        SIZE_BYTE,
92 +        SIZE_WORD, // 2 bytes
93 +        SIZE_LONG, // 4 bytes
94 +        SIZE_QUAD  // 8 bytes
95 + };
96 +
97 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
98 + // Addressing mode
99 + enum addressing_mode_t {
100 +        MODE_UNKNOWN,
101 +        MODE_NORM,
102 +        MODE_U,
103 +        MODE_X,
104 +        MODE_UX
105 + };
106 +
107 + // Decoded instruction
108 + struct instruction_t {
109 +        transfer_type_t         transfer_type;
110 +        transfer_size_t         transfer_size;
111 +        addressing_mode_t       addr_mode;
112 +        unsigned int            addr;
113 +        char                            ra, rd;
114 + };
115 +
116 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
117 + {
118 +        // Get opcode and divide into fields
119 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
120 +        unsigned int primop = opcode >> 26;
121 +        unsigned int exop = (opcode >> 1) & 0x3ff;
122 +        unsigned int ra = (opcode >> 16) & 0x1f;
123 +        unsigned int rb = (opcode >> 11) & 0x1f;
124 +        unsigned int rd = (opcode >> 21) & 0x1f;
125 +        signed int imm = (signed short)(opcode & 0xffff);
126 +        
127 +        // Analyze opcode
128 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
129 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
130 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
131 +        switch (primop) {
132 +        case 31:
133 +                switch (exop) {
134 +                case 23:        // lwzx
135 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
136 +                case 55:        // lwzux
137 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
138 +                case 87:        // lbzx
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
140 +                case 119:       // lbzux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
142 +                case 151:       // stwx
143 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
144 +                case 183:       // stwux
145 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
146 +                case 215:       // stbx
147 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
148 +                case 247:       // stbux
149 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
150 +                case 279:       // lhzx
151 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
152 +                case 311:       // lhzux
153 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
154 +                case 343:       // lhax
155 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
156 +                case 375:       // lhaux
157 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
158 +                case 407:       // sthx
159 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
160 +                case 439:       // sthux
161 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
162 +                }
163 +                break;
164 +        
165 +        case 32:        // lwz
166 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
167 +        case 33:        // lwzu
168 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
169 +        case 34:        // lbz
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
171 +        case 35:        // lbzu
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
173 +        case 36:        // stw
174 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
175 +        case 37:        // stwu
176 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
177 +        case 38:        // stb
178 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
179 +        case 39:        // stbu
180 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
181 +        case 40:        // lhz
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
183 +        case 41:        // lhzu
184 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
185 +        case 42:        // lha
186 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
187 +        case 43:        // lhau
188 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
189 +        case 44:        // sth
190 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
191 +        case 45:        // sthu
192 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
193 +        case 58:        // ld, ldu, lwa
194 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
195 +                transfer_size = SIZE_QUAD;
196 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
197 +                imm &= ~3;
198 +                break;
199 +        case 62:        // std, stdu, stq
200 +                transfer_type = SIGSEGV_TRANSFER_STORE;
201 +                transfer_size = SIZE_QUAD;
202 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
203 +                imm &= ~3;
204 +                break;
205 +        }
206 +        
207 +        // Calculate effective address
208 +        unsigned int addr = 0;
209 +        switch (addr_mode) {
210 +        case MODE_X:
211 +        case MODE_UX:
212 +                if (ra == 0)
213 +                        addr = gpr[rb];
214 +                else
215 +                        addr = gpr[ra] + gpr[rb];
216 +                break;
217 +        case MODE_NORM:
218 +        case MODE_U:
219 +                if (ra == 0)
220 +                        addr = (signed int)(signed short)imm;
221 +                else
222 +                        addr = gpr[ra] + (signed int)(signed short)imm;
223 +                break;
224 +        default:
225 +                break;
226 +        }
227 +        
228 +        // Commit decoded instruction
229 +        instruction->addr = addr;
230 +        instruction->addr_mode = addr_mode;
231 +        instruction->transfer_type = transfer_type;
232 +        instruction->transfer_size = transfer_size;
233 +        instruction->ra = ra;
234 +        instruction->rd = rd;
235 + }
236 + #endif
237 +
238 +
239 + /*
240   *  OS-dependant SIGSEGV signals support section
241   */
242  
243   #if HAVE_SIGINFO_T
244   // Generic extended signal handler
245 < #if defined(__NetBSD__) || defined(__FreeBSD__)
245 > #if defined(__FreeBSD__)
246   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
247 + #elif defined(__hpux)
248 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
249   #else
250   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
251   #endif
252   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
253 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
254 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
255   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
256 + #if (defined(sgi) || defined(__sgi))
257 + #include <ucontext.h>
258 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
259 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
260 + #if (defined(mips) || defined(__mips))
261 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
262 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
263 + #endif
264 + #endif
265 + #if defined(__sun__)
266 + #if (defined(sparc) || defined(__sparc__))
267 + #include <sys/stack.h>
268 + #include <sys/regset.h>
269 + #include <sys/ucontext.h>
270 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
271 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
272 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
273 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
275 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
276 + #endif
277 + #if defined(__i386__)
278 + #include <sys/regset.h>
279 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
280 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
281 + #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
282 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
283 + #endif
284 + #endif
285 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
286 + #if (defined(i386) || defined(__i386__))
287 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
288 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
289 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
290 + #endif
291 + #endif
292 + #if defined(__NetBSD__)
293 + #if (defined(i386) || defined(__i386__))
294 + #include <sys/ucontext.h>
295 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
296 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
297 + #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
298 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
299 + #endif
300 + #if (defined(powerpc) || defined(__powerpc__))
301 + #include <sys/ucontext.h>
302 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
303 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
304 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
305 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
306 + #endif
307 + #endif
308   #if defined(__linux__)
309   #if (defined(i386) || defined(__i386__))
310   #include <sys/ucontext.h>
311 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
311 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
312 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
313 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
314 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
315 > #endif
316 > #if (defined(x86_64) || defined(__x86_64__))
317 > #include <sys/ucontext.h>
318 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
319 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
320 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS
321 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
322   #endif
323   #if (defined(ia64) || defined(__ia64__))
324 < #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
324 > #define SIGSEGV_CONTEXT_REGS                    ((struct sigcontext *)scp)
325 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
326 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
327 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
328   #endif
329   #if (defined(powerpc) || defined(__powerpc__))
330   #include <sys/ucontext.h>
331 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
331 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
332 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
333 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
334 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
335 > #endif
336 > #if (defined(hppa) || defined(__hppa__))
337 > #undef  SIGSEGV_FAULT_ADDRESS
338 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
339 > #endif
340 > #if (defined(arm) || defined(__arm__))
341 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
342 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
343 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
344 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
345 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
346 > #endif
347 > #if (defined(mips) || defined(__mips__))
348 > #include <sys/ucontext.h>
349 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
350 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
351 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
352 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
353 > #endif
354 > #endif
355 > #if (defined(__hpux) || defined(__hpux__))
356 > #if (defined(__hppa) || defined(__hppa__))
357 > #define SIGSEGV_CONTEXT_REGS                    (&((ucontext_t *)scp)->uc_mcontext)
358 > #define SIGSEGV_FAULT_INSTRUCTION_32    (SIGSEGV_CONTEXT_REGS->ss_narrow.ss_pcoq_head & ~3ul)
359 > #define SIGSEGV_FAULT_INSTRUCTION_64    (SIGSEGV_CONTEXT_REGS->ss_wide.ss_64.ss_pcoq_head & ~3ull)
360 > #if defined(__LP64__)
361 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_FAULT_INSTRUCTION_64
362 > #else
363 > #define SIGSEGV_FAULT_INSTRUCTION               ((SIGSEGV_CONTEXT_REGS->ss_flags & SS_WIDEREGS) ? \
364 >                                                                                 (uint32_t)SIGSEGV_FAULT_INSTRUCTION_64 : \
365 >                                                                                 SIGSEGV_FAULT_INSTRUCTION_32)
366 > #endif
367 > #endif
368 > #if (defined(__ia64) || defined(__ia64__))
369 > #include <sys/ucontext.h>
370 > #define SIGSEGV_CONTEXT_REGS                    ((ucontext_t *)scp)
371 > #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(SIGSEGV_CONTEXT_REGS)
372 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
373 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
374 >
375 > #include <sys/uc_access.h>
376 > static inline sigsegv_address_t get_fault_instruction(const ucontext_t *ucp)
377 > {
378 >  uint64_t ip;
379 >  if (__uc_get_ip(ucp, &ip) != 0)
380 >        return SIGSEGV_INVALID_ADDRESS;
381 >  return (sigsegv_address_t)(ip & ~3ULL);
382 > }
383   #endif
384   #endif
385   #endif
# Line 82 | Line 391 | static bool sigsegv_do_install_handler(i
391   #if (defined(i386) || defined(__i386__))
392   #include <asm/sigcontext.h>
393   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
394 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
395 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
394 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
395 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
396 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
397 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
398 > #define SIGSEGV_REGISTER_FILE                   (SIGSEGV_REGISTER_TYPE *)scp
399 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
400   #endif
401   #if (defined(sparc) || defined(__sparc__))
402   #include <asm/sigcontext.h>
403   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
404 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
405   #define SIGSEGV_FAULT_ADDRESS                   addr
406   #endif
407   #if (defined(powerpc) || defined(__powerpc__))
408   #include <asm/sigcontext.h>
409   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
410 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
411   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
412   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
413 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
414 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
415   #endif
416   #if (defined(alpha) || defined(__alpha__))
417   #include <asm/sigcontext.h>
418   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
419 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
420   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
421   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
422 <
423 < // From Boehm's GC 6.0alpha8
424 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
425 < {
426 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
427 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
428 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
429 <        return (sigsegv_address_t)fault_address;
430 < }
422 > #endif
423 > #if (defined(arm) || defined(__arm__))
424 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
425 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
426 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
427 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
428 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
429 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
430 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
431   #endif
432   #endif
433  
434   // Irix 5 or 6 on MIPS
435 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
435 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
436 > #include <ucontext.h>
437   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
438 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
438 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
439 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
440 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
441   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
442   #endif
443  
444 + // HP-UX
445 + #if (defined(hpux) || defined(__hpux__))
446 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
447 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
448 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
449 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
450 + #endif
451 +
452   // OSF/1 on Alpha
453   #if defined(__osf__)
454 + #include <ucontext.h>
455   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
456 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
457   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
458   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
459   #endif
# Line 130 | Line 461 | static sigsegv_address_t get_fault_addre
461   // AIX
462   #if defined(_AIX)
463   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
464 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
465   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
466   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
467   #endif
468  
469 < // NetBSD or FreeBSD
470 < #if defined(__NetBSD__) || defined(__FreeBSD__)
469 > // NetBSD
470 > #if defined(__NetBSD__)
471   #if (defined(m68k) || defined(__m68k__))
472   #include <m68k/frame.h>
473   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
474 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
475 <        struct sigstate {                                                                                                                                                                       \
144 <                int ss_flags;                                                                                                                                                                   \
145 <                struct frame ss_frame;                                                                                                                                                  \
146 <        };                                                                                                                                                                                                      \
147 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
148 <        char *fault_addr;                                                                                                                                                                       \
149 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
150 <        case 7:         /* 68040 access error */                                                                                                                                \
151 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
152 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
153 <                break;                                                                                                                                                                                  \
154 <        default:                                                                                                                                                                                        \
155 <                fault_addr = (char *)code;                                                                                                                                              \
156 <                break;                                                                                                                                                                                  \
157 <        }                                                                                                                                                                                                       \
158 <        fault_addr;                                                                                                                                                                                     \
159 < })
474 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
475 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
476   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 < #else
478 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
479 < #define SIGSEGV_FAULT_ADDRESS                   addr
477 >
478 > // Use decoding scheme from BasiliskII/m68k native
479 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
480 > {
481 >        struct sigstate {
482 >                int ss_flags;
483 >                struct frame ss_frame;
484 >        };
485 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
486 >        char *fault_addr;
487 >        switch (state->ss_frame.f_format) {
488 >        case 7:         /* 68040 access error */
489 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
490 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
491 >                break;
492 >        default:
493 >                fault_addr = (char *)code;
494 >                break;
495 >        }
496 >        return (sigsegv_address_t)fault_addr;
497 > }
498 > #endif
499 > #if (defined(alpha) || defined(__alpha__))
500 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
501 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
502 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
503   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
504   #endif
505 + #if (defined(i386) || defined(__i386__))
506 + #error "FIXME: need to decode instruction and compute EA"
507 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
508 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
509 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
510 + #endif
511 + #endif
512 + #if defined(__FreeBSD__)
513 + #if (defined(i386) || defined(__i386__))
514 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
515 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
516 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
517 + #define SIGSEGV_FAULT_ADDRESS                   addr
518 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
519 + #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&scp->sc_edi)
520 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
521 + #endif
522 + #if (defined(alpha) || defined(__alpha__))
523 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
524 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
525 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
526 + #define SIGSEGV_FAULT_ADDRESS                   addr
527 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
528 + #endif
529   #endif
530  
531 < // MacOS X
531 > // Extract fault address out of a sigcontext
532 > #if (defined(alpha) || defined(__alpha__))
533 > // From Boehm's GC 6.0alpha8
534 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
535 > {
536 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
537 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
538 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
539 >        return (sigsegv_address_t)fault_address;
540 > }
541 > #endif
542 >
543 >
544 > // MacOS X, not sure which version this works in. Under 10.1
545 > // vm_protect does not appear to work from a signal handler. Under
546 > // 10.2 signal handlers get siginfo type arguments but the si_addr
547 > // field is the address of the faulting instruction and not the
548 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
549 > // case with Mach exception handlers there is a way to do what this
550 > // was meant to do.
551 > #ifndef HAVE_MACH_EXCEPTIONS
552   #if defined(__APPLE__) && defined(__MACH__)
553   #if (defined(ppc) || defined(__ppc__))
554 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
554 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct __darwin_sigcontext *scp
555 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
556   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
557 < #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
557 > #define SIGSEGV_FAULT_INSTRUCTION               scp->MACH_FIELD_NAME(sc_ir)
558   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
559 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
560 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
561  
562 < // From Boehm's GC 6.0alpha8
177 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
178 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
179 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
180 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
181 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
182 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
183 <
562 > // Use decoding scheme from SheepShaver
563   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
564   {
565 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
566 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
567 <        int            disp = 0, tmp;
568 <        unsigned int   baseA = 0, baseB = 0;
569 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
570 <
571 <        switch(EXTRACT_OP1(instr)) {
572 <        case 38:   /* stb */
573 <        case 39:   /* stbu */
574 <        case 54:   /* stfd */
575 <        case 55:   /* stfdu */
576 <        case 52:   /* stfs */
577 <        case 53:   /* stfsu */
578 <        case 44:   /* sth */
579 <        case 45:   /* sthu */
580 <        case 47:   /* stmw */
581 <        case 36:   /* stw */
582 <        case 37:   /* stwu */
583 <                tmp = EXTRACT_REGA(instr);
584 <                if(tmp > 0)
585 <                        baseA = regs[tmp];
586 <                disp = EXTRACT_DISP(instr);
565 >        unsigned int   nip = (unsigned int) scp->MACH_FIELD_NAME(sc_ir);
566 >        unsigned int * gpr = &((unsigned int *) scp->MACH_FIELD_NAME(sc_regs))[2];
567 >        instruction_t  instr;
568 >
569 >        powerpc_decode_instruction(&instr, nip, (long unsigned int*)gpr);
570 >        return (sigsegv_address_t)instr.addr;
571 > }
572 > #endif
573 > #endif
574 > #endif
575 > #endif
576 >
577 > #if HAVE_WIN32_EXCEPTIONS
578 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
579 > #include <windows.h>
580 > #include <winerror.h>
581 >
582 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
583 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
584 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
585 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
586 > #if defined(_M_IX86)
587 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
588 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Edi)
589 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
590 > #endif
591 > #if defined(_M_X64)
592 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Rip
593 > #define SIGSEGV_REGISTER_FILE                   ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Rax)
594 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
595 > #endif
596 > #if defined(_M_IA64)
597 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->StIIP
598 > #endif
599 > #endif
600 >
601 > #if HAVE_MACH_EXCEPTIONS
602 >
603 > // This can easily be extended to other Mach systems, but really who
604 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
605 > // Mach 2.5/3.0?
606 > #if defined(__APPLE__) && defined(__MACH__)
607 >
608 > #include <sys/types.h>
609 > #include <stdlib.h>
610 > #include <stdio.h>
611 > #include <pthread.h>
612 >
613 > /*
614 > * If you are familiar with MIG then you will understand the frustration
615 > * that was necessary to get these embedded into C++ code by hand.
616 > */
617 > extern "C" {
618 > #include <mach/mach.h>
619 > #include <mach/mach_error.h>
620 >
621 > #ifndef HAVE_MACH64_VM
622 >
623 > // Undefine this to prevent a preprocessor warning when compiling on a
624 > // 32-bit machine with Mac OS X 10.5.
625 > #undef  MACH_EXCEPTION_CODES
626 >
627 > #define MACH_EXCEPTION_CODES                                    0
628 > #define mach_exception_data_t                                   exception_data_t
629 > #define mach_exception_data_type_t                              exception_data_type_t
630 > #define mach_exc_server                                                 exc_server
631 > #define catch_mach_exception_raise                              catch_exception_raise
632 > #define mach_exception_raise                                    exception_raise
633 > #define mach_exception_raise_state                              exception_raise_state
634 > #define mach_exception_raise_state_identity             exception_raise_state_identity
635 > #endif
636 >
637 > extern boolean_t mach_exc_server(mach_msg_header_t *, mach_msg_header_t *);
638 > extern kern_return_t catch_mach_exception_raise(mach_port_t, mach_port_t,
639 >        mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
640 > extern kern_return_t catch_mach_exception_raise_state(mach_port_t exception_port,
641 >        exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count,
642 >        int *flavor,
643 >        thread_state_t old_state, mach_msg_type_number_t old_state_count,
644 >        thread_state_t new_state, mach_msg_type_number_t *new_state_count);
645 > extern kern_return_t catch_mach_exception_raise_state_identity(mach_port_t exception_port,
646 >        mach_port_t thread_port, mach_port_t task_port, exception_type_t exception,
647 >        mach_exception_data_t code, mach_msg_type_number_t code_count,
648 >        int *flavor,
649 >        thread_state_t old_state, mach_msg_type_number_t old_state_count,
650 >        thread_state_t new_state, mach_msg_type_number_t *new_state_count);
651 > extern kern_return_t mach_exception_raise(mach_port_t, mach_port_t, mach_port_t,
652 >        exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
653 > extern kern_return_t mach_exception_raise_state(mach_port_t, exception_type_t,
654 >        mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
655 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
656 > extern kern_return_t mach_exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
657 >        exception_type_t, mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
658 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
659 > }
660 >
661 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
662 > #define HANDLER_COUNT 64
663 >
664 > // structure to tuck away existing exception handlers
665 > typedef struct _ExceptionPorts {
666 >        mach_msg_type_number_t maskCount;
667 >        exception_mask_t masks[HANDLER_COUNT];
668 >        exception_handler_t handlers[HANDLER_COUNT];
669 >        exception_behavior_t behaviors[HANDLER_COUNT];
670 >        thread_state_flavor_t flavors[HANDLER_COUNT];
671 > } ExceptionPorts;
672 >
673 > // exception handler thread
674 > static pthread_t exc_thread;
675 >
676 > // place where old exception handler info is stored
677 > static ExceptionPorts ports;
678 >
679 > // our exception port
680 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
681 >
682 > #define MACH_CHECK_ERROR(name,ret) \
683 > if (ret != KERN_SUCCESS) { \
684 >        mach_error(#name, ret); \
685 >        exit (1); \
686 > }
687 >
688 > #ifndef MACH_FIELD_NAME
689 > #define MACH_FIELD_NAME(X) X
690 > #endif
691 >
692 > // Since there can only be one exception thread running at any time
693 > // this is not a problem.
694 > #define MSG_SIZE 512
695 > static char msgbuf[MSG_SIZE];
696 > static char replybuf[MSG_SIZE];
697 >
698 > /*
699 > * This is the entry point for the exception handler thread. The job
700 > * of this thread is to wait for exception messages on the exception
701 > * port that was setup beforehand and to pass them on to exc_server.
702 > * exc_server is a MIG generated function that is a part of Mach.
703 > * Its job is to decide what to do with the exception message. In our
704 > * case exc_server calls catch_exception_raise on our behalf. After
705 > * exc_server returns, it is our responsibility to send the reply.
706 > */
707 > static void *
708 > handleExceptions(void *priv)
709 > {
710 >        mach_msg_header_t *msg, *reply;
711 >        kern_return_t krc;
712 >
713 >        msg = (mach_msg_header_t *)msgbuf;
714 >        reply = (mach_msg_header_t *)replybuf;
715 >
716 >        for (;;) {
717 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
718 >                                _exceptionPort, 0, MACH_PORT_NULL);
719 >                MACH_CHECK_ERROR(mach_msg, krc);
720 >
721 >                if (!mach_exc_server(msg, reply)) {
722 >                        fprintf(stderr, "exc_server hated the message\n");
723 >                        exit(1);
724 >                }
725 >
726 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
727 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
728 >                if (krc != KERN_SUCCESS) {
729 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
730 >                                krc, mach_error_string(krc));
731 >                        exit(1);
732 >                }
733 >        }
734 > }
735 > #endif
736 > #endif
737 >
738 >
739 > /*
740 > *  Instruction skipping
741 > */
742 >
743 > #ifndef SIGSEGV_REGISTER_TYPE
744 > #define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t
745 > #endif
746 >
747 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
748 > // Decode and skip X86 instruction
749 > #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
750 > #if defined(__linux__)
751 > enum {
752 > #if (defined(i386) || defined(__i386__))
753 >        X86_REG_EIP = 14,
754 >        X86_REG_EAX = 11,
755 >        X86_REG_ECX = 10,
756 >        X86_REG_EDX = 9,
757 >        X86_REG_EBX = 8,
758 >        X86_REG_ESP = 7,
759 >        X86_REG_EBP = 6,
760 >        X86_REG_ESI = 5,
761 >        X86_REG_EDI = 4
762 > #endif
763 > #if defined(__x86_64__)
764 >        X86_REG_R8  = 0,
765 >        X86_REG_R9  = 1,
766 >        X86_REG_R10 = 2,
767 >        X86_REG_R11 = 3,
768 >        X86_REG_R12 = 4,
769 >        X86_REG_R13 = 5,
770 >        X86_REG_R14 = 6,
771 >        X86_REG_R15 = 7,
772 >        X86_REG_EDI = 8,
773 >        X86_REG_ESI = 9,
774 >        X86_REG_EBP = 10,
775 >        X86_REG_EBX = 11,
776 >        X86_REG_EDX = 12,
777 >        X86_REG_EAX = 13,
778 >        X86_REG_ECX = 14,
779 >        X86_REG_ESP = 15,
780 >        X86_REG_EIP = 16
781 > #endif
782 > };
783 > #endif
784 > #if defined(__NetBSD__)
785 > enum {
786 > #if (defined(i386) || defined(__i386__))
787 >        X86_REG_EIP = _REG_EIP,
788 >        X86_REG_EAX = _REG_EAX,
789 >        X86_REG_ECX = _REG_ECX,
790 >        X86_REG_EDX = _REG_EDX,
791 >        X86_REG_EBX = _REG_EBX,
792 >        X86_REG_ESP = _REG_ESP,
793 >        X86_REG_EBP = _REG_EBP,
794 >        X86_REG_ESI = _REG_ESI,
795 >        X86_REG_EDI = _REG_EDI
796 > #endif
797 > };
798 > #endif
799 > #if defined(__FreeBSD__)
800 > enum {
801 > #if (defined(i386) || defined(__i386__))
802 >        X86_REG_EIP = 10,
803 >        X86_REG_EAX = 7,
804 >        X86_REG_ECX = 6,
805 >        X86_REG_EDX = 5,
806 >        X86_REG_EBX = 4,
807 >        X86_REG_ESP = 13,
808 >        X86_REG_EBP = 2,
809 >        X86_REG_ESI = 1,
810 >        X86_REG_EDI = 0
811 > #endif
812 > };
813 > #endif
814 > #if defined(__OpenBSD__)
815 > enum {
816 > #if defined(__i386__)
817 >        // EDI is the first register we consider
818 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
819 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
820 >        X86_REG_EIP = DREG(eip), // 7
821 >        X86_REG_EAX = DREG(eax), // 6
822 >        X86_REG_ECX = DREG(ecx), // 5
823 >        X86_REG_EDX = DREG(edx), // 4
824 >        X86_REG_EBX = DREG(ebx), // 3
825 >        X86_REG_ESP = DREG(esp), // 10
826 >        X86_REG_EBP = DREG(ebp), // 2
827 >        X86_REG_ESI = DREG(esi), // 1
828 >        X86_REG_EDI = DREG(edi)  // 0
829 > #undef DREG
830 > #undef OREG
831 > #endif
832 > };
833 > #endif
834 > #if defined(__sun__)
835 > // Same as for Linux, need to check for x86-64
836 > enum {
837 > #if defined(__i386__)
838 >        X86_REG_EIP = EIP,
839 >        X86_REG_EAX = EAX,
840 >        X86_REG_ECX = ECX,
841 >        X86_REG_EDX = EDX,
842 >        X86_REG_EBX = EBX,
843 >        X86_REG_ESP = ESP,
844 >        X86_REG_EBP = EBP,
845 >        X86_REG_ESI = ESI,
846 >        X86_REG_EDI = EDI
847 > #endif
848 > };
849 > #endif
850 > #if defined(__APPLE__) && defined(__MACH__)
851 > enum {
852 > #if (defined(i386) || defined(__i386__))
853 > #ifdef i386_SAVED_STATE
854 >        // same as FreeBSD (in Open Darwin 8.0.1)
855 >        X86_REG_EIP = 10,
856 >        X86_REG_EAX = 7,
857 >        X86_REG_ECX = 6,
858 >        X86_REG_EDX = 5,
859 >        X86_REG_EBX = 4,
860 >        X86_REG_ESP = 13,
861 >        X86_REG_EBP = 2,
862 >        X86_REG_ESI = 1,
863 >        X86_REG_EDI = 0
864 > #else
865 >        // new layout (MacOS X 10.4.4 for x86)
866 >        X86_REG_EIP = 10,
867 >        X86_REG_EAX = 0,
868 >        X86_REG_ECX = 2,
869 >        X86_REG_EDX = 3,
870 >        X86_REG_EBX = 1,
871 >        X86_REG_ESP = 7,
872 >        X86_REG_EBP = 6,
873 >        X86_REG_ESI = 5,
874 >        X86_REG_EDI = 4
875 > #endif
876 > #endif
877 > #if defined(__x86_64__)
878 >        X86_REG_R8  = 8,
879 >        X86_REG_R9  = 9,
880 >        X86_REG_R10 = 10,
881 >        X86_REG_R11 = 11,
882 >        X86_REG_R12 = 12,
883 >        X86_REG_R13 = 13,
884 >        X86_REG_R14 = 14,
885 >        X86_REG_R15 = 15,
886 >        X86_REG_EDI = 4,
887 >        X86_REG_ESI = 5,
888 >        X86_REG_EBP = 6,
889 >        X86_REG_EBX = 1,
890 >        X86_REG_EDX = 3,
891 >        X86_REG_EAX = 0,
892 >        X86_REG_ECX = 2,
893 >        X86_REG_ESP = 7,
894 >        X86_REG_EIP = 16
895 > #endif
896 > };
897 > #endif
898 > #if defined(_WIN32)
899 > enum {
900 > #if defined(_M_IX86)
901 >        X86_REG_EIP = 7,
902 >        X86_REG_EAX = 5,
903 >        X86_REG_ECX = 4,
904 >        X86_REG_EDX = 3,
905 >        X86_REG_EBX = 2,
906 >        X86_REG_ESP = 10,
907 >        X86_REG_EBP = 6,
908 >        X86_REG_ESI = 1,
909 >        X86_REG_EDI = 0
910 > #endif
911 > #if defined(_M_X64)
912 >        X86_REG_EAX = 0,
913 >        X86_REG_ECX = 1,
914 >        X86_REG_EDX = 2,
915 >        X86_REG_EBX = 3,
916 >        X86_REG_ESP = 4,
917 >        X86_REG_EBP = 5,
918 >        X86_REG_ESI = 6,
919 >        X86_REG_EDI = 7,
920 >        X86_REG_R8  = 8,
921 >        X86_REG_R9  = 9,
922 >        X86_REG_R10 = 10,
923 >        X86_REG_R11 = 11,
924 >        X86_REG_R12 = 12,
925 >        X86_REG_R13 = 13,
926 >        X86_REG_R14 = 14,
927 >        X86_REG_R15 = 15,
928 >        X86_REG_EIP = 16
929 > #endif
930 > };
931 > #endif
932 > // FIXME: this is partly redundant with the instruction decoding phase
933 > // to discover transfer type and register number
934 > static inline int ix86_step_over_modrm(unsigned char * p)
935 > {
936 >        int mod = (p[0] >> 6) & 3;
937 >        int rm = p[0] & 7;
938 >        int offset = 0;
939 >
940 >        // ModR/M Byte
941 >        switch (mod) {
942 >        case 0: // [reg]
943 >                if (rm == 5) return 4; // disp32
944                  break;
945 <        case 31:
946 <                switch(EXTRACT_OP2(instr)) {
947 <                case 86:    /* dcbf */
948 <                case 54:    /* dcbst */
949 <                case 1014:  /* dcbz */
950 <                case 247:   /* stbux */
951 <                case 215:   /* stbx */
952 <                case 759:   /* stfdux */
953 <                case 727:   /* stfdx */
954 <                case 983:   /* stfiwx */
955 <                case 695:   /* stfsux */
956 <                case 663:   /* stfsx */
957 <                case 918:   /* sthbrx */
958 <                case 439:   /* sthux */
959 <                case 407:   /* sthx */
960 <                case 661:   /* stswx */
961 <                case 662:   /* stwbrx */
962 <                case 150:   /* stwcx. */
963 <                case 183:   /* stwux */
964 <                case 151:   /* stwx */
965 <                case 135:   /* stvebx */
966 <                case 167:   /* stvehx */
967 <                case 199:   /* stvewx */
968 <                case 231:   /* stvx */
969 <                case 487:   /* stvxl */
970 <                        tmp = EXTRACT_REGA(instr);
971 <                        if(tmp > 0)
972 <                                baseA = regs[tmp];
973 <                        baseB = regs[EXTRACT_REGC(instr)];
974 <                        /* determine Altivec alignment mask */
975 <                        switch(EXTRACT_OP2(instr)) {
976 <                        case 167:   /* stvehx */
977 <                                alignmask = 0xFFFFFFFE;
978 <                                break;
979 <                        case 199:   /* stvewx */
980 <                                alignmask = 0xFFFFFFFC;
981 <                                break;
982 <                        case 231:   /* stvx */
983 <                                alignmask = 0xFFFFFFF0;
984 <                                break;
985 <                        case 487:  /* stvxl */
986 <                                alignmask = 0xFFFFFFF0;
987 <                                break;
988 <                        }
989 <                        break;
990 <                case 725:   /* stswi */
991 <                        tmp = EXTRACT_REGA(instr);
992 <                        if(tmp > 0)
993 <                                baseA = regs[tmp];
945 >        case 1: // disp8[reg]
946 >                offset = 1;
947 >                break;
948 >        case 2: // disp32[reg]
949 >                offset = 4;
950 >                break;
951 >        case 3: // register
952 >                return 0;
953 >        }
954 >        
955 >        // SIB Byte
956 >        if (rm == 4) {
957 >                if (mod == 0 && (p[1] & 7) == 5)
958 >                        offset = 5; // disp32[index]
959 >                else
960 >                        offset++;
961 >        }
962 >
963 >        return offset;
964 > }
965 >
966 > static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs)
967 > {
968 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
969 >
970 >        if (eip == 0)
971 >                return false;
972 > #ifdef _WIN32
973 >        if (IsBadCodePtr((FARPROC)eip))
974 >                return false;
975 > #endif
976 >        
977 >        enum instruction_type_t {
978 >                i_MOV,
979 >                i_ADD
980 >        };
981 >
982 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
983 >        transfer_size_t transfer_size = SIZE_LONG;
984 >        instruction_type_t instruction_type = i_MOV;
985 >        
986 >        int reg = -1;
987 >        int len = 0;
988 >
989 > #if DEBUG
990 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
991 >                   eip, eip[0], eip[1], eip[2], eip[3]);
992 > #endif
993 >
994 >        // Operand size prefix
995 >        if (*eip == 0x66) {
996 >                eip++;
997 >                len++;
998 >                transfer_size = SIZE_WORD;
999 >        }
1000 >
1001 >        // REX prefix
1002 > #if defined(__x86_64__) || defined(_M_X64)
1003 >        struct rex_t {
1004 >                unsigned char W;
1005 >                unsigned char R;
1006 >                unsigned char X;
1007 >                unsigned char B;
1008 >        };
1009 >        rex_t rex = { 0, 0, 0, 0 };
1010 >        bool has_rex = false;
1011 >        if ((*eip & 0xf0) == 0x40) {
1012 >                has_rex = true;
1013 >                const unsigned char b = *eip;
1014 >                rex.W = b & (1 << 3);
1015 >                rex.R = b & (1 << 2);
1016 >                rex.X = b & (1 << 1);
1017 >                rex.B = b & (1 << 0);
1018 > #if DEBUG
1019 >                printf("REX: %c,%c,%c,%c\n",
1020 >                           rex.W ? 'W' : '_',
1021 >                           rex.R ? 'R' : '_',
1022 >                           rex.X ? 'X' : '_',
1023 >                           rex.B ? 'B' : '_');
1024 > #endif
1025 >                eip++;
1026 >                len++;
1027 >                if (rex.W)
1028 >                        transfer_size = SIZE_QUAD;
1029 >        }
1030 > #else
1031 >        const bool has_rex = false;
1032 > #endif
1033 >
1034 >        // Decode instruction
1035 >        int op_len = 1;
1036 >        int target_size = SIZE_UNKNOWN;
1037 >        switch (eip[0]) {
1038 >        case 0x0f:
1039 >                target_size = transfer_size;
1040 >            switch (eip[1]) {
1041 >                case 0xbe: // MOVSX r32, r/m8
1042 >            case 0xb6: // MOVZX r32, r/m8
1043 >                        transfer_size = SIZE_BYTE;
1044 >                        goto do_mov_extend;
1045 >                case 0xbf: // MOVSX r32, r/m16
1046 >            case 0xb7: // MOVZX r32, r/m16
1047 >                        transfer_size = SIZE_WORD;
1048 >                        goto do_mov_extend;
1049 >                  do_mov_extend:
1050 >                        op_len = 2;
1051 >                        goto do_transfer_load;
1052 >                }
1053 >                break;
1054 > #if defined(__x86_64__) || defined(_M_X64)
1055 >        case 0x63: // MOVSXD r64, r/m32
1056 >                if (has_rex && rex.W) {
1057 >                        transfer_size = SIZE_LONG;
1058 >                        target_size = SIZE_QUAD;
1059 >                }
1060 >                else if (transfer_size != SIZE_WORD) {
1061 >                        transfer_size = SIZE_LONG;
1062 >                        target_size = SIZE_QUAD;
1063 >                }
1064 >                goto do_transfer_load;
1065 > #endif
1066 >        case 0x02: // ADD r8, r/m8
1067 >                transfer_size = SIZE_BYTE;
1068 >        case 0x03: // ADD r32, r/m32
1069 >                instruction_type = i_ADD;
1070 >                goto do_transfer_load;
1071 >        case 0x8a: // MOV r8, r/m8
1072 >                transfer_size = SIZE_BYTE;
1073 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1074 >          do_transfer_load:
1075 >                switch (eip[op_len] & 0xc0) {
1076 >                case 0x80:
1077 >                        reg = (eip[op_len] >> 3) & 7;
1078 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1079 >                        break;
1080 >                case 0x40:
1081 >                        reg = (eip[op_len] >> 3) & 7;
1082 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1083                          break;
1084 <                default:   /* ignore instruction */
1085 <                        return 0;
1084 >                case 0x00:
1085 >                        reg = (eip[op_len] >> 3) & 7;
1086 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1087                          break;
1088                  }
1089 +                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1090                  break;
1091 <        default:   /* ignore instruction */
1092 <                return 0;
1091 >        case 0x00: // ADD r/m8, r8
1092 >                transfer_size = SIZE_BYTE;
1093 >        case 0x01: // ADD r/m32, r32
1094 >                instruction_type = i_ADD;
1095 >                goto do_transfer_store;
1096 >        case 0x88: // MOV r/m8, r8
1097 >                transfer_size = SIZE_BYTE;
1098 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1099 >          do_transfer_store:
1100 >                switch (eip[op_len] & 0xc0) {
1101 >                case 0x80:
1102 >                        reg = (eip[op_len] >> 3) & 7;
1103 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1104 >                        break;
1105 >                case 0x40:
1106 >                        reg = (eip[op_len] >> 3) & 7;
1107 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1108 >                        break;
1109 >                case 0x00:
1110 >                        reg = (eip[op_len] >> 3) & 7;
1111 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1112 >                        break;
1113 >                }
1114 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1115 >                break;
1116 >        }
1117 >        if (target_size == SIZE_UNKNOWN)
1118 >                target_size = transfer_size;
1119 >
1120 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1121 >                // Unknown machine code, let it crash. Then patch the decoder
1122 >                return false;
1123 >        }
1124 >
1125 > #if defined(__x86_64__) || defined(_M_X64)
1126 >        if (rex.R)
1127 >                reg += 8;
1128 > #endif
1129 >
1130 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1131 >                static const int x86_reg_map[] = {
1132 >                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1133 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1134 > #if defined(__x86_64__) || defined(_M_X64)
1135 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1136 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1137 > #endif
1138 >                };
1139 >                
1140 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1141 >                        return false;
1142 >
1143 >                // Set 0 to the relevant register part
1144 >                // NOTE: this is only valid for MOV alike instructions
1145 >                int rloc = x86_reg_map[reg];
1146 >                switch (target_size) {
1147 >                case SIZE_BYTE:
1148 >                        if (has_rex || reg < 4)
1149 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1150 >                        else {
1151 >                                rloc = x86_reg_map[reg - 4];
1152 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1153 >                        }
1154 >                        break;
1155 >                case SIZE_WORD:
1156 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1157 >                        break;
1158 >                case SIZE_LONG:
1159 >                case SIZE_QUAD: // zero-extension
1160 >                        regs[rloc] = 0;
1161 >                        break;
1162 >                }
1163 >        }
1164 >
1165 > #if DEBUG
1166 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1167 >                   transfer_size == SIZE_BYTE ? "byte" :
1168 >                   transfer_size == SIZE_WORD ? "word" :
1169 >                   transfer_size == SIZE_LONG ? "long" :
1170 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1171 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1172 >        
1173 >        if (reg != -1) {
1174 >                static const char * x86_byte_reg_str_map[] = {
1175 >                        "al",   "cl",   "dl",   "bl",
1176 >                        "spl",  "bpl",  "sil",  "dil",
1177 >                        "r8b",  "r9b",  "r10b", "r11b",
1178 >                        "r12b", "r13b", "r14b", "r15b",
1179 >                        "ah",   "ch",   "dh",   "bh",
1180 >                };
1181 >                static const char * x86_word_reg_str_map[] = {
1182 >                        "ax",   "cx",   "dx",   "bx",
1183 >                        "sp",   "bp",   "si",   "di",
1184 >                        "r8w",  "r9w",  "r10w", "r11w",
1185 >                        "r12w", "r13w", "r14w", "r15w",
1186 >                };
1187 >                static const char *x86_long_reg_str_map[] = {
1188 >                        "eax",  "ecx",  "edx",  "ebx",
1189 >                        "esp",  "ebp",  "esi",  "edi",
1190 >                        "r8d",  "r9d",  "r10d", "r11d",
1191 >                        "r12d", "r13d", "r14d", "r15d",
1192 >                };
1193 >                static const char *x86_quad_reg_str_map[] = {
1194 >                        "rax", "rcx", "rdx", "rbx",
1195 >                        "rsp", "rbp", "rsi", "rdi",
1196 >                        "r8",  "r9",  "r10", "r11",
1197 >                        "r12", "r13", "r14", "r15",
1198 >                };
1199 >                const char * reg_str = NULL;
1200 >                switch (target_size) {
1201 >                case SIZE_BYTE:
1202 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1203 >                        break;
1204 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1205 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1206 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1207 >                }
1208 >                if (reg_str)
1209 >                        printf(" %s register %%%s",
1210 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1211 >                                   reg_str);
1212 >        }
1213 >        printf(", %d bytes instruction\n", len);
1214 > #endif
1215 >        
1216 >        regs[X86_REG_EIP] += len;
1217 >        return true;
1218 > }
1219 > #endif
1220 >
1221 > // Decode and skip IA-64 instruction
1222 > #if defined(__ia64) || defined(__ia64__)
1223 > typedef uint64_t ia64_bundle_t[2];
1224 > #if defined(__linux__)
1225 > // We can directly patch the slot number
1226 > #define IA64_CAN_PATCH_IP_SLOT  1
1227 > // Helper macros to access the machine context
1228 > #define IA64_CONTEXT_TYPE               struct sigcontext *
1229 > #define IA64_CONTEXT                    scp
1230 > #define IA64_GET_IP()                   (IA64_CONTEXT->sc_ip)
1231 > #define IA64_SET_IP(V)                  (IA64_CONTEXT->sc_ip = (V))
1232 > #define IA64_GET_PR(P)                  ((IA64_CONTEXT->sc_pr >> (P)) & 1)
1233 > #define IA64_GET_NAT(I)                 ((IA64_CONTEXT->sc_nat >> (I)) & 1)
1234 > #define IA64_GET_GR(R)                  (IA64_CONTEXT->sc_gr[(R)])
1235 > #define _IA64_SET_GR(R,V)               (IA64_CONTEXT->sc_gr[(R)] = (V))
1236 > #define _IA64_SET_NAT(I,V)              (IA64_CONTEXT->sc_nat = (IA64_CONTEXT->sc_nat & ~(1ull << (I))) | (((uint64_t)!!(V)) << (I)))
1237 > #define IA64_SET_GR(R,V,N)              (_IA64_SET_GR(R,V), _IA64_SET_NAT(R,N))
1238 >
1239 > // Load bundle (in little-endian)
1240 > static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip)
1241 > {
1242 >        uint64_t *ip = (uint64_t *)(raw_ip & ~3ull);
1243 >        bundle[0] = ip[0];
1244 >        bundle[1] = ip[1];
1245 > }
1246 > #endif
1247 > #if defined(__hpux) || defined(__hpux__)
1248 > // We can directly patch the slot number
1249 > #define IA64_CAN_PATCH_IP_SLOT  1
1250 > // Helper macros to access the machine context
1251 > #define IA64_CONTEXT_TYPE               ucontext_t *
1252 > #define IA64_CONTEXT                    ucp
1253 > #define IA64_GET_IP()                   ia64_get_ip(IA64_CONTEXT)
1254 > #define IA64_SET_IP(V)                  ia64_set_ip(IA64_CONTEXT, V)
1255 > #define IA64_GET_PR(P)                  ia64_get_pr(IA64_CONTEXT, P)
1256 > #define IA64_GET_NAT(I)                 ia64_get_nat(IA64_CONTEXT, I)
1257 > #define IA64_GET_GR(R)                  ia64_get_gr(IA64_CONTEXT, R)
1258 > #define IA64_SET_GR(R,V,N)              ia64_set_gr(IA64_CONTEXT, R, V, N)
1259 > #define UC_ACCESS(FUNC,ARGS)    do { if (__uc_##FUNC ARGS != 0) abort(); } while (0)
1260 >
1261 > static inline uint64_t ia64_get_ip(IA64_CONTEXT_TYPE IA64_CONTEXT)
1262 >        { uint64_t v; UC_ACCESS(get_ip,(IA64_CONTEXT, &v)); return v; }
1263 > static inline void ia64_set_ip(IA64_CONTEXT_TYPE IA64_CONTEXT, uint64_t v)
1264 >        { UC_ACCESS(set_ip,(IA64_CONTEXT, v)); }
1265 > static inline unsigned int ia64_get_pr(IA64_CONTEXT_TYPE IA64_CONTEXT, int pr)
1266 >        { uint64_t v; UC_ACCESS(get_prs,(IA64_CONTEXT, &v)); return (v >> pr) & 1; }
1267 > static inline unsigned int ia64_get_nat(IA64_CONTEXT_TYPE IA64_CONTEXT, int r)
1268 >        { uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return (nat >> r) & 1; }
1269 > static inline uint64_t ia64_get_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r)
1270 >        { uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return v; }
1271 >
1272 > static void ia64_set_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r, uint64_t v, unsigned int nat)
1273 > {
1274 >        if (r == 0)
1275 >                return;
1276 >        if (r > 0 && r < 32)
1277 >                UC_ACCESS(set_grs,(IA64_CONTEXT, r, 1, &v, (!!nat) << r));
1278 >        else {
1279 >                uint64_t bsp, bspstore;
1280 >                UC_ACCESS(get_ar_bsp,(IA64_CONTEXT, &bsp));
1281 >                UC_ACCESS(get_ar_bspstore,(IA64_CONTEXT, &bspstore));
1282 >                abort(); /* XXX: use libunwind, this is not fun... */
1283 >        }
1284 > }
1285 >
1286 > // Byte-swapping
1287 > #if defined(__GNUC__)
1288 > #define BSWAP64(V) ({ uint64_t r; __asm__ __volatile__("mux1 %0=%1,@rev;;" : "=r" (r) : "r" (V)); r; })
1289 > #elif defined (__HP_aCC)
1290 > #define BSWAP64(V) _Asm_mux1(_MBTYPE_REV, V)
1291 > #else
1292 > #error "Define byte-swap instruction"
1293 > #endif
1294 >
1295 > // Load bundle (in little-endian)
1296 > static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip)
1297 > {
1298 >        uint64_t *ip = (uint64_t *)(raw_ip & ~3ull);
1299 >        bundle[0] = BSWAP64(ip[0]);
1300 >        bundle[1] = BSWAP64(ip[1]);
1301 > }
1302 > #endif
1303 >
1304 > // Instruction operations
1305 > enum {
1306 >        IA64_INST_UNKNOWN = 0,
1307 >        IA64_INST_LD1,                          // ld1 op0=[op1]
1308 >        IA64_INST_LD1_UPDATE,           // ld1 op0=[op1],op2
1309 >        IA64_INST_LD2,                          // ld2 op0=[op1]
1310 >        IA64_INST_LD2_UPDATE,           // ld2 op0=[op1],op2
1311 >        IA64_INST_LD4,                          // ld4 op0=[op1]
1312 >        IA64_INST_LD4_UPDATE,           // ld4 op0=[op1],op2
1313 >        IA64_INST_LD8,                          // ld8 op0=[op1]
1314 >        IA64_INST_LD8_UPDATE,           // ld8 op0=[op1],op2
1315 >        IA64_INST_ST1,                          // st1 [op0]=op1
1316 >        IA64_INST_ST1_UPDATE,           // st1 [op0]=op1,op2
1317 >        IA64_INST_ST2,                          // st2 [op0]=op1
1318 >        IA64_INST_ST2_UPDATE,           // st2 [op0]=op1,op2
1319 >        IA64_INST_ST4,                          // st4 [op0]=op1
1320 >        IA64_INST_ST4_UPDATE,           // st4 [op0]=op1,op2
1321 >        IA64_INST_ST8,                          // st8 [op0]=op1
1322 >        IA64_INST_ST8_UPDATE,           // st8 [op0]=op1,op2
1323 >        IA64_INST_ADD,                          // add op0=op1,op2,op3
1324 >        IA64_INST_SUB,                          // sub op0=op1,op2,op3
1325 >        IA64_INST_SHLADD,                       // shladd op0=op1,op3,op2
1326 >        IA64_INST_AND,                          // and op0=op1,op2
1327 >        IA64_INST_ANDCM,                        // andcm op0=op1,op2
1328 >        IA64_INST_OR,                           // or op0=op1,op2
1329 >        IA64_INST_XOR,                          // xor op0=op1,op2
1330 >        IA64_INST_SXT1,                         // sxt1 op0=op1
1331 >        IA64_INST_SXT2,                         // sxt2 op0=op1
1332 >        IA64_INST_SXT4,                         // sxt4 op0=op1
1333 >        IA64_INST_ZXT1,                         // zxt1 op0=op1
1334 >        IA64_INST_ZXT2,                         // zxt2 op0=op1
1335 >        IA64_INST_ZXT4,                         // zxt4 op0=op1
1336 >        IA64_INST_NOP                           // nop op0
1337 > };
1338 >
1339 > const int IA64_N_OPERANDS = 4;
1340 >
1341 > // Decoded operand type
1342 > struct ia64_operand_t {
1343 >        uint8_t commit;                         // commit result of operation to register file?
1344 >        uint8_t valid;                          // XXX: not really used, can be removed (debug)
1345 >        int8_t index;                           // index of GPR, or -1 if immediate value
1346 >        uint8_t nat;                            // NaT state before operation
1347 >        uint64_t value;                         // register contents or immediate value
1348 > };
1349 >
1350 > // Decoded instruction type
1351 > struct ia64_instruction_t {
1352 >        uint8_t mnemo;                          // operation to perform
1353 >        uint8_t pred;                           // predicate register to check
1354 >        uint8_t no_memory;                      // used to emulated main fault instruction
1355 >        uint64_t inst;                          // the raw instruction bits (41-bit wide)
1356 >        ia64_operand_t operands[IA64_N_OPERANDS];
1357 > };
1358 >
1359 > // Get immediate sign-bit
1360 > static inline int ia64_inst_get_sbit(uint64_t inst)
1361 > {
1362 >        return (inst >> 36) & 1;
1363 > }
1364 >
1365 > // Get 8-bit immediate value (A3, A8, I27, M30)
1366 > static inline uint64_t ia64_inst_get_imm8(uint64_t inst)
1367 > {
1368 >        uint64_t value = (inst >> 13) & 0x7full;
1369 >        if (ia64_inst_get_sbit(inst))
1370 >                value |= ~0x7full;
1371 >        return value;
1372 > }
1373 >
1374 > // Get 9-bit immediate value (M3)
1375 > static inline uint64_t ia64_inst_get_imm9b(uint64_t inst)
1376 > {
1377 >        uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
1378 >        if (ia64_inst_get_sbit(inst))
1379 >                value |= ~0xffull;
1380 >        return value;
1381 > }
1382 >
1383 > // Get 9-bit immediate value (M5)
1384 > static inline uint64_t ia64_inst_get_imm9a(uint64_t inst)
1385 > {
1386 >        uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
1387 >        if (ia64_inst_get_sbit(inst))
1388 >                value |= ~0xffull;
1389 >        return value;
1390 > }
1391 >
1392 > // Get 14-bit immediate value (A4)
1393 > static inline uint64_t ia64_inst_get_imm14(uint64_t inst)
1394 > {
1395 >        uint64_t value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
1396 >        if (ia64_inst_get_sbit(inst))
1397 >                value |= ~0x1ffull;
1398 >        return value;
1399 > }
1400 >
1401 > // Get 22-bit immediate value (A5)
1402 > static inline uint64_t ia64_inst_get_imm22(uint64_t inst)
1403 > {
1404 >        uint64_t value = ((((inst >> 22) & 0x1f) << 16) |
1405 >                                          (((inst >> 27) & 0x1ff) << 7) |
1406 >                                          (inst & 0x7f));
1407 >        if (ia64_inst_get_sbit(inst))
1408 >                value |= ~0x1fffffull;
1409 >        return value;
1410 > }
1411 >
1412 > // Get 21-bit immediate value (I19)
1413 > static inline uint64_t ia64_inst_get_imm21(uint64_t inst)
1414 > {
1415 >        return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
1416 > }
1417 >
1418 > // Get 2-bit count value (A2)
1419 > static inline int ia64_inst_get_count2(uint64_t inst)
1420 > {
1421 >        return (inst >> 27) & 0x3;
1422 > }
1423 >
1424 > // Get bundle template
1425 > static inline unsigned int ia64_get_template(uint64_t ip)
1426 > {
1427 >        ia64_bundle_t bundle;
1428 >        ia64_load_bundle(bundle, ip);
1429 >        return bundle[0] & 0x1f;
1430 > }
1431 >
1432 > // Get specified instruction in bundle
1433 > static uint64_t ia64_get_instruction(uint64_t ip, int slot)
1434 > {
1435 >        uint64_t inst;
1436 >        ia64_bundle_t bundle;
1437 >        ia64_load_bundle(bundle, ip);
1438 > #if DEBUG
1439 >        printf("Bundle: %016llx%016llx\n", bundle[1], bundle[0]);
1440 > #endif
1441 >
1442 >        switch (slot) {
1443 >        case 0:
1444 >                inst = (bundle[0] >> 5) & 0x1ffffffffffull;
1445 >                break;
1446 >        case 1:
1447 >                inst = ((bundle[1] & 0x7fffffull) << 18) | ((bundle[0] >> 46) & 0x3ffffull);
1448 >                break;
1449 >        case 2:
1450 >                inst = (bundle[1] >> 23) & 0x1ffffffffffull;
1451 >                break;
1452 >        case 3:
1453 >                fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
1454 >                abort();
1455 >                break;
1456 >        }
1457 >
1458 > #if DEBUG
1459 >        printf(" Instruction %d: 0x%016llx\n", slot, inst);
1460 > #endif
1461 >        return inst;
1462 > }
1463 >
1464 > // Decode group 0 instructions
1465 > static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1466 > {
1467 >        const int r1 = (inst->inst >>  6) & 0x7f;
1468 >        const int r3 = (inst->inst >> 20) & 0x7f;
1469 >
1470 >        const int x3 = (inst->inst >> 33) & 0x07;
1471 >        const int x6 = (inst->inst >> 27) & 0x3f;
1472 >        const int x2 = (inst->inst >> 31) & 0x03;
1473 >        const int x4 = (inst->inst >> 27) & 0x0f;
1474 >
1475 >        if (x3 == 0) {
1476 >                switch (x6) {
1477 >                case 0x01:                                              // nop.i (I19)
1478 >                        inst->mnemo = IA64_INST_NOP;
1479 >                        inst->operands[0].valid = true;
1480 >                        inst->operands[0].index = -1;
1481 >                        inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
1482 >                        return true;
1483 >                case 0x14:                                              // sxt1 (I29)
1484 >                case 0x15:                                              // sxt2 (I29)
1485 >                case 0x16:                                              // sxt4 (I29)
1486 >                case 0x10:                                              // zxt1 (I29)
1487 >                case 0x11:                                              // zxt2 (I29)
1488 >                case 0x12:                                              // zxt4 (I29)
1489 >                        switch (x6) {
1490 >                        case 0x14: inst->mnemo = IA64_INST_SXT1; break;
1491 >                        case 0x15: inst->mnemo = IA64_INST_SXT2; break;
1492 >                        case 0x16: inst->mnemo = IA64_INST_SXT4; break;
1493 >                        case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
1494 >                        case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
1495 >                        case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
1496 >                        default: abort();
1497 >                        }
1498 >                        inst->operands[0].valid = true;
1499 >                        inst->operands[0].index = r1;
1500 >                        inst->operands[1].valid = true;
1501 >                        inst->operands[1].index = r3;
1502 >                        inst->operands[1].value = IA64_GET_GR(r3);
1503 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1504 >                        return true;
1505 >                }
1506 >        }
1507 >        return false;
1508 > }
1509 >
1510 > // Decode group 4 instructions (load/store instructions)
1511 > static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1512 > {
1513 >        const int r1 = (inst->inst >> 6) & 0x7f;
1514 >        const int r2 = (inst->inst >> 13) & 0x7f;
1515 >        const int r3 = (inst->inst >> 20) & 0x7f;
1516 >
1517 >        const int m  = (inst->inst >> 36) & 1;
1518 >        const int x  = (inst->inst >> 27) & 1;
1519 >        const int x6 = (inst->inst >> 30) & 0x3f;
1520 >
1521 >        switch (x6) {
1522 >        case 0x00:
1523 >        case 0x01:
1524 >        case 0x02:
1525 >        case 0x03:
1526 >                if (x == 0) {
1527 >                        inst->operands[0].valid = true;
1528 >                        inst->operands[0].index = r1;
1529 >                        inst->operands[1].valid = true;
1530 >                        inst->operands[1].index = r3;
1531 >                        inst->operands[1].value = IA64_GET_GR(r3);
1532 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1533 >                        if (m == 0) {
1534 >                                switch (x6) {
1535 >                                case 0x00: inst->mnemo = IA64_INST_LD1; break;
1536 >                                case 0x01: inst->mnemo = IA64_INST_LD2; break;
1537 >                                case 0x02: inst->mnemo = IA64_INST_LD4; break;
1538 >                                case 0x03: inst->mnemo = IA64_INST_LD8; break;
1539 >                                }
1540 >                        }
1541 >                        else {
1542 >                                inst->operands[2].valid = true;
1543 >                                inst->operands[2].index = r2;
1544 >                                inst->operands[2].value = IA64_GET_GR(r2);
1545 >                                inst->operands[2].nat   = IA64_GET_NAT(r2);
1546 >                                switch (x6) {
1547 >                                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1548 >                                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1549 >                                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1550 >                                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1551 >                                }
1552 >                        }
1553 >                        return true;
1554 >                }
1555 >                break;
1556 >        case 0x30:
1557 >        case 0x31:
1558 >        case 0x32:
1559 >        case 0x33:
1560 >                if (m == 0 && x == 0) {
1561 >                        inst->operands[0].valid = true;
1562 >                        inst->operands[0].index = r3;
1563 >                        inst->operands[0].value = IA64_GET_GR(r3);
1564 >                        inst->operands[0].nat   = IA64_GET_NAT(r3);
1565 >                        inst->operands[1].valid = true;
1566 >                        inst->operands[1].index = r2;
1567 >                        inst->operands[1].value = IA64_GET_GR(r2);
1568 >                        inst->operands[1].nat   = IA64_GET_NAT(r2);
1569 >                        switch (x6) {
1570 >                        case 0x30: inst->mnemo = IA64_INST_ST1; break;
1571 >                        case 0x31: inst->mnemo = IA64_INST_ST2; break;
1572 >                        case 0x32: inst->mnemo = IA64_INST_ST4; break;
1573 >                        case 0x33: inst->mnemo = IA64_INST_ST8; break;
1574 >                        }
1575 >                        return true;
1576 >                }
1577 >                break;
1578 >        }
1579 >        return false;
1580 > }
1581 >
1582 > // Decode group 5 instructions (load/store instructions)
1583 > static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1584 > {
1585 >        const int r1 = (inst->inst >> 6) & 0x7f;
1586 >        const int r2 = (inst->inst >> 13) & 0x7f;
1587 >        const int r3 = (inst->inst >> 20) & 0x7f;
1588 >
1589 >        const int x6 = (inst->inst >> 30) & 0x3f;
1590 >
1591 >        switch (x6) {
1592 >        case 0x00:
1593 >        case 0x01:
1594 >        case 0x02:
1595 >        case 0x03:
1596 >                inst->operands[0].valid = true;
1597 >                inst->operands[0].index = r1;
1598 >                inst->operands[1].valid = true;
1599 >                inst->operands[1].index = r3;
1600 >                inst->operands[1].value = IA64_GET_GR(r3);
1601 >                inst->operands[1].nat   = IA64_GET_NAT(r3);
1602 >                inst->operands[2].valid = true;
1603 >                inst->operands[2].index = -1;
1604 >                inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
1605 >                inst->operands[2].nat   = 0;
1606 >                switch (x6) {
1607 >                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1608 >                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1609 >                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1610 >                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1611 >                }
1612 >                return true;
1613 >        case 0x30:
1614 >        case 0x31:
1615 >        case 0x32:
1616 >        case 0x33:
1617 >                inst->operands[0].valid = true;
1618 >                inst->operands[0].index = r3;
1619 >                inst->operands[0].value = IA64_GET_GR(r3);
1620 >                inst->operands[0].nat   = IA64_GET_NAT(r3);
1621 >                inst->operands[1].valid = true;
1622 >                inst->operands[1].index = r2;
1623 >                inst->operands[1].value = IA64_GET_GR(r2);
1624 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1625 >                inst->operands[2].valid = true;
1626 >                inst->operands[2].index = -1;
1627 >                inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
1628 >                inst->operands[2].nat   = 0;
1629 >                switch (x6) {
1630 >                case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
1631 >                case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
1632 >                case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
1633 >                case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
1634 >                }
1635 >                return true;
1636 >        }
1637 >        return false;
1638 > }
1639 >
1640 > // Decode group 8 instructions (ALU integer)
1641 > static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1642 > {
1643 >        const int r1  = (inst->inst >> 6) & 0x7f;
1644 >        const int r2  = (inst->inst >> 13) & 0x7f;
1645 >        const int r3  = (inst->inst >> 20) & 0x7f;
1646 >
1647 >        const int x2a = (inst->inst >> 34) & 0x3;
1648 >        const int x2b = (inst->inst >> 27) & 0x3;
1649 >        const int x4  = (inst->inst >> 29) & 0xf;
1650 >        const int ve  = (inst->inst >> 33) & 0x1;
1651 >
1652 >        // destination register (r1) is always valid in this group
1653 >        inst->operands[0].valid = true;
1654 >        inst->operands[0].index = r1;
1655 >
1656 >        // source register (r3) is always valid in this group
1657 >        inst->operands[2].valid = true;
1658 >        inst->operands[2].index = r3;
1659 >        inst->operands[2].value = IA64_GET_GR(r3);
1660 >        inst->operands[2].nat   = IA64_GET_NAT(r3);
1661 >
1662 >        if (x2a == 0 && ve == 0) {
1663 >                inst->operands[1].valid = true;
1664 >                inst->operands[1].index = r2;
1665 >                inst->operands[1].value = IA64_GET_GR(r2);
1666 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1667 >                switch (x4) {
1668 >                case 0x0:                               // add (A1)
1669 >                        inst->mnemo = IA64_INST_ADD;
1670 >                        inst->operands[3].valid = true;
1671 >                        inst->operands[3].index = -1;
1672 >                        inst->operands[3].value = x2b == 1;
1673 >                        return true;
1674 >                case 0x1:                               // add (A1)
1675 >                        inst->mnemo = IA64_INST_SUB;
1676 >                        inst->operands[3].valid = true;
1677 >                        inst->operands[3].index = -1;
1678 >                        inst->operands[3].value = x2b == 0;
1679 >                        return true;
1680 >                case 0x4:                               // shladd (A2)
1681 >                        inst->mnemo = IA64_INST_SHLADD;
1682 >                        inst->operands[3].valid = true;
1683 >                        inst->operands[3].index = -1;
1684 >                        inst->operands[3].value = ia64_inst_get_count2(inst->inst);
1685 >                        return true;
1686 >                case 0x9:
1687 >                        if (x2b == 1) {
1688 >                                inst->mnemo = IA64_INST_SUB;
1689 >                                inst->operands[1].index = -1;
1690 >                                inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1691 >                                inst->operands[1].nat   = 0;
1692 >                                return true;
1693 >                        }
1694 >                        break;
1695 >                case 0xb:
1696 >                        inst->operands[1].index = -1;
1697 >                        inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1698 >                        inst->operands[1].nat   = 0;
1699 >                        // fall-through
1700 >                case 0x3:
1701 >                        switch (x2b) {
1702 >                        case 0: inst->mnemo = IA64_INST_AND;   break;
1703 >                        case 1: inst->mnemo = IA64_INST_ANDCM; break;
1704 >                        case 2: inst->mnemo = IA64_INST_OR;    break;
1705 >                        case 3: inst->mnemo = IA64_INST_XOR;   break;
1706 >                        }
1707 >                        return true;
1708 >                }
1709 >        }
1710 >        return false;
1711 > }
1712 >
1713 > // Decode instruction
1714 > static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1715 > {
1716 >        const int major = (inst->inst >> 37) & 0xf;
1717 >
1718 >        inst->mnemo = IA64_INST_UNKNOWN;
1719 >        inst->pred  = inst->inst & 0x3f;
1720 >        memset(&inst->operands[0], 0, sizeof(inst->operands));
1721 >
1722 >        switch (major) {
1723 >        case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT);
1724 >        case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT);
1725 >        case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT);
1726 >        case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT);
1727 >        }
1728 >        return false;
1729 > }
1730 >
1731 > static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1732 > {
1733 >        // XXX: handle Register NaT Consumption fault?
1734 >        // XXX: this simple emulator assumes instructions in a bundle
1735 >        // don't depend on effects of other instructions in the same
1736 >        // bundle. It probably would be simpler to JIT-generate code to be
1737 >        // executed natively but probably more costly (inject/extract CPU state)
1738 >        if (inst->mnemo == IA64_INST_UNKNOWN)
1739 >                return false;
1740 >        if (inst->pred && !IA64_GET_PR(inst->pred))
1741 >                return true;
1742 >
1743 >        uint8_t nat, nat2;
1744 >        uint64_t dst, dst2, src1, src2, src3;
1745 >
1746 >        switch (inst->mnemo) {
1747 >        case IA64_INST_NOP:
1748 >                break;
1749 >        case IA64_INST_ADD:
1750 >        case IA64_INST_SUB:
1751 >        case IA64_INST_SHLADD:
1752 >                src3 = inst->operands[3].value;
1753 >                // fall-through
1754 >        case IA64_INST_AND:
1755 >        case IA64_INST_ANDCM:
1756 >        case IA64_INST_OR:
1757 >        case IA64_INST_XOR:
1758 >                src1 = inst->operands[1].value;
1759 >                src2 = inst->operands[2].value;
1760 >                switch (inst->mnemo) {
1761 >                case IA64_INST_ADD:   dst = src1 + src2 + src3; break;
1762 >                case IA64_INST_SUB:   dst = src1 - src2 - src3; break;
1763 >                case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
1764 >                case IA64_INST_AND:   dst = src1 & src2;                break;
1765 >                case IA64_INST_ANDCM: dst = src1 &~ src2;               break;
1766 >                case IA64_INST_OR:    dst = src1 | src2;                break;
1767 >                case IA64_INST_XOR:   dst = src1 ^ src2;                break;
1768 >                }
1769 >                inst->operands[0].commit = true;
1770 >                inst->operands[0].value  = dst;
1771 >                inst->operands[0].nat    = inst->operands[1].nat | inst->operands[2].nat;
1772 >                break;
1773 >        case IA64_INST_SXT1:
1774 >        case IA64_INST_SXT2:
1775 >        case IA64_INST_SXT4:
1776 >        case IA64_INST_ZXT1:
1777 >        case IA64_INST_ZXT2:
1778 >        case IA64_INST_ZXT4:
1779 >                src1 = inst->operands[1].value;
1780 >                switch (inst->mnemo) {
1781 >                case IA64_INST_SXT1: dst = (int64_t)(int8_t)src1;               break;
1782 >                case IA64_INST_SXT2: dst = (int64_t)(int16_t)src1;              break;
1783 >                case IA64_INST_SXT4: dst = (int64_t)(int32_t)src1;              break;
1784 >                case IA64_INST_ZXT1: dst = (uint8_t)src1;                               break;
1785 >                case IA64_INST_ZXT2: dst = (uint16_t)src1;                              break;
1786 >                case IA64_INST_ZXT4: dst = (uint32_t)src1;                              break;
1787 >                }
1788 >                inst->operands[0].commit = true;
1789 >                inst->operands[0].value  = dst;
1790 >                inst->operands[0].nat    = inst->operands[1].nat;
1791 >                break;
1792 >        case IA64_INST_LD1_UPDATE:
1793 >        case IA64_INST_LD2_UPDATE:
1794 >        case IA64_INST_LD4_UPDATE:
1795 >        case IA64_INST_LD8_UPDATE:
1796 >                inst->operands[1].commit = true;
1797 >                dst2 = inst->operands[1].value + inst->operands[2].value;
1798 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1799 >                // fall-through
1800 >        case IA64_INST_LD1:
1801 >        case IA64_INST_LD2:
1802 >        case IA64_INST_LD4:
1803 >        case IA64_INST_LD8:
1804 >                src1 = inst->operands[1].value;
1805 >                if (inst->no_memory)
1806 >                        dst = 0;
1807 >                else {
1808 >                        switch (inst->mnemo) {
1809 >                        case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((uint8_t *)src1);        break;
1810 >                        case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((uint16_t *)src1);       break;
1811 >                        case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((uint32_t *)src1);       break;
1812 >                        case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((uint64_t *)src1);       break;
1813 >                        }
1814 >                }
1815 >                inst->operands[0].commit = true;
1816 >                inst->operands[0].value  = dst;
1817 >                inst->operands[0].nat    = 0;
1818 >                inst->operands[1].value  = dst2;
1819 >                inst->operands[1].nat    = nat2;
1820 >                break;
1821 >        case IA64_INST_ST1_UPDATE:
1822 >        case IA64_INST_ST2_UPDATE:
1823 >        case IA64_INST_ST4_UPDATE:
1824 >        case IA64_INST_ST8_UPDATE:
1825 >                inst->operands[0].commit = 0;
1826 >                dst2 = inst->operands[0].value + inst->operands[2].value;
1827 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1828 >                // fall-through
1829 >        case IA64_INST_ST1:
1830 >        case IA64_INST_ST2:
1831 >        case IA64_INST_ST4:
1832 >        case IA64_INST_ST8:
1833 >                dst  = inst->operands[0].value;
1834 >                src1 = inst->operands[1].value;
1835 >                if (!inst->no_memory) {
1836 >                        switch (inst->mnemo) {
1837 >                        case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((uint8_t *)dst) = src1;        break;
1838 >                        case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((uint16_t *)dst) = src1;       break;
1839 >                        case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((uint32_t *)dst) = src1;       break;
1840 >                        case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((uint64_t *)dst) = src1;       break;
1841 >                        }
1842 >                }
1843 >                inst->operands[0].value  = dst2;
1844 >                inst->operands[0].nat    = nat2;
1845 >                break;
1846 >        default:
1847 >                return false;
1848 >        }
1849 >
1850 >        for (int i = 0; i < IA64_N_OPERANDS; i++) {
1851 >                ia64_operand_t const & op = inst->operands[i];
1852 >                if (!op.commit)
1853 >                        continue;
1854 >                if (op.index == -1)
1855 >                        return false; // XXX: internal error
1856 >                IA64_SET_GR(op.index, op.value, op.nat);
1857 >        }
1858 >        return true;
1859 > }
1860 >
1861 > static bool ia64_emulate_instruction(uint64_t raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1862 > {
1863 >        ia64_instruction_t inst;
1864 >        memset(&inst, 0, sizeof(inst));
1865 >        inst.inst = raw_inst;
1866 >        if (!ia64_decode_instruction(&inst, IA64_CONTEXT))
1867 >                return false;
1868 >        return ia64_emulate_instruction(&inst, IA64_CONTEXT);
1869 > }
1870 >
1871 > static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT)
1872 > {
1873 >        uint64_t ip = IA64_GET_IP();
1874 > #if DEBUG
1875 >        printf("IP: 0x%016llx\n", ip);
1876 > #if 0
1877 >        printf(" Template 0x%02x\n", ia64_get_template(ip));
1878 >        ia64_get_instruction(ip, 0);
1879 >        ia64_get_instruction(ip, 1);
1880 >        ia64_get_instruction(ip, 2);
1881 > #endif
1882 > #endif
1883 >
1884 >        // Select which decode switch to use
1885 >        ia64_instruction_t inst;
1886 >        inst.inst = ia64_get_instruction(ip, ip & 3);
1887 >        if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) {
1888 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
1889 >                return false;
1890 >        }
1891 >
1892 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1893 >        transfer_size_t transfer_size = SIZE_UNKNOWN;
1894 >
1895 >        switch (inst.mnemo) {
1896 >        case IA64_INST_LD1:
1897 >        case IA64_INST_LD2:
1898 >        case IA64_INST_LD4:
1899 >        case IA64_INST_LD8:
1900 >        case IA64_INST_LD1_UPDATE:
1901 >        case IA64_INST_LD2_UPDATE:
1902 >        case IA64_INST_LD4_UPDATE:
1903 >        case IA64_INST_LD8_UPDATE:
1904 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
1905 >                break;
1906 >        case IA64_INST_ST1:
1907 >        case IA64_INST_ST2:
1908 >        case IA64_INST_ST4:
1909 >        case IA64_INST_ST8:
1910 >        case IA64_INST_ST1_UPDATE:
1911 >        case IA64_INST_ST2_UPDATE:
1912 >        case IA64_INST_ST4_UPDATE:
1913 >        case IA64_INST_ST8_UPDATE:
1914 >                transfer_type = SIGSEGV_TRANSFER_STORE;
1915 >                break;
1916 >        }
1917 >
1918 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1919 >                // Unknown machine code, let it crash. Then patch the decoder
1920 >                fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
1921 >                return false;
1922 >        }
1923 >
1924 >        switch (inst.mnemo) {
1925 >        case IA64_INST_LD1:
1926 >        case IA64_INST_LD1_UPDATE:
1927 >        case IA64_INST_ST1:
1928 >        case IA64_INST_ST1_UPDATE:
1929 >                transfer_size = SIZE_BYTE;
1930 >                break;
1931 >        case IA64_INST_LD2:
1932 >        case IA64_INST_LD2_UPDATE:
1933 >        case IA64_INST_ST2:
1934 >        case IA64_INST_ST2_UPDATE:
1935 >                transfer_size = SIZE_WORD;
1936 >                break;
1937 >        case IA64_INST_LD4:
1938 >        case IA64_INST_LD4_UPDATE:
1939 >        case IA64_INST_ST4:
1940 >        case IA64_INST_ST4_UPDATE:
1941 >                transfer_size = SIZE_LONG;
1942 >                break;
1943 >        case IA64_INST_LD8:
1944 >        case IA64_INST_LD8_UPDATE:
1945 >        case IA64_INST_ST8:
1946 >        case IA64_INST_ST8_UPDATE:
1947 >                transfer_size = SIZE_QUAD;
1948                  break;
1949          }
1950 +
1951 +        if (transfer_size == SIZE_UNKNOWN) {
1952 +                // Unknown machine code, let it crash. Then patch the decoder
1953 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
1954 +                return false;
1955 +        }
1956 +
1957 +        inst.no_memory = true;
1958 +        if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) {
1959 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
1960 +                return false;
1961 +        }
1962 +
1963 +        int slot = ip & 3;
1964 +        bool emulate_next = false;
1965 +        switch (slot) {
1966 +        case 0:
1967 +                switch (ia64_get_template(ip)) {
1968 +                case 0x2: // MI;I
1969 +                case 0x3: // MI;I;
1970 +                        emulate_next = true;
1971 +                        slot = 2;
1972 +                        break;
1973 +                case 0xa: // M;MI
1974 +                case 0xb: // M;MI;
1975 +                        emulate_next = true;
1976 +                        slot = 1;
1977 +                        break;
1978 +                }
1979 +                break;
1980 +        }
1981 +        if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) {
1982 +                while (slot < 3) {
1983 +                        if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) {
1984 +                                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
1985 +                                return false;
1986 +                        }
1987 +                        ++slot;
1988 +                }
1989 +        }
1990 +
1991 + #if IA64_CAN_PATCH_IP_SLOT
1992 +        if ((slot = ip & 3) < 2)
1993 +                IA64_SET_IP((ip & ~3ull) + (slot + 1));
1994 +        else
1995 + #endif
1996 +                IA64_SET_IP((ip & ~3ull) + 16);
1997 + #if DEBUG
1998 +        printf("IP: 0x%016llx\n", IA64_GET_IP());
1999 + #endif
2000 +        return true;
2001 + }
2002 + #endif
2003 +
2004 + // Decode and skip PPC instruction
2005 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
2006 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
2007 + {
2008 +        instruction_t instr;
2009 +        powerpc_decode_instruction(&instr, *nip_p, regs);
2010 +        
2011 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2012 +                // Unknown machine code, let it crash. Then patch the decoder
2013 +                return false;
2014 +        }
2015 +
2016 + #if DEBUG
2017 +        printf("%08x: %s %s access", *nip_p,
2018 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
2019 +                   instr.transfer_size == SIZE_WORD ? "word" :
2020 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
2021 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
2022          
2023 <        addr = (baseA + baseB) + disp;
2024 <        addr &= alignmask;
2025 <        return (sigsegv_address_t)addr;
2023 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
2024 >                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
2025 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
2026 >                printf(" r%d (rd = 0)\n", instr.rd);
2027 > #endif
2028 >        
2029 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
2030 >                regs[instr.ra] = instr.addr;
2031 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
2032 >                regs[instr.rd] = 0;
2033 >        
2034 >        *nip_p += 4;
2035 >        return true;
2036   }
2037   #endif
2038 +
2039 + // Decode and skip MIPS instruction
2040 + #if (defined(mips) || defined(__mips))
2041 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
2042 + {
2043 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
2044 +
2045 +  if (epc == 0)
2046 +        return false;
2047 +
2048 + #if DEBUG
2049 +  printf("IP: %p [%08x]\n", epc, epc[0]);
2050   #endif
2051 +
2052 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2053 +  transfer_size_t transfer_size = SIZE_LONG;
2054 +  int direction = 0;
2055 +
2056 +  const unsigned int opcode = epc[0];
2057 +  switch (opcode >> 26) {
2058 +  case 32: // Load Byte
2059 +  case 36: // Load Byte Unsigned
2060 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2061 +        transfer_size = SIZE_BYTE;
2062 +        break;
2063 +  case 33: // Load Halfword
2064 +  case 37: // Load Halfword Unsigned
2065 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2066 +        transfer_size = SIZE_WORD;
2067 +        break;
2068 +  case 35: // Load Word
2069 +  case 39: // Load Word Unsigned
2070 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2071 +        transfer_size = SIZE_LONG;
2072 +        break;
2073 +  case 34: // Load Word Left
2074 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2075 +        transfer_size = SIZE_LONG;
2076 +        direction = -1;
2077 +        break;
2078 +  case 38: // Load Word Right
2079 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2080 +        transfer_size = SIZE_LONG;
2081 +        direction = 1;
2082 +        break;
2083 +  case 55: // Load Doubleword
2084 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2085 +        transfer_size = SIZE_QUAD;
2086 +        break;
2087 +  case 26: // Load Doubleword Left
2088 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2089 +        transfer_size = SIZE_QUAD;
2090 +        direction = -1;
2091 +        break;
2092 +  case 27: // Load Doubleword Right
2093 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2094 +        transfer_size = SIZE_QUAD;
2095 +        direction = 1;
2096 +        break;
2097 +  case 40: // Store Byte
2098 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2099 +        transfer_size = SIZE_BYTE;
2100 +        break;
2101 +  case 41: // Store Halfword
2102 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2103 +        transfer_size = SIZE_WORD;
2104 +        break;
2105 +  case 43: // Store Word
2106 +  case 42: // Store Word Left
2107 +  case 46: // Store Word Right
2108 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2109 +        transfer_size = SIZE_LONG;
2110 +        break;
2111 +  case 63: // Store Doubleword
2112 +  case 44: // Store Doubleword Left
2113 +  case 45: // Store Doubleword Right
2114 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2115 +        transfer_size = SIZE_QUAD;
2116 +        break;
2117 +  /* Misc instructions unlikely to be used within CPU emulators */
2118 +  case 48: // Load Linked Word
2119 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2120 +        transfer_size = SIZE_LONG;
2121 +        break;
2122 +  case 52: // Load Linked Doubleword
2123 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2124 +        transfer_size = SIZE_QUAD;
2125 +        break;
2126 +  case 56: // Store Conditional Word
2127 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2128 +        transfer_size = SIZE_LONG;
2129 +        break;
2130 +  case 60: // Store Conditional Doubleword
2131 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2132 +        transfer_size = SIZE_QUAD;
2133 +        break;
2134 +  }
2135 +
2136 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2137 +        // Unknown machine code, let it crash. Then patch the decoder
2138 +        return false;
2139 +  }
2140 +
2141 +  // Zero target register in case of a load operation
2142 +  const int reg = (opcode >> 16) & 0x1f;
2143 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
2144 +        if (direction == 0)
2145 +          regs[reg] = 0;
2146 +        else {
2147 +          // FIXME: untested code
2148 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
2149 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
2150 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
2151 +          unsigned long value;
2152 +          if (direction > 0) {
2153 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
2154 +                value = regs[reg] & rmask;
2155 +          }
2156 +          else {
2157 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
2158 +                value = regs[reg] & lmask;
2159 +          }
2160 +          // restore most significant bits
2161 +          if (transfer_size == SIZE_LONG)
2162 +                value = (signed long)(signed int)value;
2163 +          regs[reg] = value;
2164 +        }
2165 +  }
2166 +
2167 + #if DEBUG
2168 + #if (defined(_ABIN32) || defined(_ABI64))
2169 +  static const char * mips_gpr_names[32] = {
2170 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2171 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
2172 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2173 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2174 +  };
2175 + #else
2176 +  static const char * mips_gpr_names[32] = {
2177 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2178 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
2179 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2180 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2181 +  };
2182 + #endif
2183 +  printf("%s %s register %s\n",
2184 +                 transfer_size == SIZE_BYTE ? "byte" :
2185 +                 transfer_size == SIZE_WORD ? "word" :
2186 +                 transfer_size == SIZE_LONG ? "long" :
2187 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2188 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2189 +                 mips_gpr_names[reg]);
2190 + #endif
2191 +
2192 +  *pc_p += 4;
2193 +  return true;
2194 + }
2195   #endif
2196  
2197 + // Decode and skip SPARC instruction
2198 + #if (defined(sparc) || defined(__sparc__))
2199 + enum {
2200 + #if (defined(__sun__))
2201 +  SPARC_REG_G1 = REG_G1,
2202 +  SPARC_REG_O0 = REG_O0,
2203 +  SPARC_REG_PC = REG_PC,
2204 +  SPARC_REG_nPC = REG_nPC
2205 + #endif
2206 + };
2207 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
2208 + {
2209 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
2210 +
2211 +  if (pc == 0)
2212 +        return false;
2213 +
2214 + #if DEBUG
2215 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2216 + #endif
2217 +
2218 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2219 +  transfer_size_t transfer_size = SIZE_LONG;
2220 +  bool register_pair = false;
2221 +
2222 +  const unsigned int opcode = pc[0];
2223 +  if ((opcode >> 30) != 3)
2224 +        return false;
2225 +  switch ((opcode >> 19) & 0x3f) {
2226 +  case 9: // Load Signed Byte
2227 +  case 1: // Load Unsigned Byte
2228 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2229 +        transfer_size = SIZE_BYTE;
2230 +        break;
2231 +  case 10:// Load Signed Halfword
2232 +  case 2: // Load Unsigned Word
2233 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2234 +        transfer_size = SIZE_WORD;
2235 +        break;
2236 +  case 8: // Load Word
2237 +  case 0: // Load Unsigned Word
2238 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2239 +        transfer_size = SIZE_LONG;
2240 +        break;
2241 +  case 11:// Load Extended Word
2242 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2243 +        transfer_size = SIZE_QUAD;
2244 +        break;
2245 +  case 3: // Load Doubleword
2246 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2247 +        transfer_size = SIZE_LONG;
2248 +        register_pair = true;
2249 +        break;
2250 +  case 5: // Store Byte
2251 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2252 +        transfer_size = SIZE_BYTE;
2253 +        break;
2254 +  case 6: // Store Halfword
2255 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2256 +        transfer_size = SIZE_WORD;
2257 +        break;
2258 +  case 4: // Store Word
2259 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2260 +        transfer_size = SIZE_LONG;
2261 +        break;
2262 +  case 14:// Store Extended Word
2263 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2264 +        transfer_size = SIZE_QUAD;
2265 +        break;
2266 +  case 7: // Store Doubleword
2267 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2268 +        transfer_size = SIZE_LONG;
2269 +        register_pair = true;
2270 +        break;
2271 +  }
2272 +
2273 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2274 +        // Unknown machine code, let it crash. Then patch the decoder
2275 +        return false;
2276 +  }
2277 +
2278 +  const int reg = (opcode >> 25) & 0x1f;
2279 +
2280 + #if DEBUG
2281 +  static const char * reg_names[] = {
2282 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2283 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2284 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2285 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
2286 +  };
2287 +  printf("%s %s register %s\n",
2288 +                 transfer_size == SIZE_BYTE ? "byte" :
2289 +                 transfer_size == SIZE_WORD ? "word" :
2290 +                 transfer_size == SIZE_LONG ? "long" :
2291 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2292 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2293 +                 reg_names[reg]);
2294 + #endif
2295 +
2296 +  // Zero target register in case of a load operation
2297 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
2298 +        // FIXME: code to handle local & input registers is not tested
2299 +        if (reg >= 1 && reg < 8) {
2300 +          // global registers
2301 +          regs[reg - 1 + SPARC_REG_G1] = 0;
2302 +        }
2303 +        else if (reg >= 8 && reg < 16) {
2304 +          // output registers
2305 +          regs[reg - 8 + SPARC_REG_O0] = 0;
2306 +        }
2307 +        else if (reg >= 16 && reg < 24) {
2308 +          // local registers (in register windows)
2309 +          if (gwins)
2310 +                gwins->wbuf->rw_local[reg - 16] = 0;
2311 +          else
2312 +                rwin->rw_local[reg - 16] = 0;
2313 +        }
2314 +        else {
2315 +          // input registers (in register windows)
2316 +          if (gwins)
2317 +                gwins->wbuf->rw_in[reg - 24] = 0;
2318 +          else
2319 +                rwin->rw_in[reg - 24] = 0;
2320 +        }
2321 +  }
2322 +
2323 +  regs[SPARC_REG_PC] += 4;
2324 +  regs[SPARC_REG_nPC] += 4;
2325 +  return true;
2326 + }
2327 + #endif
2328 + #endif
2329 +
2330 + // Decode and skip ARM instruction
2331 + #if (defined(arm) || defined(__arm__))
2332 + enum {
2333 + #if (defined(__linux__))
2334 +  ARM_REG_PC = 15,
2335 +  ARM_REG_CPSR = 16
2336 + #endif
2337 + };
2338 + static bool arm_skip_instruction(unsigned long * regs)
2339 + {
2340 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
2341 +
2342 +  if (pc == 0)
2343 +        return false;
2344 +
2345 + #if DEBUG
2346 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2347 + #endif
2348 +
2349 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2350 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
2351 +  enum { op_sdt = 1, op_sdth = 2 };
2352 +  int op = 0;
2353 +
2354 +  // Handle load/store instructions only
2355 +  const unsigned int opcode = pc[0];
2356 +  switch ((opcode >> 25) & 7) {
2357 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
2358 +        op = op_sdth;
2359 +        // Determine transfer size (S/H bits)
2360 +        switch ((opcode >> 5) & 3) {
2361 +        case 0: // SWP instruction
2362 +          break;
2363 +        case 1: // Unsigned halfwords
2364 +        case 3: // Signed halfwords
2365 +          transfer_size = SIZE_WORD;
2366 +          break;
2367 +        case 2: // Signed byte
2368 +          transfer_size = SIZE_BYTE;
2369 +          break;
2370 +        }
2371 +        break;
2372 +  case 2:
2373 +  case 3: // Single Data Transfer (LDR, STR)
2374 +        op = op_sdt;
2375 +        // Determine transfer size (B bit)
2376 +        if (((opcode >> 22) & 1) == 1)
2377 +          transfer_size = SIZE_BYTE;
2378 +        else
2379 +          transfer_size = SIZE_LONG;
2380 +        break;
2381 +  default:
2382 +        // FIXME: support load/store mutliple?
2383 +        return false;
2384 +  }
2385 +
2386 +  // Check for invalid transfer size (SWP instruction?)
2387 +  if (transfer_size == SIZE_UNKNOWN)
2388 +        return false;
2389 +
2390 +  // Determine transfer type (L bit)
2391 +  if (((opcode >> 20) & 1) == 1)
2392 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2393 +  else
2394 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2395 +
2396 +  // Compute offset
2397 +  int offset;
2398 +  if (((opcode >> 25) & 1) == 0) {
2399 +        if (op == op_sdt)
2400 +          offset = opcode & 0xfff;
2401 +        else if (op == op_sdth) {
2402 +          int rm = opcode & 0xf;
2403 +          if (((opcode >> 22) & 1) == 0) {
2404 +                // register offset
2405 +                offset = regs[rm];
2406 +          }
2407 +          else {
2408 +                // immediate offset
2409 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
2410 +          }
2411 +        }
2412 +  }
2413 +  else {
2414 +        const int rm = opcode & 0xf;
2415 +        const int sh = (opcode >> 7) & 0x1f;
2416 +        if (((opcode >> 4) & 1) == 1) {
2417 +          // we expect only legal load/store instructions
2418 +          printf("FATAL: invalid shift operand\n");
2419 +          return false;
2420 +        }
2421 +        const unsigned int v = regs[rm];
2422 +        switch ((opcode >> 5) & 3) {
2423 +        case 0: // logical shift left
2424 +          offset = sh ? v << sh : v;
2425 +          break;
2426 +        case 1: // logical shift right
2427 +          offset = sh ? v >> sh : 0;
2428 +          break;
2429 +        case 2: // arithmetic shift right
2430 +          if (sh)
2431 +                offset = ((signed int)v) >> sh;
2432 +          else
2433 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
2434 +          break;
2435 +        case 3: // rotate right
2436 +          if (sh)
2437 +                offset = (v >> sh) | (v << (32 - sh));
2438 +          else
2439 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
2440 +          break;
2441 +        }
2442 +  }
2443 +  if (((opcode >> 23) & 1) == 0)
2444 +        offset = -offset;
2445 +
2446 +  int rd = (opcode >> 12) & 0xf;
2447 +  int rn = (opcode >> 16) & 0xf;
2448 + #if DEBUG
2449 +  static const char * reg_names[] = {
2450 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2451 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
2452 +  };
2453 +  printf("%s %s register %s\n",
2454 +                 transfer_size == SIZE_BYTE ? "byte" :
2455 +                 transfer_size == SIZE_WORD ? "word" :
2456 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
2457 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2458 +                 reg_names[rd]);
2459 + #endif
2460 +
2461 +  unsigned int base = regs[rn];
2462 +  if (((opcode >> 24) & 1) == 1)
2463 +        base += offset;
2464 +
2465 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
2466 +        regs[rd] = 0;
2467 +
2468 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
2469 +        regs[rn] += offset;
2470 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
2471 +        regs[rn] = base;
2472 +
2473 +  regs[ARM_REG_PC] += 4;
2474 +  return true;
2475 + }
2476 + #endif
2477 +
2478 +
2479   // Fallbacks
2480 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
2481 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
2482 + #endif
2483 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
2484 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
2485 + #endif
2486   #ifndef SIGSEGV_FAULT_INSTRUCTION
2487 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
2487 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
2488 > #endif
2489 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
2490 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
2491 > #endif
2492 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
2493 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
2494   #endif
2495  
2496   // SIGSEGV recovery supported ?
# Line 289 | Line 2503 | static sigsegv_address_t get_fault_addre
2503   *  SIGSEGV global handler
2504   */
2505  
2506 + #ifdef HAVE_MACH_EXCEPTIONS
2507 + static void mach_get_exception_state(sigsegv_info_t *SIP)
2508 + {
2509 +        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
2510 +        kern_return_t krc = thread_get_state(SIP->thread,
2511 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
2512 +                                                                                 (natural_t *)&SIP->exc_state,
2513 +                                                                                 &SIP->exc_state_count);
2514 +        MACH_CHECK_ERROR(thread_get_state, krc);
2515 +        SIP->has_exc_state = true;
2516 + }
2517 +
2518 + static void mach_get_thread_state(sigsegv_info_t *SIP)
2519 + {
2520 +        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
2521 +        kern_return_t krc = thread_get_state(SIP->thread,
2522 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2523 +                                                                                 (natural_t *)&SIP->thr_state,
2524 +                                                                                 &SIP->thr_state_count);
2525 +        MACH_CHECK_ERROR(thread_get_state, krc);
2526 +        SIP->has_thr_state = true;
2527 + }
2528 +
2529 + static void mach_set_thread_state(sigsegv_info_t *SIP)
2530 + {
2531 +        kern_return_t krc = thread_set_state(SIP->thread,
2532 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2533 +                                                                                 (natural_t *)&SIP->thr_state,
2534 +                                                                                 SIP->thr_state_count);
2535 +        MACH_CHECK_ERROR(thread_set_state, krc);
2536 + }
2537 + #endif
2538 +
2539 + // Return the address of the invalid memory reference
2540 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
2541 + {
2542 + #ifdef HAVE_MACH_EXCEPTIONS
2543 + #ifdef EMULATED_PPC
2544 +        static int use_fast_path = -1;
2545 +        if (use_fast_path != 1 && !SIP->has_exc_state) {
2546 +                mach_get_exception_state(SIP);
2547 +
2548 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2549 +                if (use_fast_path < 0) {
2550 +                        const char *machfault = getenv("SIGSEGV_MACH_FAULT");
2551 +                        if (machfault) {
2552 +                                if (strcmp(machfault, "fast") == 0)
2553 +                                        use_fast_path = 1;
2554 +                                else if (strcmp(machfault, "slow") == 0)
2555 +                                        use_fast_path = 0;
2556 +                        }
2557 +                        if (use_fast_path < 0)
2558 +                                use_fast_path = addr == SIP->addr;
2559 +                }
2560 +                SIP->addr = addr;
2561 +        }
2562 + #endif
2563 + #endif
2564 +        return SIP->addr;
2565 + }
2566 +
2567 + // Return the address of the instruction that caused the fault, or
2568 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
2569 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
2570 + {
2571 + #ifdef HAVE_MACH_EXCEPTIONS
2572 + #ifdef EMULATED_PPC
2573 +        if (!SIP->has_thr_state) {
2574 +                mach_get_thread_state(SIP);
2575 +
2576 +                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2577 +        }
2578 + #endif
2579 + #endif
2580 +        return SIP->pc;
2581 + }
2582 +
2583 + // This function handles the badaccess to memory.
2584 + // It is called from the signal handler or the exception handler.
2585 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
2586 + {
2587 +        sigsegv_info_t SI;
2588 +        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
2589 +        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
2590 + #ifdef HAVE_MACH_EXCEPTIONS
2591 +        SI.thread = thread;
2592 +        SI.has_exc_state = false;
2593 +        SI.has_thr_state = false;
2594 + #endif
2595 +        sigsegv_info_t * const SIP = &SI;
2596 +
2597 +        // Call user's handler and reinstall the global handler, if required
2598 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
2599 +        case SIGSEGV_RETURN_SUCCESS:
2600 +                return true;
2601 +
2602 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
2603 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
2604 +                // Call the instruction skipper with the register file
2605 +                // available
2606 + #ifdef HAVE_MACH_EXCEPTIONS
2607 +                if (!SIP->has_thr_state)
2608 +                        mach_get_thread_state(SIP);
2609 + #endif
2610 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
2611 + #ifdef HAVE_MACH_EXCEPTIONS
2612 +                        // Unlike UNIX signals where the thread state
2613 +                        // is modified off of the stack, in Mach we
2614 +                        // need to actually call thread_set_state to
2615 +                        // have the register values updated.
2616 +                        mach_set_thread_state(SIP);
2617 + #endif
2618 +                        return true;
2619 +                }
2620 +                break;
2621 + #endif
2622 +        case SIGSEGV_RETURN_FAILURE:
2623 +                // We can't do anything with the fault_address, dump state?
2624 +                if (sigsegv_state_dumper != 0)
2625 +                        sigsegv_state_dumper(SIP);
2626 +                break;
2627 +        }
2628 +
2629 +        return false;
2630 + }
2631 +
2632 +
2633 + /*
2634 + * There are two mechanisms for handling a bad memory access,
2635 + * Mach exceptions and UNIX signals. The implementation specific
2636 + * code appears below. Its reponsibility is to call handle_badaccess
2637 + * which is the routine that handles the fault in an implementation
2638 + * agnostic manner. The implementation specific code below is then
2639 + * reponsible for checking whether handle_badaccess was able
2640 + * to handle the memory access error and perform any implementation
2641 + * specific tasks necessary afterwards.
2642 + */
2643 +
2644 + #ifdef HAVE_MACH_EXCEPTIONS
2645 + /*
2646 + * We need to forward all exceptions that we do not handle.
2647 + * This is important, there are many exceptions that may be
2648 + * handled by other exception handlers. For example debuggers
2649 + * use exceptions and the exception hander is in another
2650 + * process in such a case. (Timothy J. Wood states in his
2651 + * message to the list that he based this code on that from
2652 + * gdb for Darwin.)
2653 + */
2654 + static inline kern_return_t
2655 + forward_exception(mach_port_t thread_port,
2656 +                                  mach_port_t task_port,
2657 +                                  exception_type_t exception_type,
2658 +                                  mach_exception_data_t exception_data,
2659 +                                  mach_msg_type_number_t data_count,
2660 +                                  ExceptionPorts *oldExceptionPorts)
2661 + {
2662 +        kern_return_t kret;
2663 +        unsigned int portIndex;
2664 +        mach_port_t port;
2665 +        exception_behavior_t behavior;
2666 +        thread_state_flavor_t flavor;
2667 +        thread_state_data_t thread_state;
2668 +        mach_msg_type_number_t thread_state_count;
2669 +
2670 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
2671 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
2672 +                        // This handler wants the exception
2673 +                        break;
2674 +                }
2675 +        }
2676 +
2677 +        if (portIndex >= oldExceptionPorts->maskCount) {
2678 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
2679 +                return KERN_FAILURE;
2680 +        }
2681 +
2682 +        port = oldExceptionPorts->handlers[portIndex];
2683 +        behavior = oldExceptionPorts->behaviors[portIndex];
2684 +        flavor = oldExceptionPorts->flavors[portIndex];
2685 +
2686 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
2687 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
2688 +                return KERN_FAILURE;
2689 +        }
2690 +
2691 +        /*
2692 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
2693 +         */
2694 +
2695 +        if (behavior != EXCEPTION_DEFAULT) {
2696 +                thread_state_count = THREAD_STATE_MAX;
2697 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
2698 +                                                                 &thread_state_count);
2699 +                MACH_CHECK_ERROR (thread_get_state, kret);
2700 +        }
2701 +
2702 +        switch (behavior) {
2703 +        case EXCEPTION_DEFAULT:
2704 +          // fprintf(stderr, "forwarding to exception_raise\n");
2705 +          kret = mach_exception_raise(port, thread_port, task_port, exception_type,
2706 +                                                                  exception_data, data_count);
2707 +          MACH_CHECK_ERROR (mach_exception_raise, kret);
2708 +          break;
2709 +        case EXCEPTION_STATE:
2710 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
2711 +          kret = mach_exception_raise_state(port, exception_type, exception_data,
2712 +                                                                                data_count, &flavor,
2713 +                                                                                (natural_t *)&thread_state, thread_state_count,
2714 +                                                                                (natural_t *)&thread_state, &thread_state_count);
2715 +          MACH_CHECK_ERROR (mach_exception_raise_state, kret);
2716 +          break;
2717 +        case EXCEPTION_STATE_IDENTITY:
2718 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
2719 +          kret = mach_exception_raise_state_identity(port, thread_port, task_port,
2720 +                                                                                                 exception_type, exception_data,
2721 +                                                                                                 data_count, &flavor,
2722 +                                                                                                 (natural_t *)&thread_state, thread_state_count,
2723 +                                                                                                 (natural_t *)&thread_state, &thread_state_count);
2724 +          MACH_CHECK_ERROR (mach_exception_raise_state_identity, kret);
2725 +          break;
2726 +        default:
2727 +          fprintf(stderr, "forward_exception got unknown behavior\n");
2728 +          kret = KERN_FAILURE;
2729 +          break;
2730 +        }
2731 +
2732 +        if (behavior != EXCEPTION_DEFAULT) {
2733 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
2734 +                                                                 thread_state_count);
2735 +                MACH_CHECK_ERROR (thread_set_state, kret);
2736 +        }
2737 +
2738 +        return kret;
2739 + }
2740 +
2741 + /*
2742 + * This is the code that actually handles the exception.
2743 + * It is called by exc_server. For Darwin 5 Apple changed
2744 + * this a bit from how this family of functions worked in
2745 + * Mach. If you are familiar with that it is a little
2746 + * different. The main variation that concerns us here is
2747 + * that code is an array of exception specific codes and
2748 + * codeCount is a count of the number of codes in the code
2749 + * array. In typical Mach all exceptions have a code
2750 + * and sub-code. It happens to be the case that for a
2751 + * EXC_BAD_ACCESS exception the first entry is the type of
2752 + * bad access that occurred and the second entry is the
2753 + * faulting address so these entries correspond exactly to
2754 + * how the code and sub-code are used on Mach.
2755 + *
2756 + * This is a MIG interface. No code in Basilisk II should
2757 + * call this directley. This has to have external C
2758 + * linkage because that is what exc_server expects.
2759 + */
2760 + kern_return_t
2761 + catch_mach_exception_raise(mach_port_t exception_port,
2762 +                                                   mach_port_t thread,
2763 +                                                   mach_port_t task,
2764 +                                                   exception_type_t exception,
2765 +                                                   mach_exception_data_t code,
2766 +                                                   mach_msg_type_number_t code_count)
2767 + {
2768 +        kern_return_t krc;
2769 +
2770 +        if (exception == EXC_BAD_ACCESS) {
2771 +                switch (code[0]) {
2772 +                case KERN_PROTECTION_FAILURE:
2773 +                case KERN_INVALID_ADDRESS:
2774 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2775 +                                return KERN_SUCCESS;
2776 +                        break;
2777 +                }
2778 +        }
2779 +
2780 +        // In Mach we do not need to remove the exception handler.
2781 +        // If we forward the exception, eventually some exception handler
2782 +        // will take care of this exception.
2783 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
2784 +
2785 +        return krc;
2786 + }
2787 +
2788 + /* XXX: borrowed from launchd and gdb */
2789 + kern_return_t
2790 + catch_mach_exception_raise_state(mach_port_t exception_port,
2791 +                                                                 exception_type_t exception,
2792 +                                                                 mach_exception_data_t code,
2793 +                                                                 mach_msg_type_number_t code_count,
2794 +                                                                 int *flavor,
2795 +                                                                 thread_state_t old_state,
2796 +                                                                 mach_msg_type_number_t old_state_count,
2797 +                                                                 thread_state_t new_state,
2798 +                                                                 mach_msg_type_number_t *new_state_count)
2799 + {
2800 +        memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
2801 +        *new_state_count = old_state_count;
2802 +        return KERN_SUCCESS;
2803 + }
2804 +
2805 + /* XXX: borrowed from launchd and gdb */
2806 + kern_return_t
2807 + catch_mach_exception_raise_state_identity(mach_port_t exception_port,
2808 +                                                                                  mach_port_t thread_port,
2809 +                                                                                  mach_port_t task_port,
2810 +                                                                                  exception_type_t exception,
2811 +                                                                                  mach_exception_data_t code,
2812 +                                                                                  mach_msg_type_number_t code_count,
2813 +                                                                                  int *flavor,
2814 +                                                                                  thread_state_t old_state,
2815 +                                                                                  mach_msg_type_number_t old_state_count,
2816 +                                                                                  thread_state_t new_state,
2817 +                                                                                  mach_msg_type_number_t *new_state_count)
2818 + {
2819 +        kern_return_t kret;
2820 +
2821 +        memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
2822 +        *new_state_count = old_state_count;
2823 +
2824 +        kret = mach_port_deallocate(mach_task_self(), task_port);
2825 +        MACH_CHECK_ERROR(mach_port_deallocate, kret);
2826 +        kret = mach_port_deallocate(mach_task_self(), thread_port);
2827 +        MACH_CHECK_ERROR(mach_port_deallocate, kret);
2828 +
2829 +        return KERN_SUCCESS;
2830 + }
2831 + #endif
2832 +
2833   #ifdef HAVE_SIGSEGV_RECOVERY
2834 + // Handle bad memory accesses with signal handler
2835   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
2836   {
2837 <        // Call user's handler and reinstall the global handler, if required
2838 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
2837 >        // Call handler and reinstall the global handler, if required
2838 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
2839   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
2840                  sigsegv_do_install_handler(sig);
2841   #endif
2842 +                return;
2843          }
2844 <        else {
2845 <                // FAIL: reinstall default handler for "safe" crash
2844 >
2845 >        // Failure: reinstall default handler for "safe" crash
2846   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2847 <                SIGSEGV_ALL_SIGNALS
2847 >        SIGSEGV_ALL_SIGNALS
2848   #undef FAULT_HANDLER
306        }
2849   }
2850   #endif
2851  
# Line 317 | Line 2859 | static bool sigsegv_do_install_handler(i
2859   {
2860          // Setup SIGSEGV handler to process writes to frame buffer
2861   #ifdef HAVE_SIGACTION
2862 <        struct sigaction vosf_sa;
2863 <        sigemptyset(&vosf_sa.sa_mask);
2864 <        vosf_sa.sa_sigaction = sigsegv_handler;
2865 <        vosf_sa.sa_flags = SA_SIGINFO;
2866 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2862 >        struct sigaction sigsegv_sa;
2863 >        sigemptyset(&sigsegv_sa.sa_mask);
2864 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
2865 >        sigsegv_sa.sa_flags = SA_SIGINFO;
2866 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2867   #else
2868          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2869   #endif
# Line 333 | Line 2875 | static bool sigsegv_do_install_handler(i
2875   {
2876          // Setup SIGSEGV handler to process writes to frame buffer
2877   #ifdef HAVE_SIGACTION
2878 <        struct sigaction vosf_sa;
2879 <        sigemptyset(&vosf_sa.sa_mask);
2880 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
2878 >        struct sigaction sigsegv_sa;
2879 >        sigemptyset(&sigsegv_sa.sa_mask);
2880 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
2881 >        sigsegv_sa.sa_flags = 0;
2882   #if !EMULATED_68K && defined(__NetBSD__)
2883 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2884 <        vosf_sa.sa_flags = SA_ONSTACK;
342 < #else
343 <        vosf_sa.sa_flags = 0;
2883 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2884 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2885   #endif
2886 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2886 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2887   #else
2888          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2889   #endif
2890   }
2891   #endif
2892  
2893 < bool sigsegv_install_handler(sigsegv_handler_t handler)
2893 > #if defined(HAVE_MACH_EXCEPTIONS)
2894 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2895   {
2896 < #ifdef HAVE_SIGSEGV_RECOVERY
2897 <        sigsegv_user_handler = handler;
2896 >        /*
2897 >         * Except for the exception port functions, this should be
2898 >         * pretty much stock Mach. If later you choose to support
2899 >         * other Mach's besides Darwin, just check for __MACH__
2900 >         * here and __APPLE__ where the actual differences are.
2901 >         */
2902 > #if defined(__APPLE__) && defined(__MACH__)
2903 >        if (sigsegv_fault_handler != NULL) {
2904 >                sigsegv_fault_handler = handler;
2905 >                return true;
2906 >        }
2907 >
2908 >        kern_return_t krc;
2909 >
2910 >        // create the the exception port
2911 >        krc = mach_port_allocate(mach_task_self(),
2912 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2913 >        if (krc != KERN_SUCCESS) {
2914 >                mach_error("mach_port_allocate", krc);
2915 >                return false;
2916 >        }
2917 >
2918 >        // add a port send right
2919 >        krc = mach_port_insert_right(mach_task_self(),
2920 >                              _exceptionPort, _exceptionPort,
2921 >                              MACH_MSG_TYPE_MAKE_SEND);
2922 >        if (krc != KERN_SUCCESS) {
2923 >                mach_error("mach_port_insert_right", krc);
2924 >                return false;
2925 >        }
2926 >
2927 >        // get the old exception ports
2928 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2929 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2930 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2931 >        if (krc != KERN_SUCCESS) {
2932 >                mach_error("thread_get_exception_ports", krc);
2933 >                return false;
2934 >        }
2935 >
2936 >        // set the new exception port
2937 >        //
2938 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2939 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2940 >        // message, but it turns out that in the common case this is not
2941 >        // neccessary. If we need it we can later ask for it from the
2942 >        // suspended thread.
2943 >        //
2944 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2945 >        // counter in the thread state.  The comments in the header file
2946 >        // seem to imply that you can count on the GPR's on an exception
2947 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2948 >        // you have to ask for all of the GPR's anyway just to get the
2949 >        // program counter. In any case because of update effective
2950 >        // address from immediate and update address from effective
2951 >        // addresses of ra and rb modes (as good an name as any for these
2952 >        // addressing modes) used in PPC instructions, you will need the
2953 >        // GPR state anyway.
2954 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2955 >                                EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, SIGSEGV_THREAD_STATE_FLAVOR);
2956 >        if (krc != KERN_SUCCESS) {
2957 >                mach_error("thread_set_exception_ports", krc);
2958 >                return false;
2959 >        }
2960 >
2961 >        // create the exception handler thread
2962 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2963 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2964 >                return false;
2965 >        }
2966 >
2967 >        // do not care about the exception thread any longer, let is run standalone
2968 >        (void)pthread_detach(exc_thread);
2969 >
2970 >        sigsegv_fault_handler = handler;
2971 >        return true;
2972 > #else
2973 >        return false;
2974 > #endif
2975 > }
2976 > #endif
2977 >
2978 > #ifdef HAVE_WIN32_EXCEPTIONS
2979 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2980 > {
2981 >        if (sigsegv_fault_handler != NULL
2982 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2983 >                && ExceptionInfo->ExceptionRecord->NumberParameters >= 2
2984 >                && handle_badaccess(ExceptionInfo))
2985 >                return EXCEPTION_CONTINUE_EXECUTION;
2986 >
2987 >        return EXCEPTION_CONTINUE_SEARCH;
2988 > }
2989 >
2990 > #if defined __CYGWIN__ && defined __i386__
2991 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2992 >   installs a global exception handler.  We have to dig deep in order to install
2993 >   our main_exception_filter.  */
2994 >
2995 > /* Data structures for the current thread's exception handler chain.
2996 >   On the x86 Windows uses register fs, offset 0 to point to the current
2997 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2998 >
2999 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
3000 >
3001 > struct exception_list {
3002 >    struct exception_list *prev;
3003 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
3004 > };
3005 > typedef struct exception_list exception_list;
3006 >
3007 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
3008 >
3009 > __asm__ (".equ __except_list,0");
3010 >
3011 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
3012 >
3013 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
3014 > static exception_list *
3015 > debug_get_except_list ()
3016 > {
3017 >  return _except_list;
3018 > }
3019 >
3020 > /* Cygwin's original exception handler.  */
3021 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
3022 >
3023 > /* Our exception handler.  */
3024 > static int
3025 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
3026 > {
3027 >  EXCEPTION_POINTERS ExceptionInfo;
3028 >  ExceptionInfo.ExceptionRecord = exception;
3029 >  ExceptionInfo.ContextRecord = context;
3030 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
3031 >    return cygwin_exception_handler (exception, frame, context, dispatch);
3032 >  else
3033 >    return 0;
3034 > }
3035 >
3036 > static void
3037 > do_install_main_exception_filter ()
3038 > {
3039 >  /* We cannot insert any handler into the chain, because such handlers
3040 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
3041 >     global exception handler.  */
3042 >  cygwin_exception_handler = _except_list->handler;
3043 >  _except_list->handler = libsigsegv_exception_handler;
3044 > }
3045 >
3046 > #else
3047 >
3048 > static void
3049 > do_install_main_exception_filter ()
3050 > {
3051 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
3052 > }
3053 > #endif
3054 >
3055 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
3056 > {
3057 >        static bool main_exception_filter_installed = false;
3058 >        if (!main_exception_filter_installed) {
3059 >                do_install_main_exception_filter();
3060 >                main_exception_filter_installed = true;
3061 >        }
3062 >        sigsegv_fault_handler = handler;
3063 >        return true;
3064 > }
3065 > #endif
3066 >
3067 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
3068 > {
3069 > #if defined(HAVE_SIGSEGV_RECOVERY)
3070          bool success = true;
3071   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
3072          SIGSEGV_ALL_SIGNALS
3073   #undef FAULT_HANDLER
3074 +        if (success)
3075 +            sigsegv_fault_handler = handler;
3076          return success;
3077 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
3078 +        return sigsegv_do_install_handler(handler);
3079   #else
3080          // FAIL: no siginfo_t nor sigcontext subterfuge is available
3081          return false;
# Line 371 | Line 3089 | bool sigsegv_install_handler(sigsegv_han
3089  
3090   void sigsegv_deinstall_handler(void)
3091   {
3092 +  // We do nothing for Mach exceptions, the thread would need to be
3093 +  // suspended if not already so, and we might mess with other
3094 +  // exception handlers that came after we registered ours. There is
3095 +  // no need to remove the exception handler, in fact this function is
3096 +  // not called anywhere in Basilisk II.
3097   #ifdef HAVE_SIGSEGV_RECOVERY
3098 <        sigsegv_user_handler = 0;
3098 >        sigsegv_fault_handler = 0;
3099   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
3100          SIGSEGV_ALL_SIGNALS
3101   #undef FAULT_HANDLER
3102   #endif
3103 + #ifdef HAVE_WIN32_EXCEPTIONS
3104 +        sigsegv_fault_handler = NULL;
3105 + #endif
3106   }
3107  
3108 +
3109 + /*
3110 + *  Set callback function when we cannot handle the fault
3111 + */
3112 +
3113 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
3114 + {
3115 +        sigsegv_state_dumper = handler;
3116 + }
3117 +
3118 +
3119   /*
3120   *  Test program used for configure/test
3121   */
# Line 387 | Line 3124 | void sigsegv_deinstall_handler(void)
3124   #include <stdio.h>
3125   #include <stdlib.h>
3126   #include <fcntl.h>
3127 + #ifdef HAVE_SYS_MMAN_H
3128   #include <sys/mman.h>
3129 + #endif
3130   #include "vm_alloc.h"
3131  
3132 < static int page_size;
3132 > const int REF_INDEX = 123;
3133 > const int REF_VALUE = 45;
3134 >
3135 > static sigsegv_uintptr_t page_size;
3136   static volatile char * page = 0;
3137   static volatile int handler_called = 0;
3138  
3139 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
3139 > /* Barriers */
3140 > #ifdef __GNUC__
3141 > #define BARRIER() asm volatile ("" : : : "memory")
3142 > #else
3143 > #define BARRIER() /* nothing */
3144 > #endif
3145 >
3146 > #ifdef __GNUC__
3147 > // Code range where we expect the fault to come from
3148 > static void *b_region, *e_region;
3149 > #endif
3150 >
3151 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
3152   {
3153 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3154 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3155 + #if DEBUG
3156 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
3157 +        printf("expected fault at %p\n", page + REF_INDEX);
3158 + #ifdef __GNUC__
3159 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
3160 + #endif
3161 + #endif
3162          handler_called++;
3163 <        if ((fault_address - 123) != page)
3164 <                exit(1);
3165 <        if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3166 <                exit(1);
3163 >        if ((fault_address - REF_INDEX) != page)
3164 >                exit(10);
3165 > #ifdef __GNUC__
3166 >        // Make sure reported fault instruction address falls into
3167 >        // expected code range
3168 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
3169 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
3170 >                        (instruction_address >= (sigsegv_address_t)e_region)))
3171 >                exit(11);
3172 > #endif
3173 >        if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3174 >                exit(12);
3175 >        return SIGSEGV_RETURN_SUCCESS;
3176 > }
3177 >
3178 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3179 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
3180 > {
3181 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3182 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3183 > #if DEBUG
3184 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
3185 > #endif
3186 >        if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) {
3187 > #ifdef __GNUC__
3188 >                // Make sure reported fault instruction address falls into
3189 >                // expected code range
3190 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
3191 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
3192 >                                (instruction_address >= (sigsegv_address_t)e_region)))
3193 >                        return SIGSEGV_RETURN_FAILURE;
3194 > #endif
3195 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
3196 >        }
3197 >
3198 >        return SIGSEGV_RETURN_FAILURE;
3199 > }
3200 >
3201 > // More sophisticated tests for instruction skipper
3202 > static bool arch_insn_skipper_tests()
3203 > {
3204 > #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
3205 >        static const unsigned char code[] = {
3206 >                0x8a, 0x00,                    // mov    (%eax),%al
3207 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
3208 >                0x88, 0x20,                    // mov    %ah,(%eax)
3209 >                0x88, 0x08,                    // mov    %cl,(%eax)
3210 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
3211 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
3212 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
3213 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
3214 >                0x8b, 0x00,                    // mov    (%eax),%eax
3215 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
3216 >                0x89, 0x00,                    // mov    %eax,(%eax)
3217 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
3218 > #if defined(__x86_64__) || defined(_M_X64)
3219 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
3220 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
3221 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
3222 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
3223 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
3224 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
3225 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
3226 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
3227 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
3228 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
3229 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
3230 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
3231 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
3232 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
3233 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
3234 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
3235 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
3236 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
3237 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
3238 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
3239 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
3240 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
3241 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
3242 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
3243 > #endif
3244 >                0                              // end
3245 >        };
3246 >        const int N_REGS = 20;
3247 >        SIGSEGV_REGISTER_TYPE regs[N_REGS];
3248 >        for (int i = 0; i < N_REGS; i++)
3249 >                regs[i] = i;
3250 >        const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code;
3251 >        regs[X86_REG_EIP] = start_code;
3252 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
3253 >                   && ix86_skip_instruction(regs))
3254 >                ; /* simply iterate */
3255 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
3256 > #endif
3257          return true;
3258   }
3259 + #endif
3260  
3261   int main(void)
3262   {
3263          if (vm_init() < 0)
3264                  return 1;
3265  
3266 <        page_size = getpagesize();
3266 >        page_size = vm_get_page_size();
3267          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
3268 <                return 1;
3268 >                return 2;
3269          
3270 +        memset((void *)page, 0, page_size);
3271          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
3272 <                return 1;
3272 >                return 3;
3273          
3274          if (!sigsegv_install_handler(sigsegv_test_handler))
3275 <                return 1;
3275 >                return 4;
3276 >
3277 > #ifdef __GNUC__
3278 >        b_region = &&L_b_region1;
3279 >        e_region = &&L_e_region1;
3280 > #endif
3281 >        /* This is a really awful hack but otherwise gcc is smart enough
3282 >         * (or bug'ous enough?) to optimize the labels and place them
3283 >         * e.g. at the "main" entry point, which is wrong.
3284 >         */
3285 >        volatile int label_hack = 3;
3286 >        switch (label_hack) {
3287 >        case 3:
3288 >        L_b_region1:
3289 >                page[REF_INDEX] = REF_VALUE;
3290 >                if (page[REF_INDEX] != REF_VALUE)
3291 >                        exit(20);
3292 >                page[REF_INDEX] = REF_VALUE;
3293 >                BARRIER();
3294 >                // fall-through
3295 >        case 2:
3296 >        L_e_region1:
3297 >                BARRIER();
3298 >                break;
3299 >        }
3300 >
3301 >        if (handler_called != 1)
3302 >                return 5;
3303 >
3304 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3305 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
3306 >                return 6;
3307          
3308 <        page[123] = 45;
3309 <        page[123] = 45;
3308 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
3309 >                return 7;
3310          
3311 <        if (handler_called != 1)
3312 <                return 1;
3311 >        for (int i = 0; i < page_size; i++)
3312 >                page[i] = (i + 1) % page_size;
3313 >        
3314 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
3315 >                return 8;
3316 >        
3317 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
3318 >                const unsigned long TAG = 0x12345678 |                  \
3319 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
3320 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
3321 >                volatile unsigned long effect = data + TAG;             \
3322 >                if (effect != TAG)                                                              \
3323 >                        return 9;                                                                       \
3324 >        } while (0)
3325 >        
3326 > #ifdef __GNUC__
3327 >        b_region = &&L_b_region2;
3328 >        e_region = &&L_e_region2;
3329 > #endif
3330 >        switch (label_hack) {
3331 >        case 3:
3332 >        L_b_region2:
3333 >                TEST_SKIP_INSTRUCTION(unsigned char);
3334 >                TEST_SKIP_INSTRUCTION(unsigned short);
3335 >                TEST_SKIP_INSTRUCTION(unsigned int);
3336 >                TEST_SKIP_INSTRUCTION(unsigned long);
3337 >                TEST_SKIP_INSTRUCTION(signed char);
3338 >                TEST_SKIP_INSTRUCTION(signed short);
3339 >                TEST_SKIP_INSTRUCTION(signed int);
3340 >                TEST_SKIP_INSTRUCTION(signed long);
3341 >                BARRIER();
3342 >                // fall-through
3343 >        case 2:
3344 >        L_e_region2:
3345 >                BARRIER();
3346 >                break;
3347 >        }
3348 >        if (!arch_insn_skipper_tests())
3349 >                return 20;
3350 > #endif
3351  
3352          vm_exit();
3353          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines