ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.9 by gbeauche, 2002-03-16T21:36:12Z vs.
Revision 1.78 by gbeauche, 2008-01-07T22:44:39Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2
74 + };
75 +
76 + // Transfer size
77 + enum transfer_size_t {
78 +        SIZE_UNKNOWN,
79 +        SIZE_BYTE,
80 +        SIZE_WORD, // 2 bytes
81 +        SIZE_LONG, // 4 bytes
82 +        SIZE_QUAD  // 8 bytes
83 + };
84 +
85 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
86 + // Addressing mode
87 + enum addressing_mode_t {
88 +        MODE_UNKNOWN,
89 +        MODE_NORM,
90 +        MODE_U,
91 +        MODE_X,
92 +        MODE_UX
93 + };
94 +
95 + // Decoded instruction
96 + struct instruction_t {
97 +        transfer_type_t         transfer_type;
98 +        transfer_size_t         transfer_size;
99 +        addressing_mode_t       addr_mode;
100 +        unsigned int            addr;
101 +        char                            ra, rd;
102 + };
103 +
104 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105 + {
106 +        // Get opcode and divide into fields
107 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108 +        unsigned int primop = opcode >> 26;
109 +        unsigned int exop = (opcode >> 1) & 0x3ff;
110 +        unsigned int ra = (opcode >> 16) & 0x1f;
111 +        unsigned int rb = (opcode >> 11) & 0x1f;
112 +        unsigned int rd = (opcode >> 21) & 0x1f;
113 +        signed int imm = (signed short)(opcode & 0xffff);
114 +        
115 +        // Analyze opcode
116 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
118 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
119 +        switch (primop) {
120 +        case 31:
121 +                switch (exop) {
122 +                case 23:        // lwzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124 +                case 55:        // lwzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126 +                case 87:        // lbzx
127 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128 +                case 119:       // lbzux
129 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130 +                case 151:       // stwx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132 +                case 183:       // stwux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134 +                case 215:       // stbx
135 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136 +                case 247:       // stbux
137 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138 +                case 279:       // lhzx
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 311:       // lhzux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 343:       // lhax
143 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 375:       // lhaux
145 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                case 407:       // sthx
147 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148 +                case 439:       // sthux
149 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150 +                }
151 +                break;
152 +        
153 +        case 32:        // lwz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155 +        case 33:        // lwzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157 +        case 34:        // lbz
158 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159 +        case 35:        // lbzu
160 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161 +        case 36:        // stw
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163 +        case 37:        // stwu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165 +        case 38:        // stb
166 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167 +        case 39:        // stbu
168 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169 +        case 40:        // lhz
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 41:        // lhzu
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 42:        // lha
174 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 43:        // lhau
176 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 44:        // sth
178 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179 +        case 45:        // sthu
180 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193 +        }
194 +        
195 +        // Calculate effective address
196 +        unsigned int addr = 0;
197 +        switch (addr_mode) {
198 +        case MODE_X:
199 +        case MODE_UX:
200 +                if (ra == 0)
201 +                        addr = gpr[rb];
202 +                else
203 +                        addr = gpr[ra] + gpr[rb];
204 +                break;
205 +        case MODE_NORM:
206 +        case MODE_U:
207 +                if (ra == 0)
208 +                        addr = (signed int)(signed short)imm;
209 +                else
210 +                        addr = gpr[ra] + (signed int)(signed short)imm;
211 +                break;
212 +        default:
213 +                break;
214 +        }
215 +        
216 +        // Commit decoded instruction
217 +        instruction->addr = addr;
218 +        instruction->addr_mode = addr_mode;
219 +        instruction->transfer_type = transfer_type;
220 +        instruction->transfer_size = transfer_size;
221 +        instruction->ra = ra;
222 +        instruction->rd = rd;
223 + }
224 + #endif
225 +
226 +
227 + /*
228   *  OS-dependant SIGSEGV signals support section
229   */
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272 + #if (defined(i386) || defined(__i386__))
273 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 + #endif
277 + #endif
278 + #if defined(__NetBSD__)
279 + #if (defined(i386) || defined(__i386__))
280 + #include <sys/ucontext.h>
281 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285 + #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
297 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310 < #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
310 > #define SIGSEGV_CONTEXT_REGS                    ((struct sigcontext *)scp)
311 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
312 > #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
313 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
314   #endif
315   #if (defined(powerpc) || defined(__powerpc__))
316   #include <sys/ucontext.h>
317 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
317 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
318 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
319 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
320 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
321 > #endif
322 > #if (defined(hppa) || defined(__hppa__))
323 > #undef  SIGSEGV_FAULT_ADDRESS
324 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
325 > #endif
326 > #if (defined(arm) || defined(__arm__))
327 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
328 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
329 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
330 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
331 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
332 > #endif
333 > #if (defined(mips) || defined(__mips__))
334 > #include <sys/ucontext.h>
335 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
336 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
337 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
338 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
339   #endif
340   #endif
341   #endif
# Line 82 | Line 347 | static bool sigsegv_do_install_handler(i
347   #if (defined(i386) || defined(__i386__))
348   #include <asm/sigcontext.h>
349   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
350 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
351 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
350 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
351 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
352 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
353 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
354 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
355 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
356   #endif
357   #if (defined(sparc) || defined(__sparc__))
358   #include <asm/sigcontext.h>
359   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
360 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
361   #define SIGSEGV_FAULT_ADDRESS                   addr
362   #endif
363   #if (defined(powerpc) || defined(__powerpc__))
364   #include <asm/sigcontext.h>
365   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
366 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
367   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
368   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
369 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
370 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
371   #endif
372   #if (defined(alpha) || defined(__alpha__))
373   #include <asm/sigcontext.h>
374   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
375 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
376   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
377   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
378 <
379 < // From Boehm's GC 6.0alpha8
380 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
381 < {
382 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
383 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
384 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
385 <        return (sigsegv_address_t)fault_address;
386 < }
378 > #endif
379 > #if (defined(arm) || defined(__arm__))
380 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
381 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
382 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
383 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
384 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
385 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
386 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
387   #endif
388   #endif
389  
390   // Irix 5 or 6 on MIPS
391 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
391 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
392 > #include <ucontext.h>
393   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
394 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
394 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
395 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
396 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
397   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
398   #endif
399  
400 + // HP-UX
401 + #if (defined(hpux) || defined(__hpux__))
402 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
403 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
404 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
405 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
406 + #endif
407 +
408   // OSF/1 on Alpha
409   #if defined(__osf__)
410 + #include <ucontext.h>
411   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
412 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
413   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
414   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
415   #endif
# Line 130 | Line 417 | static sigsegv_address_t get_fault_addre
417   // AIX
418   #if defined(_AIX)
419   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
420 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
421   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
422   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
423   #endif
424  
425 < // NetBSD or FreeBSD
426 < #if defined(__NetBSD__) || defined(__FreeBSD__)
425 > // NetBSD
426 > #if defined(__NetBSD__)
427   #if (defined(m68k) || defined(__m68k__))
428   #include <m68k/frame.h>
429   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
430 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
431 <        struct sigstate {                                                                                                                                                                       \
144 <                int ss_flags;                                                                                                                                                                   \
145 <                struct frame ss_frame;                                                                                                                                                  \
146 <        };                                                                                                                                                                                                      \
147 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
148 <        char *fault_addr;                                                                                                                                                                       \
149 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
150 <        case 7:         /* 68040 access error */                                                                                                                                \
151 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
152 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
153 <                break;                                                                                                                                                                                  \
154 <        default:                                                                                                                                                                                        \
155 <                fault_addr = (char *)code;                                                                                                                                              \
156 <                break;                                                                                                                                                                                  \
157 <        }                                                                                                                                                                                                       \
158 <        fault_addr;                                                                                                                                                                                     \
159 < })
430 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
431 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
432   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
433 < #else
434 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
435 < #define SIGSEGV_FAULT_ADDRESS                   addr
433 >
434 > // Use decoding scheme from BasiliskII/m68k native
435 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
436 > {
437 >        struct sigstate {
438 >                int ss_flags;
439 >                struct frame ss_frame;
440 >        };
441 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
442 >        char *fault_addr;
443 >        switch (state->ss_frame.f_format) {
444 >        case 7:         /* 68040 access error */
445 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
446 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
447 >                break;
448 >        default:
449 >                fault_addr = (char *)code;
450 >                break;
451 >        }
452 >        return (sigsegv_address_t)fault_addr;
453 > }
454 > #endif
455 > #if (defined(alpha) || defined(__alpha__))
456 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
457 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
458 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
459   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
460   #endif
461 + #if (defined(i386) || defined(__i386__))
462 + #error "FIXME: need to decode instruction and compute EA"
463 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
464 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466   #endif
467 + #endif
468 + #if defined(__FreeBSD__)
469 + #if (defined(i386) || defined(__i386__))
470 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
471 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
472 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
473 + #define SIGSEGV_FAULT_ADDRESS                   addr
474 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
475 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
476 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
477 + #endif
478 + #if (defined(alpha) || defined(__alpha__))
479 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
480 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
481 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
482 + #define SIGSEGV_FAULT_ADDRESS                   addr
483 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
484 + #endif
485 + #endif
486 +
487 + // Extract fault address out of a sigcontext
488 + #if (defined(alpha) || defined(__alpha__))
489 + // From Boehm's GC 6.0alpha8
490 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
491 + {
492 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
493 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
494 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
495 +        return (sigsegv_address_t)fault_address;
496 + }
497 + #endif
498 +
499  
500 < // MacOS X
500 > // MacOS X, not sure which version this works in. Under 10.1
501 > // vm_protect does not appear to work from a signal handler. Under
502 > // 10.2 signal handlers get siginfo type arguments but the si_addr
503 > // field is the address of the faulting instruction and not the
504 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
505 > // case with Mach exception handlers there is a way to do what this
506 > // was meant to do.
507 > #ifndef HAVE_MACH_EXCEPTIONS
508   #if defined(__APPLE__) && defined(__MACH__)
509   #if (defined(ppc) || defined(__ppc__))
510   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
511 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
512   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
513   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
514   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
515 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
516 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
517  
518 < // From Boehm's GC 6.0alpha8
177 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
178 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
179 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
180 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
181 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
182 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
183 <
518 > // Use decoding scheme from SheepShaver
519   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
520   {
521 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
522 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
523 <        int            disp = 0, tmp;
524 <        unsigned int   baseA = 0, baseB = 0;
525 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
526 <
527 <        switch(EXTRACT_OP1(instr)) {
528 <        case 38:   /* stb */
529 <        case 39:   /* stbu */
530 <        case 54:   /* stfd */
531 <        case 55:   /* stfdu */
532 <        case 52:   /* stfs */
533 <        case 53:   /* stfsu */
534 <        case 44:   /* sth */
535 <        case 45:   /* sthu */
536 <        case 47:   /* stmw */
537 <        case 36:   /* stw */
538 <        case 37:   /* stwu */
539 <                tmp = EXTRACT_REGA(instr);
540 <                if(tmp > 0)
541 <                        baseA = regs[tmp];
542 <                disp = EXTRACT_DISP(instr);
521 >        unsigned int   nip = (unsigned int) scp->sc_ir;
522 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
523 >        instruction_t  instr;
524 >
525 >        powerpc_decode_instruction(&instr, nip, gpr);
526 >        return (sigsegv_address_t)instr.addr;
527 > }
528 > #endif
529 > #endif
530 > #endif
531 > #endif
532 >
533 > #if HAVE_WIN32_EXCEPTIONS
534 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
535 > #include <windows.h>
536 > #include <winerror.h>
537 >
538 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
539 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
540 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
541 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
542 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
543 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
544 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
545 > #endif
546 >
547 > #if HAVE_MACH_EXCEPTIONS
548 >
549 > // This can easily be extended to other Mach systems, but really who
550 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
551 > // Mach 2.5/3.0?
552 > #if defined(__APPLE__) && defined(__MACH__)
553 >
554 > #include <sys/types.h>
555 > #include <stdlib.h>
556 > #include <stdio.h>
557 > #include <pthread.h>
558 >
559 > /*
560 > * If you are familiar with MIG then you will understand the frustration
561 > * that was necessary to get these embedded into C++ code by hand.
562 > */
563 > extern "C" {
564 > #include <mach/mach.h>
565 > #include <mach/mach_error.h>
566 >
567 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
568 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
569 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
570 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
571 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
572 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
573 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
576 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
577 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
578 > }
579 >
580 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
581 > #define HANDLER_COUNT 64
582 >
583 > // structure to tuck away existing exception handlers
584 > typedef struct _ExceptionPorts {
585 >        mach_msg_type_number_t maskCount;
586 >        exception_mask_t masks[HANDLER_COUNT];
587 >        exception_handler_t handlers[HANDLER_COUNT];
588 >        exception_behavior_t behaviors[HANDLER_COUNT];
589 >        thread_state_flavor_t flavors[HANDLER_COUNT];
590 > } ExceptionPorts;
591 >
592 > // exception handler thread
593 > static pthread_t exc_thread;
594 >
595 > // place where old exception handler info is stored
596 > static ExceptionPorts ports;
597 >
598 > // our exception port
599 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
600 >
601 > #define MACH_CHECK_ERROR(name,ret) \
602 > if (ret != KERN_SUCCESS) { \
603 >        mach_error(#name, ret); \
604 >        exit (1); \
605 > }
606 >
607 > #ifdef __ppc__
608 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
609 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
610 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
611 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
612 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
613 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
614 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
615 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
616 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
617 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
618 > #endif
619 > #ifdef __ppc64__
620 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
621 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
622 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
623 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
624 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
625 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
626 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
627 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
628 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
629 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
630 > #endif
631 > #ifdef __i386__
632 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
633 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
634 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
635 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
636 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
637 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
638 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
639 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.eip
640 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
641 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.eax) /* EAX is the first GPR we consider */
642 > #endif
643 > #ifdef __x86_64__
644 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
645 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
646 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
647 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
648 > #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
649 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
650 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
651 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.rip
652 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
653 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.rax) /* RAX is the first GPR we consider */
654 > #endif
655 > #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
656 > #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
657 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
658 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
659 >
660 > // Since there can only be one exception thread running at any time
661 > // this is not a problem.
662 > #define MSG_SIZE 512
663 > static char msgbuf[MSG_SIZE];
664 > static char replybuf[MSG_SIZE];
665 >
666 > /*
667 > * This is the entry point for the exception handler thread. The job
668 > * of this thread is to wait for exception messages on the exception
669 > * port that was setup beforehand and to pass them on to exc_server.
670 > * exc_server is a MIG generated function that is a part of Mach.
671 > * Its job is to decide what to do with the exception message. In our
672 > * case exc_server calls catch_exception_raise on our behalf. After
673 > * exc_server returns, it is our responsibility to send the reply.
674 > */
675 > static void *
676 > handleExceptions(void *priv)
677 > {
678 >        mach_msg_header_t *msg, *reply;
679 >        kern_return_t krc;
680 >
681 >        msg = (mach_msg_header_t *)msgbuf;
682 >        reply = (mach_msg_header_t *)replybuf;
683 >
684 >        for (;;) {
685 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
686 >                                _exceptionPort, 0, MACH_PORT_NULL);
687 >                MACH_CHECK_ERROR(mach_msg, krc);
688 >
689 >                if (!exc_server(msg, reply)) {
690 >                        fprintf(stderr, "exc_server hated the message\n");
691 >                        exit(1);
692 >                }
693 >
694 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
695 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
696 >                if (krc != KERN_SUCCESS) {
697 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
698 >                                krc, mach_error_string(krc));
699 >                        exit(1);
700 >                }
701 >        }
702 > }
703 > #endif
704 > #endif
705 >
706 >
707 > /*
708 > *  Instruction skipping
709 > */
710 >
711 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
712 > // Decode and skip X86 instruction
713 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
714 > #if defined(__linux__)
715 > enum {
716 > #if (defined(i386) || defined(__i386__))
717 >        X86_REG_EIP = 14,
718 >        X86_REG_EAX = 11,
719 >        X86_REG_ECX = 10,
720 >        X86_REG_EDX = 9,
721 >        X86_REG_EBX = 8,
722 >        X86_REG_ESP = 7,
723 >        X86_REG_EBP = 6,
724 >        X86_REG_ESI = 5,
725 >        X86_REG_EDI = 4
726 > #endif
727 > #if defined(__x86_64__)
728 >        X86_REG_R8  = 0,
729 >        X86_REG_R9  = 1,
730 >        X86_REG_R10 = 2,
731 >        X86_REG_R11 = 3,
732 >        X86_REG_R12 = 4,
733 >        X86_REG_R13 = 5,
734 >        X86_REG_R14 = 6,
735 >        X86_REG_R15 = 7,
736 >        X86_REG_EDI = 8,
737 >        X86_REG_ESI = 9,
738 >        X86_REG_EBP = 10,
739 >        X86_REG_EBX = 11,
740 >        X86_REG_EDX = 12,
741 >        X86_REG_EAX = 13,
742 >        X86_REG_ECX = 14,
743 >        X86_REG_ESP = 15,
744 >        X86_REG_EIP = 16
745 > #endif
746 > };
747 > #endif
748 > #if defined(__NetBSD__)
749 > enum {
750 > #if (defined(i386) || defined(__i386__))
751 >        X86_REG_EIP = _REG_EIP,
752 >        X86_REG_EAX = _REG_EAX,
753 >        X86_REG_ECX = _REG_ECX,
754 >        X86_REG_EDX = _REG_EDX,
755 >        X86_REG_EBX = _REG_EBX,
756 >        X86_REG_ESP = _REG_ESP,
757 >        X86_REG_EBP = _REG_EBP,
758 >        X86_REG_ESI = _REG_ESI,
759 >        X86_REG_EDI = _REG_EDI
760 > #endif
761 > };
762 > #endif
763 > #if defined(__FreeBSD__)
764 > enum {
765 > #if (defined(i386) || defined(__i386__))
766 >        X86_REG_EIP = 10,
767 >        X86_REG_EAX = 7,
768 >        X86_REG_ECX = 6,
769 >        X86_REG_EDX = 5,
770 >        X86_REG_EBX = 4,
771 >        X86_REG_ESP = 13,
772 >        X86_REG_EBP = 2,
773 >        X86_REG_ESI = 1,
774 >        X86_REG_EDI = 0
775 > #endif
776 > };
777 > #endif
778 > #if defined(__OpenBSD__)
779 > enum {
780 > #if defined(__i386__)
781 >        // EDI is the first register we consider
782 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
783 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
784 >        X86_REG_EIP = DREG(eip), // 7
785 >        X86_REG_EAX = DREG(eax), // 6
786 >        X86_REG_ECX = DREG(ecx), // 5
787 >        X86_REG_EDX = DREG(edx), // 4
788 >        X86_REG_EBX = DREG(ebx), // 3
789 >        X86_REG_ESP = DREG(esp), // 10
790 >        X86_REG_EBP = DREG(ebp), // 2
791 >        X86_REG_ESI = DREG(esi), // 1
792 >        X86_REG_EDI = DREG(edi)  // 0
793 > #undef DREG
794 > #undef OREG
795 > #endif
796 > };
797 > #endif
798 > #if defined(__sun__)
799 > // Same as for Linux, need to check for x86-64
800 > enum {
801 > #if defined(__i386__)
802 >        X86_REG_EIP = EIP,
803 >        X86_REG_EAX = EAX,
804 >        X86_REG_ECX = ECX,
805 >        X86_REG_EDX = EDX,
806 >        X86_REG_EBX = EBX,
807 >        X86_REG_ESP = ESP,
808 >        X86_REG_EBP = EBP,
809 >        X86_REG_ESI = ESI,
810 >        X86_REG_EDI = EDI
811 > #endif
812 > };
813 > #endif
814 > #if defined(__APPLE__) && defined(__MACH__)
815 > enum {
816 > #if (defined(i386) || defined(__i386__))
817 > #ifdef i386_SAVED_STATE
818 >        // same as FreeBSD (in Open Darwin 8.0.1)
819 >        X86_REG_EIP = 10,
820 >        X86_REG_EAX = 7,
821 >        X86_REG_ECX = 6,
822 >        X86_REG_EDX = 5,
823 >        X86_REG_EBX = 4,
824 >        X86_REG_ESP = 13,
825 >        X86_REG_EBP = 2,
826 >        X86_REG_ESI = 1,
827 >        X86_REG_EDI = 0
828 > #else
829 >        // new layout (MacOS X 10.4.4 for x86)
830 >        X86_REG_EIP = 10,
831 >        X86_REG_EAX = 0,
832 >        X86_REG_ECX = 2,
833 >        X86_REG_EDX = 3,
834 >        X86_REG_EBX = 1,
835 >        X86_REG_ESP = 7,
836 >        X86_REG_EBP = 6,
837 >        X86_REG_ESI = 5,
838 >        X86_REG_EDI = 4
839 > #endif
840 > #endif
841 > #if defined(__x86_64__)
842 >        X86_REG_R8  = 8,
843 >        X86_REG_R9  = 9,
844 >        X86_REG_R10 = 10,
845 >        X86_REG_R11 = 11,
846 >        X86_REG_R12 = 12,
847 >        X86_REG_R13 = 13,
848 >        X86_REG_R14 = 14,
849 >        X86_REG_R15 = 15,
850 >        X86_REG_EDI = 4,
851 >        X86_REG_ESI = 5,
852 >        X86_REG_EBP = 6,
853 >        X86_REG_EBX = 1,
854 >        X86_REG_EDX = 3,
855 >        X86_REG_EAX = 0,
856 >        X86_REG_ECX = 2,
857 >        X86_REG_ESP = 7,
858 >        X86_REG_EIP = 16
859 > #endif
860 > };
861 > #endif
862 > #if defined(_WIN32)
863 > enum {
864 > #if (defined(i386) || defined(__i386__))
865 >        X86_REG_EIP = 7,
866 >        X86_REG_EAX = 5,
867 >        X86_REG_ECX = 4,
868 >        X86_REG_EDX = 3,
869 >        X86_REG_EBX = 2,
870 >        X86_REG_ESP = 10,
871 >        X86_REG_EBP = 6,
872 >        X86_REG_ESI = 1,
873 >        X86_REG_EDI = 0
874 > #endif
875 > };
876 > #endif
877 > // FIXME: this is partly redundant with the instruction decoding phase
878 > // to discover transfer type and register number
879 > static inline int ix86_step_over_modrm(unsigned char * p)
880 > {
881 >        int mod = (p[0] >> 6) & 3;
882 >        int rm = p[0] & 7;
883 >        int offset = 0;
884 >
885 >        // ModR/M Byte
886 >        switch (mod) {
887 >        case 0: // [reg]
888 >                if (rm == 5) return 4; // disp32
889                  break;
890 <        case 31:
891 <                switch(EXTRACT_OP2(instr)) {
892 <                case 86:    /* dcbf */
893 <                case 54:    /* dcbst */
894 <                case 1014:  /* dcbz */
895 <                case 247:   /* stbux */
896 <                case 215:   /* stbx */
897 <                case 759:   /* stfdux */
898 <                case 727:   /* stfdx */
899 <                case 983:   /* stfiwx */
900 <                case 695:   /* stfsux */
901 <                case 663:   /* stfsx */
902 <                case 918:   /* sthbrx */
903 <                case 439:   /* sthux */
904 <                case 407:   /* sthx */
905 <                case 661:   /* stswx */
906 <                case 662:   /* stwbrx */
907 <                case 150:   /* stwcx. */
908 <                case 183:   /* stwux */
909 <                case 151:   /* stwx */
910 <                case 135:   /* stvebx */
911 <                case 167:   /* stvehx */
912 <                case 199:   /* stvewx */
913 <                case 231:   /* stvx */
914 <                case 487:   /* stvxl */
915 <                        tmp = EXTRACT_REGA(instr);
916 <                        if(tmp > 0)
917 <                                baseA = regs[tmp];
918 <                        baseB = regs[EXTRACT_REGC(instr)];
919 <                        /* determine Altivec alignment mask */
920 <                        switch(EXTRACT_OP2(instr)) {
921 <                        case 167:   /* stvehx */
922 <                                alignmask = 0xFFFFFFFE;
923 <                                break;
924 <                        case 199:   /* stvewx */
925 <                                alignmask = 0xFFFFFFFC;
926 <                                break;
927 <                        case 231:   /* stvx */
928 <                                alignmask = 0xFFFFFFF0;
929 <                                break;
930 <                        case 487:  /* stvxl */
931 <                                alignmask = 0xFFFFFFF0;
932 <                                break;
933 <                        }
934 <                        break;
935 <                case 725:   /* stswi */
936 <                        tmp = EXTRACT_REGA(instr);
937 <                        if(tmp > 0)
938 <                                baseA = regs[tmp];
890 >        case 1: // disp8[reg]
891 >                offset = 1;
892 >                break;
893 >        case 2: // disp32[reg]
894 >                offset = 4;
895 >                break;
896 >        case 3: // register
897 >                return 0;
898 >        }
899 >        
900 >        // SIB Byte
901 >        if (rm == 4) {
902 >                if (mod == 0 && (p[1] & 7) == 5)
903 >                        offset = 5; // disp32[index]
904 >                else
905 >                        offset++;
906 >        }
907 >
908 >        return offset;
909 > }
910 >
911 > static bool ix86_skip_instruction(unsigned long * regs)
912 > {
913 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
914 >
915 >        if (eip == 0)
916 >                return false;
917 > #ifdef _WIN32
918 >        if (IsBadCodePtr((FARPROC)eip))
919 >                return false;
920 > #endif
921 >        
922 >        enum instruction_type_t {
923 >                i_MOV,
924 >                i_ADD
925 >        };
926 >
927 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
928 >        transfer_size_t transfer_size = SIZE_LONG;
929 >        instruction_type_t instruction_type = i_MOV;
930 >        
931 >        int reg = -1;
932 >        int len = 0;
933 >
934 > #if DEBUG
935 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
936 >                   eip, eip[0], eip[1], eip[2], eip[3]);
937 > #endif
938 >
939 >        // Operand size prefix
940 >        if (*eip == 0x66) {
941 >                eip++;
942 >                len++;
943 >                transfer_size = SIZE_WORD;
944 >        }
945 >
946 >        // REX prefix
947 > #if defined(__x86_64__)
948 >        struct rex_t {
949 >                unsigned char W;
950 >                unsigned char R;
951 >                unsigned char X;
952 >                unsigned char B;
953 >        };
954 >        rex_t rex = { 0, 0, 0, 0 };
955 >        bool has_rex = false;
956 >        if ((*eip & 0xf0) == 0x40) {
957 >                has_rex = true;
958 >                const unsigned char b = *eip;
959 >                rex.W = b & (1 << 3);
960 >                rex.R = b & (1 << 2);
961 >                rex.X = b & (1 << 1);
962 >                rex.B = b & (1 << 0);
963 > #if DEBUG
964 >                printf("REX: %c,%c,%c,%c\n",
965 >                           rex.W ? 'W' : '_',
966 >                           rex.R ? 'R' : '_',
967 >                           rex.X ? 'X' : '_',
968 >                           rex.B ? 'B' : '_');
969 > #endif
970 >                eip++;
971 >                len++;
972 >                if (rex.W)
973 >                        transfer_size = SIZE_QUAD;
974 >        }
975 > #else
976 >        const bool has_rex = false;
977 > #endif
978 >
979 >        // Decode instruction
980 >        int op_len = 1;
981 >        int target_size = SIZE_UNKNOWN;
982 >        switch (eip[0]) {
983 >        case 0x0f:
984 >                target_size = transfer_size;
985 >            switch (eip[1]) {
986 >                case 0xbe: // MOVSX r32, r/m8
987 >            case 0xb6: // MOVZX r32, r/m8
988 >                        transfer_size = SIZE_BYTE;
989 >                        goto do_mov_extend;
990 >                case 0xbf: // MOVSX r32, r/m16
991 >            case 0xb7: // MOVZX r32, r/m16
992 >                        transfer_size = SIZE_WORD;
993 >                        goto do_mov_extend;
994 >                  do_mov_extend:
995 >                        op_len = 2;
996 >                        goto do_transfer_load;
997 >                }
998 >                break;
999 > #if defined(__x86_64__)
1000 >        case 0x63: // MOVSXD r64, r/m32
1001 >                if (has_rex && rex.W) {
1002 >                        transfer_size = SIZE_LONG;
1003 >                        target_size = SIZE_QUAD;
1004 >                }
1005 >                else if (transfer_size != SIZE_WORD) {
1006 >                        transfer_size = SIZE_LONG;
1007 >                        target_size = SIZE_QUAD;
1008 >                }
1009 >                goto do_transfer_load;
1010 > #endif
1011 >        case 0x02: // ADD r8, r/m8
1012 >                transfer_size = SIZE_BYTE;
1013 >        case 0x03: // ADD r32, r/m32
1014 >                instruction_type = i_ADD;
1015 >                goto do_transfer_load;
1016 >        case 0x8a: // MOV r8, r/m8
1017 >                transfer_size = SIZE_BYTE;
1018 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1019 >          do_transfer_load:
1020 >                switch (eip[op_len] & 0xc0) {
1021 >                case 0x80:
1022 >                        reg = (eip[op_len] >> 3) & 7;
1023 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1024 >                        break;
1025 >                case 0x40:
1026 >                        reg = (eip[op_len] >> 3) & 7;
1027 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1028                          break;
1029 <                default:   /* ignore instruction */
1030 <                        return 0;
1029 >                case 0x00:
1030 >                        reg = (eip[op_len] >> 3) & 7;
1031 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1032                          break;
1033                  }
1034 +                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1035                  break;
1036 <        default:   /* ignore instruction */
1037 <                return 0;
1036 >        case 0x00: // ADD r/m8, r8
1037 >                transfer_size = SIZE_BYTE;
1038 >        case 0x01: // ADD r/m32, r32
1039 >                instruction_type = i_ADD;
1040 >                goto do_transfer_store;
1041 >        case 0x88: // MOV r/m8, r8
1042 >                transfer_size = SIZE_BYTE;
1043 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1044 >          do_transfer_store:
1045 >                switch (eip[op_len] & 0xc0) {
1046 >                case 0x80:
1047 >                        reg = (eip[op_len] >> 3) & 7;
1048 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1049 >                        break;
1050 >                case 0x40:
1051 >                        reg = (eip[op_len] >> 3) & 7;
1052 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1053 >                        break;
1054 >                case 0x00:
1055 >                        reg = (eip[op_len] >> 3) & 7;
1056 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1057 >                        break;
1058 >                }
1059 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1060 >                break;
1061 >        }
1062 >        if (target_size == SIZE_UNKNOWN)
1063 >                target_size = transfer_size;
1064 >
1065 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1066 >                // Unknown machine code, let it crash. Then patch the decoder
1067 >                return false;
1068 >        }
1069 >
1070 > #if defined(__x86_64__)
1071 >        if (rex.R)
1072 >                reg += 8;
1073 > #endif
1074 >
1075 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1076 >                static const int x86_reg_map[] = {
1077 >                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1078 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1079 > #if defined(__x86_64__)
1080 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1081 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1082 > #endif
1083 >                };
1084 >                
1085 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1086 >                        return false;
1087 >
1088 >                // Set 0 to the relevant register part
1089 >                // NOTE: this is only valid for MOV alike instructions
1090 >                int rloc = x86_reg_map[reg];
1091 >                switch (target_size) {
1092 >                case SIZE_BYTE:
1093 >                        if (has_rex || reg < 4)
1094 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1095 >                        else {
1096 >                                rloc = x86_reg_map[reg - 4];
1097 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1098 >                        }
1099 >                        break;
1100 >                case SIZE_WORD:
1101 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1102 >                        break;
1103 >                case SIZE_LONG:
1104 >                case SIZE_QUAD: // zero-extension
1105 >                        regs[rloc] = 0;
1106 >                        break;
1107 >                }
1108 >        }
1109 >
1110 > #if DEBUG
1111 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1112 >                   transfer_size == SIZE_BYTE ? "byte" :
1113 >                   transfer_size == SIZE_WORD ? "word" :
1114 >                   transfer_size == SIZE_LONG ? "long" :
1115 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1116 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1117 >        
1118 >        if (reg != -1) {
1119 >                static const char * x86_byte_reg_str_map[] = {
1120 >                        "al",   "cl",   "dl",   "bl",
1121 >                        "spl",  "bpl",  "sil",  "dil",
1122 >                        "r8b",  "r9b",  "r10b", "r11b",
1123 >                        "r12b", "r13b", "r14b", "r15b",
1124 >                        "ah",   "ch",   "dh",   "bh",
1125 >                };
1126 >                static const char * x86_word_reg_str_map[] = {
1127 >                        "ax",   "cx",   "dx",   "bx",
1128 >                        "sp",   "bp",   "si",   "di",
1129 >                        "r8w",  "r9w",  "r10w", "r11w",
1130 >                        "r12w", "r13w", "r14w", "r15w",
1131 >                };
1132 >                static const char *x86_long_reg_str_map[] = {
1133 >                        "eax",  "ecx",  "edx",  "ebx",
1134 >                        "esp",  "ebp",  "esi",  "edi",
1135 >                        "r8d",  "r9d",  "r10d", "r11d",
1136 >                        "r12d", "r13d", "r14d", "r15d",
1137 >                };
1138 >                static const char *x86_quad_reg_str_map[] = {
1139 >                        "rax", "rcx", "rdx", "rbx",
1140 >                        "rsp", "rbp", "rsi", "rdi",
1141 >                        "r8",  "r9",  "r10", "r11",
1142 >                        "r12", "r13", "r14", "r15",
1143 >                };
1144 >                const char * reg_str = NULL;
1145 >                switch (target_size) {
1146 >                case SIZE_BYTE:
1147 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1148 >                        break;
1149 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1150 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1151 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1152 >                }
1153 >                if (reg_str)
1154 >                        printf(" %s register %%%s",
1155 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1156 >                                   reg_str);
1157 >        }
1158 >        printf(", %d bytes instruction\n", len);
1159 > #endif
1160 >        
1161 >        regs[X86_REG_EIP] += len;
1162 >        return true;
1163 > }
1164 > #endif
1165 >
1166 > // Decode and skip IA-64 instruction
1167 > #if defined(__ia64__)
1168 > #if defined(__linux__)
1169 > // We can directly patch the slot number
1170 > #define IA64_CAN_PATCH_IP_SLOT 1
1171 > // Helper macros to access the machine context
1172 > #define IA64_CONTEXT_TYPE               struct sigcontext *
1173 > #define IA64_CONTEXT                    scp
1174 > #define IA64_GET_IP()                   (IA64_CONTEXT->sc_ip)
1175 > #define IA64_SET_IP(V)                  (IA64_CONTEXT->sc_ip = (V))
1176 > #define IA64_GET_PR(P)                  ((IA64_CONTEXT->sc_pr >> (P)) & 1)
1177 > #define IA64_GET_NAT(I)                 ((IA64_CONTEXT->sc_nat >> (I)) & 1)
1178 > #define IA64_SET_NAT(I,V)               (IA64_CONTEXT->sc_nat= (IA64_CONTEXT->sc_nat & ~(1ul << (I))) | (((unsigned long)!!(V)) << (I)))
1179 > #define IA64_GET_GR(R)                  (IA64_CONTEXT->sc_gr[(R)])
1180 > #define IA64_SET_GR(R,V)                (IA64_CONTEXT->sc_gr[(R)] = (V))
1181 > #endif
1182 >
1183 > // Instruction operations
1184 > enum {
1185 >        IA64_INST_UNKNOWN = 0,
1186 >        IA64_INST_LD1,                          // ld1 op0=[op1]
1187 >        IA64_INST_LD1_UPDATE,           // ld1 op0=[op1],op2
1188 >        IA64_INST_LD2,                          // ld2 op0=[op1]
1189 >        IA64_INST_LD2_UPDATE,           // ld2 op0=[op1],op2
1190 >        IA64_INST_LD4,                          // ld4 op0=[op1]
1191 >        IA64_INST_LD4_UPDATE,           // ld4 op0=[op1],op2
1192 >        IA64_INST_LD8,                          // ld8 op0=[op1]
1193 >        IA64_INST_LD8_UPDATE,           // ld8 op0=[op1],op2
1194 >        IA64_INST_ST1,                          // st1 [op0]=op1
1195 >        IA64_INST_ST1_UPDATE,           // st1 [op0]=op1,op2
1196 >        IA64_INST_ST2,                          // st2 [op0]=op1
1197 >        IA64_INST_ST2_UPDATE,           // st2 [op0]=op1,op2
1198 >        IA64_INST_ST4,                          // st4 [op0]=op1
1199 >        IA64_INST_ST4_UPDATE,           // st4 [op0]=op1,op2
1200 >        IA64_INST_ST8,                          // st8 [op0]=op1
1201 >        IA64_INST_ST8_UPDATE,           // st8 [op0]=op1,op2
1202 >        IA64_INST_ADD,                          // add op0=op1,op2,op3
1203 >        IA64_INST_SUB,                          // sub op0=op1,op2,op3
1204 >        IA64_INST_SHLADD,                       // shladd op0=op1,op3,op2
1205 >        IA64_INST_AND,                          // and op0=op1,op2
1206 >        IA64_INST_ANDCM,                        // andcm op0=op1,op2
1207 >        IA64_INST_OR,                           // or op0=op1,op2
1208 >        IA64_INST_XOR,                          // xor op0=op1,op2
1209 >        IA64_INST_SXT1,                         // sxt1 op0=op1
1210 >        IA64_INST_SXT2,                         // sxt2 op0=op1
1211 >        IA64_INST_SXT4,                         // sxt4 op0=op1
1212 >        IA64_INST_ZXT1,                         // zxt1 op0=op1
1213 >        IA64_INST_ZXT2,                         // zxt2 op0=op1
1214 >        IA64_INST_ZXT4,                         // zxt4 op0=op1
1215 >        IA64_INST_NOP                           // nop op0
1216 > };
1217 >
1218 > const int IA64_N_OPERANDS = 4;
1219 >
1220 > // Decoded operand type
1221 > struct ia64_operand_t {
1222 >        unsigned char commit;           // commit result of operation to register file?
1223 >        unsigned char valid;            // XXX: not really used, can be removed (debug)
1224 >        signed char index;                      // index of GPR, or -1 if immediate value
1225 >        unsigned char nat;                      // NaT state before operation
1226 >        unsigned long value;            // register contents or immediate value
1227 > };
1228 >
1229 > // Decoded instruction type
1230 > struct ia64_instruction_t {
1231 >        unsigned char mnemo;            // operation to perform
1232 >        unsigned char pred;                     // predicate register to check
1233 >        unsigned char no_memory;        // used to emulated main fault instruction
1234 >        unsigned long inst;                     // the raw instruction bits (41-bit wide)
1235 >        ia64_operand_t operands[IA64_N_OPERANDS];
1236 > };
1237 >
1238 > // Get immediate sign-bit
1239 > static inline int ia64_inst_get_sbit(unsigned long inst)
1240 > {
1241 >        return (inst >> 36) & 1;
1242 > }
1243 >
1244 > // Get 8-bit immediate value (A3, A8, I27, M30)
1245 > static inline unsigned long ia64_inst_get_imm8(unsigned long inst)
1246 > {
1247 >        unsigned long value = (inst >> 13) & 0x7ful;
1248 >        if (ia64_inst_get_sbit(inst))
1249 >                value |= ~0x7ful;
1250 >        return value;
1251 > }
1252 >
1253 > // Get 9-bit immediate value (M3)
1254 > static inline unsigned long ia64_inst_get_imm9b(unsigned long inst)
1255 > {
1256 >        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
1257 >        if (ia64_inst_get_sbit(inst))
1258 >                value |= ~0xfful;
1259 >        return value;
1260 > }
1261 >
1262 > // Get 9-bit immediate value (M5)
1263 > static inline unsigned long ia64_inst_get_imm9a(unsigned long inst)
1264 > {
1265 >        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
1266 >        if (ia64_inst_get_sbit(inst))
1267 >                value |= ~0xfful;
1268 >        return value;
1269 > }
1270 >
1271 > // Get 14-bit immediate value (A4)
1272 > static inline unsigned long ia64_inst_get_imm14(unsigned long inst)
1273 > {
1274 >        unsigned long value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
1275 >        if (ia64_inst_get_sbit(inst))
1276 >                value |= ~0x1fful;
1277 >        return value;
1278 > }
1279 >
1280 > // Get 22-bit immediate value (A5)
1281 > static inline unsigned long ia64_inst_get_imm22(unsigned long inst)
1282 > {
1283 >        unsigned long value = ((((inst >> 22) & 0x1f) << 16) |
1284 >                                                   (((inst >> 27) & 0x1ff) << 7) |
1285 >                                                   (inst & 0x7f));
1286 >        if (ia64_inst_get_sbit(inst))
1287 >                value |= ~0x1ffffful;
1288 >        return value;
1289 > }
1290 >
1291 > // Get 21-bit immediate value (I19)
1292 > static inline unsigned long ia64_inst_get_imm21(unsigned long inst)
1293 > {
1294 >        return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
1295 > }
1296 >
1297 > // Get 2-bit count value (A2)
1298 > static inline int ia64_inst_get_count2(unsigned long inst)
1299 > {
1300 >        return (inst >> 27) & 0x3;
1301 > }
1302 >
1303 > // Get bundle template
1304 > static inline unsigned int ia64_get_template(unsigned long raw_ip)
1305 > {
1306 >        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1307 >        return ip[0] & 0x1f;
1308 > }
1309 >
1310 > // Get specified instruction in bundle
1311 > static unsigned long ia64_get_instruction(unsigned long raw_ip, int slot)
1312 > {
1313 >        unsigned long inst;
1314 >        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1315 > #if DEBUG
1316 >        printf("Bundle: %016lx%016lx\n", ip[1], ip[0]);
1317 > #endif
1318 >
1319 >        switch (slot) {
1320 >        case 0:
1321 >                inst = (ip[0] >> 5) & 0x1fffffffffful;
1322 >                break;
1323 >        case 1:
1324 >                inst = ((ip[1] & 0x7ffffful) << 18) | ((ip[0] >> 46) & 0x3fffful);
1325 >                break;
1326 >        case 2:
1327 >                inst = (ip[1] >> 23) & 0x1fffffffffful;
1328 >                break;
1329 >        case 3:
1330 >                fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
1331 >                abort();
1332 >                break;
1333 >        }
1334 >
1335 > #if DEBUG
1336 >        printf(" Instruction %d: 0x%016lx\n", slot, inst);
1337 > #endif
1338 >        return inst;
1339 > }
1340 >
1341 > // Decode group 0 instructions
1342 > static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1343 > {
1344 >        const int r1 = (inst->inst >>  6) & 0x7f;
1345 >        const int r3 = (inst->inst >> 20) & 0x7f;
1346 >
1347 >        const int x3 = (inst->inst >> 33) & 0x07;
1348 >        const int x6 = (inst->inst >> 27) & 0x3f;
1349 >        const int x2 = (inst->inst >> 31) & 0x03;
1350 >        const int x4 = (inst->inst >> 27) & 0x0f;
1351 >
1352 >        if (x3 == 0) {
1353 >                switch (x6) {
1354 >                case 0x01:                                              // nop.i (I19)
1355 >                        inst->mnemo = IA64_INST_NOP;
1356 >                        inst->operands[0].valid = true;
1357 >                        inst->operands[0].index = -1;
1358 >                        inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
1359 >                        return true;
1360 >                case 0x14:                                              // sxt1 (I29)
1361 >                case 0x15:                                              // sxt2 (I29)
1362 >                case 0x16:                                              // sxt4 (I29)
1363 >                case 0x10:                                              // zxt1 (I29)
1364 >                case 0x11:                                              // zxt2 (I29)
1365 >                case 0x12:                                              // zxt4 (I29)
1366 >                        switch (x6) {
1367 >                        case 0x14: inst->mnemo = IA64_INST_SXT1; break;
1368 >                        case 0x15: inst->mnemo = IA64_INST_SXT2; break;
1369 >                        case 0x16: inst->mnemo = IA64_INST_SXT4; break;
1370 >                        case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
1371 >                        case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
1372 >                        case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
1373 >                        default: abort();
1374 >                        }
1375 >                        inst->operands[0].valid = true;
1376 >                        inst->operands[0].index = r1;
1377 >                        inst->operands[1].valid = true;
1378 >                        inst->operands[1].index = r3;
1379 >                        inst->operands[1].value = IA64_GET_GR(r3);
1380 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1381 >                        return true;
1382 >                }
1383 >        }
1384 >        return false;
1385 > }
1386 >
1387 > // Decode group 4 instructions (load/store instructions)
1388 > static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1389 > {
1390 >        const int r1 = (inst->inst >> 6) & 0x7f;
1391 >        const int r2 = (inst->inst >> 13) & 0x7f;
1392 >        const int r3 = (inst->inst >> 20) & 0x7f;
1393 >
1394 >        const int m  = (inst->inst >> 36) & 1;
1395 >        const int x  = (inst->inst >> 27) & 1;
1396 >        const int x6 = (inst->inst >> 30) & 0x3f;
1397 >
1398 >        switch (x6) {
1399 >        case 0x00:
1400 >        case 0x01:
1401 >        case 0x02:
1402 >        case 0x03:
1403 >                if (x == 0) {
1404 >                        inst->operands[0].valid = true;
1405 >                        inst->operands[0].index = r1;
1406 >                        inst->operands[1].valid = true;
1407 >                        inst->operands[1].index = r3;
1408 >                        inst->operands[1].value = IA64_GET_GR(r3);
1409 >                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1410 >                        if (m == 0) {
1411 >                                switch (x6) {
1412 >                                case 0x00: inst->mnemo = IA64_INST_LD1; break;
1413 >                                case 0x01: inst->mnemo = IA64_INST_LD2; break;
1414 >                                case 0x02: inst->mnemo = IA64_INST_LD4; break;
1415 >                                case 0x03: inst->mnemo = IA64_INST_LD8; break;
1416 >                                }
1417 >                        }
1418 >                        else {
1419 >                                inst->operands[2].valid = true;
1420 >                                inst->operands[2].index = r2;
1421 >                                inst->operands[2].value = IA64_GET_GR(r2);
1422 >                                inst->operands[2].nat   = IA64_GET_NAT(r2);
1423 >                                switch (x6) {
1424 >                                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1425 >                                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1426 >                                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1427 >                                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1428 >                                }
1429 >                        }
1430 >                        return true;
1431 >                }
1432 >                break;
1433 >        case 0x30:
1434 >        case 0x31:
1435 >        case 0x32:
1436 >        case 0x33:
1437 >                if (m == 0 && x == 0) {
1438 >                        inst->operands[0].valid = true;
1439 >                        inst->operands[0].index = r3;
1440 >                        inst->operands[0].value = IA64_GET_GR(r3);
1441 >                        inst->operands[0].nat   = IA64_GET_NAT(r3);
1442 >                        inst->operands[1].valid = true;
1443 >                        inst->operands[1].index = r2;
1444 >                        inst->operands[1].value = IA64_GET_GR(r2);
1445 >                        inst->operands[1].nat   = IA64_GET_NAT(r2);
1446 >                        switch (x6) {
1447 >                        case 0x30: inst->mnemo = IA64_INST_ST1; break;
1448 >                        case 0x31: inst->mnemo = IA64_INST_ST2; break;
1449 >                        case 0x32: inst->mnemo = IA64_INST_ST4; break;
1450 >                        case 0x33: inst->mnemo = IA64_INST_ST8; break;
1451 >                        }
1452 >                        return true;
1453 >                }
1454 >                break;
1455 >        }
1456 >        return false;
1457 > }
1458 >
1459 > // Decode group 5 instructions (load/store instructions)
1460 > static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1461 > {
1462 >        const int r1 = (inst->inst >> 6) & 0x7f;
1463 >        const int r2 = (inst->inst >> 13) & 0x7f;
1464 >        const int r3 = (inst->inst >> 20) & 0x7f;
1465 >
1466 >        const int x6 = (inst->inst >> 30) & 0x3f;
1467 >
1468 >        switch (x6) {
1469 >        case 0x00:
1470 >        case 0x01:
1471 >        case 0x02:
1472 >        case 0x03:
1473 >                inst->operands[0].valid = true;
1474 >                inst->operands[0].index = r1;
1475 >                inst->operands[1].valid = true;
1476 >                inst->operands[1].index = r3;
1477 >                inst->operands[1].value = IA64_GET_GR(r3);
1478 >                inst->operands[1].nat   = IA64_GET_NAT(r3);
1479 >                inst->operands[2].valid = true;
1480 >                inst->operands[2].index = -1;
1481 >                inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
1482 >                inst->operands[2].nat   = 0;
1483 >                switch (x6) {
1484 >                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1485 >                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1486 >                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1487 >                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1488 >                }
1489 >                return true;
1490 >        case 0x30:
1491 >        case 0x31:
1492 >        case 0x32:
1493 >        case 0x33:
1494 >                inst->operands[0].valid = true;
1495 >                inst->operands[0].index = r3;
1496 >                inst->operands[0].value = IA64_GET_GR(r3);
1497 >                inst->operands[0].nat   = IA64_GET_NAT(r3);
1498 >                inst->operands[1].valid = true;
1499 >                inst->operands[1].index = r2;
1500 >                inst->operands[1].value = IA64_GET_GR(r2);
1501 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1502 >                inst->operands[2].valid = true;
1503 >                inst->operands[2].index = -1;
1504 >                inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
1505 >                inst->operands[2].nat   = 0;
1506 >                switch (x6) {
1507 >                case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
1508 >                case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
1509 >                case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
1510 >                case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
1511 >                }
1512 >                return true;
1513 >        }
1514 >        return false;
1515 > }
1516 >
1517 > // Decode group 8 instructions (ALU integer)
1518 > static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1519 > {
1520 >        const int r1  = (inst->inst >> 6) & 0x7f;
1521 >        const int r2  = (inst->inst >> 13) & 0x7f;
1522 >        const int r3  = (inst->inst >> 20) & 0x7f;
1523 >
1524 >        const int x2a = (inst->inst >> 34) & 0x3;
1525 >        const int x2b = (inst->inst >> 27) & 0x3;
1526 >        const int x4  = (inst->inst >> 29) & 0xf;
1527 >        const int ve  = (inst->inst >> 33) & 0x1;
1528 >
1529 >        // destination register (r1) is always valid in this group
1530 >        inst->operands[0].valid = true;
1531 >        inst->operands[0].index = r1;
1532 >
1533 >        // source register (r3) is always valid in this group
1534 >        inst->operands[2].valid = true;
1535 >        inst->operands[2].index = r3;
1536 >        inst->operands[2].value = IA64_GET_GR(r3);
1537 >        inst->operands[2].nat   = IA64_GET_NAT(r3);
1538 >
1539 >        if (x2a == 0 && ve == 0) {
1540 >                inst->operands[1].valid = true;
1541 >                inst->operands[1].index = r2;
1542 >                inst->operands[1].value = IA64_GET_GR(r2);
1543 >                inst->operands[1].nat   = IA64_GET_NAT(r2);
1544 >                switch (x4) {
1545 >                case 0x0:                               // add (A1)
1546 >                        inst->mnemo = IA64_INST_ADD;
1547 >                        inst->operands[3].valid = true;
1548 >                        inst->operands[3].index = -1;
1549 >                        inst->operands[3].value = x2b == 1;
1550 >                        return true;
1551 >                case 0x1:                               // add (A1)
1552 >                        inst->mnemo = IA64_INST_SUB;
1553 >                        inst->operands[3].valid = true;
1554 >                        inst->operands[3].index = -1;
1555 >                        inst->operands[3].value = x2b == 0;
1556 >                        return true;
1557 >                case 0x4:                               // shladd (A2)
1558 >                        inst->mnemo = IA64_INST_SHLADD;
1559 >                        inst->operands[3].valid = true;
1560 >                        inst->operands[3].index = -1;
1561 >                        inst->operands[3].value = ia64_inst_get_count2(inst->inst);
1562 >                        return true;
1563 >                case 0x9:
1564 >                        if (x2b == 1) {
1565 >                                inst->mnemo = IA64_INST_SUB;
1566 >                                inst->operands[1].index = -1;
1567 >                                inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1568 >                                inst->operands[1].nat   = 0;
1569 >                                return true;
1570 >                        }
1571 >                        break;
1572 >                case 0xb:
1573 >                        inst->operands[1].index = -1;
1574 >                        inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1575 >                        inst->operands[1].nat   = 0;
1576 >                        // fall-through
1577 >                case 0x3:
1578 >                        switch (x2b) {
1579 >                        case 0: inst->mnemo = IA64_INST_AND;   break;
1580 >                        case 1: inst->mnemo = IA64_INST_ANDCM; break;
1581 >                        case 2: inst->mnemo = IA64_INST_OR;    break;
1582 >                        case 3: inst->mnemo = IA64_INST_XOR;   break;
1583 >                        }
1584 >                        return true;
1585 >                }
1586 >        }
1587 >        return false;
1588 > }
1589 >
1590 > // Decode instruction
1591 > static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1592 > {
1593 >        const int major = (inst->inst >> 37) & 0xf;
1594 >
1595 >        inst->mnemo = IA64_INST_UNKNOWN;
1596 >        inst->pred  = inst->inst & 0x3f;
1597 >        memset(&inst->operands[0], 0, sizeof(inst->operands));
1598 >
1599 >        switch (major) {
1600 >        case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT);
1601 >        case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT);
1602 >        case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT);
1603 >        case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT);
1604 >        }
1605 >        return false;
1606 > }
1607 >
1608 > static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1609 > {
1610 >        // XXX: handle Register NaT Consumption fault?
1611 >        // XXX: this simple emulator assumes instructions in a bundle
1612 >        // don't depend on effects of other instructions in the same
1613 >        // bundle. It probably would be simpler to JIT-generate code to be
1614 >        // executed natively but probably more costly (inject/extract CPU state)
1615 >        if (inst->mnemo == IA64_INST_UNKNOWN)
1616 >                return false;
1617 >        if (inst->pred && !IA64_GET_PR(inst->pred))
1618 >                return true;
1619 >
1620 >        unsigned char nat, nat2;
1621 >        unsigned long dst, dst2, src1, src2, src3;
1622 >
1623 >        switch (inst->mnemo) {
1624 >        case IA64_INST_NOP:
1625 >                break;
1626 >        case IA64_INST_ADD:
1627 >        case IA64_INST_SUB:
1628 >        case IA64_INST_SHLADD:
1629 >                src3 = inst->operands[3].value;
1630 >                // fall-through
1631 >        case IA64_INST_AND:
1632 >        case IA64_INST_ANDCM:
1633 >        case IA64_INST_OR:
1634 >        case IA64_INST_XOR:
1635 >                src1 = inst->operands[1].value;
1636 >                src2 = inst->operands[2].value;
1637 >                switch (inst->mnemo) {
1638 >                case IA64_INST_ADD:   dst = src1 + src2 + src3; break;
1639 >                case IA64_INST_SUB:   dst = src1 - src2 - src3; break;
1640 >                case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
1641 >                case IA64_INST_AND:   dst = src1 & src2;                break;
1642 >                case IA64_INST_ANDCM: dst = src1 &~ src2;               break;
1643 >                case IA64_INST_OR:    dst = src1 | src2;                break;
1644 >                case IA64_INST_XOR:   dst = src1 ^ src2;                break;
1645 >                }
1646 >                inst->operands[0].commit = true;
1647 >                inst->operands[0].value  = dst;
1648 >                inst->operands[0].nat    = inst->operands[1].nat | inst->operands[2].nat;
1649 >                break;
1650 >        case IA64_INST_SXT1:
1651 >        case IA64_INST_SXT2:
1652 >        case IA64_INST_SXT4:
1653 >        case IA64_INST_ZXT1:
1654 >        case IA64_INST_ZXT2:
1655 >        case IA64_INST_ZXT4:
1656 >                src1 = inst->operands[1].value;
1657 >                switch (inst->mnemo) {
1658 >                case IA64_INST_SXT1: dst = (signed long)(signed char)src1;              break;
1659 >                case IA64_INST_SXT2: dst = (signed long)(signed short)src1;             break;
1660 >                case IA64_INST_SXT4: dst = (signed long)(signed int)src1;               break;
1661 >                case IA64_INST_ZXT1: dst = (unsigned char)src1;                                 break;
1662 >                case IA64_INST_ZXT2: dst = (unsigned short)src1;                                break;
1663 >                case IA64_INST_ZXT4: dst = (unsigned int)src1;                                  break;
1664 >                }
1665 >                inst->operands[0].commit = true;
1666 >                inst->operands[0].value  = dst;
1667 >                inst->operands[0].nat    = inst->operands[1].nat;
1668 >                break;
1669 >        case IA64_INST_LD1_UPDATE:
1670 >        case IA64_INST_LD2_UPDATE:
1671 >        case IA64_INST_LD4_UPDATE:
1672 >        case IA64_INST_LD8_UPDATE:
1673 >                inst->operands[1].commit = true;
1674 >                dst2 = inst->operands[1].value + inst->operands[2].value;
1675 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1676 >                // fall-through
1677 >        case IA64_INST_LD1:
1678 >        case IA64_INST_LD2:
1679 >        case IA64_INST_LD4:
1680 >        case IA64_INST_LD8:
1681 >                src1 = inst->operands[1].value;
1682 >                if (inst->no_memory)
1683 >                        dst = 0;
1684 >                else {
1685 >                        switch (inst->mnemo) {
1686 >                        case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((unsigned char *)src1);  break;
1687 >                        case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((unsigned short *)src1); break;
1688 >                        case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((unsigned int *)src1);   break;
1689 >                        case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((unsigned long *)src1);  break;
1690 >                        }
1691 >                }
1692 >                inst->operands[0].commit = true;
1693 >                inst->operands[0].value  = dst;
1694 >                inst->operands[0].nat    = 0;
1695 >                inst->operands[1].value  = dst2;
1696 >                inst->operands[1].nat    = nat2;
1697 >                break;
1698 >        case IA64_INST_ST1_UPDATE:
1699 >        case IA64_INST_ST2_UPDATE:
1700 >        case IA64_INST_ST4_UPDATE:
1701 >        case IA64_INST_ST8_UPDATE:
1702 >                inst->operands[0].commit = 0;
1703 >                dst2 = inst->operands[0].value + inst->operands[2].value;
1704 >                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1705 >                // fall-through
1706 >        case IA64_INST_ST1:
1707 >        case IA64_INST_ST2:
1708 >        case IA64_INST_ST4:
1709 >        case IA64_INST_ST8:
1710 >                dst  = inst->operands[0].value;
1711 >                src1 = inst->operands[1].value;
1712 >                if (!inst->no_memory) {
1713 >                        switch (inst->mnemo) {
1714 >                        case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((unsigned char *)dst) = src1;  break;
1715 >                        case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((unsigned short *)dst) = src1; break;
1716 >                        case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((unsigned int *)dst) = src1;   break;
1717 >                        case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((unsigned long *)dst) = src1;  break;
1718 >                        }
1719 >                }
1720 >                inst->operands[0].value  = dst2;
1721 >                inst->operands[0].nat    = nat2;
1722                  break;
1723 +        default:
1724 +                return false;
1725 +        }
1726 +
1727 +        for (int i = 0; i < IA64_N_OPERANDS; i++) {
1728 +                ia64_operand_t const & op = inst->operands[i];
1729 +                if (!op.commit)
1730 +                        continue;
1731 +                if (op.index == -1)
1732 +                        return false; // XXX: internal error
1733 +                IA64_SET_GR(op.index, op.value);
1734 +                IA64_SET_NAT(op.index, op.nat);
1735 +        }
1736 +        return true;
1737 + }
1738 +
1739 + static bool ia64_emulate_instruction(unsigned long raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT)
1740 + {
1741 +        ia64_instruction_t inst;
1742 +        memset(&inst, 0, sizeof(inst));
1743 +        inst.inst = raw_inst;
1744 +        if (!ia64_decode_instruction(&inst, IA64_CONTEXT))
1745 +                return false;
1746 +        return ia64_emulate_instruction(&inst, IA64_CONTEXT);
1747 + }
1748 +
1749 + static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT)
1750 + {
1751 +        unsigned long ip = IA64_GET_IP();
1752 + #if DEBUG
1753 +        printf("IP: 0x%016lx\n", ip);
1754 + #if 0
1755 +        printf(" Template 0x%02x\n", ia64_get_template(ip));
1756 +        ia64_get_instruction(ip, 0);
1757 +        ia64_get_instruction(ip, 1);
1758 +        ia64_get_instruction(ip, 2);
1759 + #endif
1760 + #endif
1761 +
1762 +        // Select which decode switch to use
1763 +        ia64_instruction_t inst;
1764 +        inst.inst = ia64_get_instruction(ip, ip & 3);
1765 +        if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) {
1766 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
1767 +                return false;
1768          }
1769 +
1770 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1771 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
1772 +
1773 +        switch (inst.mnemo) {
1774 +        case IA64_INST_LD1:
1775 +        case IA64_INST_LD2:
1776 +        case IA64_INST_LD4:
1777 +        case IA64_INST_LD8:
1778 +        case IA64_INST_LD1_UPDATE:
1779 +        case IA64_INST_LD2_UPDATE:
1780 +        case IA64_INST_LD4_UPDATE:
1781 +        case IA64_INST_LD8_UPDATE:
1782 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
1783 +                break;
1784 +        case IA64_INST_ST1:
1785 +        case IA64_INST_ST2:
1786 +        case IA64_INST_ST4:
1787 +        case IA64_INST_ST8:
1788 +        case IA64_INST_ST1_UPDATE:
1789 +        case IA64_INST_ST2_UPDATE:
1790 +        case IA64_INST_ST4_UPDATE:
1791 +        case IA64_INST_ST8_UPDATE:
1792 +                transfer_type = SIGSEGV_TRANSFER_STORE;
1793 +                break;
1794 +        }
1795 +
1796 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1797 +                // Unknown machine code, let it crash. Then patch the decoder
1798 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
1799 +                return false;
1800 +        }
1801 +
1802 +        switch (inst.mnemo) {
1803 +        case IA64_INST_LD1:
1804 +        case IA64_INST_LD1_UPDATE:
1805 +        case IA64_INST_ST1:
1806 +        case IA64_INST_ST1_UPDATE:
1807 +                transfer_size = SIZE_BYTE;
1808 +                break;
1809 +        case IA64_INST_LD2:
1810 +        case IA64_INST_LD2_UPDATE:
1811 +        case IA64_INST_ST2:
1812 +        case IA64_INST_ST2_UPDATE:
1813 +                transfer_size = SIZE_WORD;
1814 +                break;
1815 +        case IA64_INST_LD4:
1816 +        case IA64_INST_LD4_UPDATE:
1817 +        case IA64_INST_ST4:
1818 +        case IA64_INST_ST4_UPDATE:
1819 +                transfer_size = SIZE_LONG;
1820 +                break;
1821 +        case IA64_INST_LD8:
1822 +        case IA64_INST_LD8_UPDATE:
1823 +        case IA64_INST_ST8:
1824 +        case IA64_INST_ST8_UPDATE:
1825 +                transfer_size = SIZE_QUAD;
1826 +                break;
1827 +        }
1828 +
1829 +        if (transfer_size == SIZE_UNKNOWN) {
1830 +                // Unknown machine code, let it crash. Then patch the decoder
1831 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
1832 +                return false;
1833 +        }
1834 +
1835 +        inst.no_memory = true;
1836 +        if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) {
1837 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
1838 +                return false;
1839 +        }
1840 +
1841 +        int slot = ip & 3;
1842 +        bool emulate_next = false;
1843 +        switch (slot) {
1844 +        case 0:
1845 +                switch (ia64_get_template(ip)) {
1846 +                case 0x2: // MI;I
1847 +                case 0x3: // MI;I;
1848 +                        emulate_next = true;
1849 +                        slot = 2;
1850 +                        break;
1851 +                case 0xa: // M;MI
1852 +                case 0xb: // M;MI;
1853 +                        emulate_next = true;
1854 +                        slot = 1;
1855 +                        break;
1856 +                }
1857 +                break;
1858 +        }
1859 +        if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) {
1860 +                while (slot < 3) {
1861 +                        if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) {
1862 +                                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
1863 +                                return false;
1864 +                        }
1865 +                        ++slot;
1866 +                }
1867 +        }
1868 +
1869 + #if IA64_CAN_PATCH_IP_SLOT
1870 +        if ((slot = ip & 3) < 2)
1871 +                IA64_SET_IP((ip & ~3ul) + (slot + 1));
1872 +        else
1873 + #endif
1874 +                IA64_SET_IP((ip & ~3ul) + 16);
1875 + #if DEBUG
1876 +        printf("IP: 0x%016lx\n", IA64_GET_IP());
1877 + #endif
1878 +        return true;
1879 + }
1880 + #endif
1881 +
1882 + // Decode and skip PPC instruction
1883 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1884 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1885 + {
1886 +        instruction_t instr;
1887 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1888 +        
1889 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1890 +                // Unknown machine code, let it crash. Then patch the decoder
1891 +                return false;
1892 +        }
1893 +
1894 + #if DEBUG
1895 +        printf("%08x: %s %s access", *nip_p,
1896 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
1897 +                   instr.transfer_size == SIZE_WORD ? "word" :
1898 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1899 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1900          
1901 <        addr = (baseA + baseB) + disp;
1902 <        addr &= alignmask;
1903 <        return (sigsegv_address_t)addr;
1901 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1902 >                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1903 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1904 >                printf(" r%d (rd = 0)\n", instr.rd);
1905 > #endif
1906 >        
1907 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1908 >                regs[instr.ra] = instr.addr;
1909 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1910 >                regs[instr.rd] = 0;
1911 >        
1912 >        *nip_p += 4;
1913 >        return true;
1914   }
1915   #endif
1916 +
1917 + // Decode and skip MIPS instruction
1918 + #if (defined(mips) || defined(__mips))
1919 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1920 + {
1921 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1922 +
1923 +  if (epc == 0)
1924 +        return false;
1925 +
1926 + #if DEBUG
1927 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1928   #endif
1929 +
1930 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1931 +  transfer_size_t transfer_size = SIZE_LONG;
1932 +  int direction = 0;
1933 +
1934 +  const unsigned int opcode = epc[0];
1935 +  switch (opcode >> 26) {
1936 +  case 32: // Load Byte
1937 +  case 36: // Load Byte Unsigned
1938 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1939 +        transfer_size = SIZE_BYTE;
1940 +        break;
1941 +  case 33: // Load Halfword
1942 +  case 37: // Load Halfword Unsigned
1943 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1944 +        transfer_size = SIZE_WORD;
1945 +        break;
1946 +  case 35: // Load Word
1947 +  case 39: // Load Word Unsigned
1948 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1949 +        transfer_size = SIZE_LONG;
1950 +        break;
1951 +  case 34: // Load Word Left
1952 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1953 +        transfer_size = SIZE_LONG;
1954 +        direction = -1;
1955 +        break;
1956 +  case 38: // Load Word Right
1957 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1958 +        transfer_size = SIZE_LONG;
1959 +        direction = 1;
1960 +        break;
1961 +  case 55: // Load Doubleword
1962 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1963 +        transfer_size = SIZE_QUAD;
1964 +        break;
1965 +  case 26: // Load Doubleword Left
1966 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1967 +        transfer_size = SIZE_QUAD;
1968 +        direction = -1;
1969 +        break;
1970 +  case 27: // Load Doubleword Right
1971 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1972 +        transfer_size = SIZE_QUAD;
1973 +        direction = 1;
1974 +        break;
1975 +  case 40: // Store Byte
1976 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1977 +        transfer_size = SIZE_BYTE;
1978 +        break;
1979 +  case 41: // Store Halfword
1980 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1981 +        transfer_size = SIZE_WORD;
1982 +        break;
1983 +  case 43: // Store Word
1984 +  case 42: // Store Word Left
1985 +  case 46: // Store Word Right
1986 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1987 +        transfer_size = SIZE_LONG;
1988 +        break;
1989 +  case 63: // Store Doubleword
1990 +  case 44: // Store Doubleword Left
1991 +  case 45: // Store Doubleword Right
1992 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1993 +        transfer_size = SIZE_QUAD;
1994 +        break;
1995 +  /* Misc instructions unlikely to be used within CPU emulators */
1996 +  case 48: // Load Linked Word
1997 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1998 +        transfer_size = SIZE_LONG;
1999 +        break;
2000 +  case 52: // Load Linked Doubleword
2001 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2002 +        transfer_size = SIZE_QUAD;
2003 +        break;
2004 +  case 56: // Store Conditional Word
2005 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2006 +        transfer_size = SIZE_LONG;
2007 +        break;
2008 +  case 60: // Store Conditional Doubleword
2009 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2010 +        transfer_size = SIZE_QUAD;
2011 +        break;
2012 +  }
2013 +
2014 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2015 +        // Unknown machine code, let it crash. Then patch the decoder
2016 +        return false;
2017 +  }
2018 +
2019 +  // Zero target register in case of a load operation
2020 +  const int reg = (opcode >> 16) & 0x1f;
2021 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
2022 +        if (direction == 0)
2023 +          regs[reg] = 0;
2024 +        else {
2025 +          // FIXME: untested code
2026 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
2027 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
2028 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
2029 +          unsigned long value;
2030 +          if (direction > 0) {
2031 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
2032 +                value = regs[reg] & rmask;
2033 +          }
2034 +          else {
2035 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
2036 +                value = regs[reg] & lmask;
2037 +          }
2038 +          // restore most significant bits
2039 +          if (transfer_size == SIZE_LONG)
2040 +                value = (signed long)(signed int)value;
2041 +          regs[reg] = value;
2042 +        }
2043 +  }
2044 +
2045 + #if DEBUG
2046 + #if (defined(_ABIN32) || defined(_ABI64))
2047 +  static const char * mips_gpr_names[32] = {
2048 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2049 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
2050 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2051 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2052 +  };
2053 + #else
2054 +  static const char * mips_gpr_names[32] = {
2055 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2056 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
2057 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2058 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2059 +  };
2060 + #endif
2061 +  printf("%s %s register %s\n",
2062 +                 transfer_size == SIZE_BYTE ? "byte" :
2063 +                 transfer_size == SIZE_WORD ? "word" :
2064 +                 transfer_size == SIZE_LONG ? "long" :
2065 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2066 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2067 +                 mips_gpr_names[reg]);
2068   #endif
2069  
2070 +  *pc_p += 4;
2071 +  return true;
2072 + }
2073 + #endif
2074 +
2075 + // Decode and skip SPARC instruction
2076 + #if (defined(sparc) || defined(__sparc__))
2077 + enum {
2078 + #if (defined(__sun__))
2079 +  SPARC_REG_G1 = REG_G1,
2080 +  SPARC_REG_O0 = REG_O0,
2081 +  SPARC_REG_PC = REG_PC,
2082 +  SPARC_REG_nPC = REG_nPC
2083 + #endif
2084 + };
2085 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
2086 + {
2087 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
2088 +
2089 +  if (pc == 0)
2090 +        return false;
2091 +
2092 + #if DEBUG
2093 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2094 + #endif
2095 +
2096 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2097 +  transfer_size_t transfer_size = SIZE_LONG;
2098 +  bool register_pair = false;
2099 +
2100 +  const unsigned int opcode = pc[0];
2101 +  if ((opcode >> 30) != 3)
2102 +        return false;
2103 +  switch ((opcode >> 19) & 0x3f) {
2104 +  case 9: // Load Signed Byte
2105 +  case 1: // Load Unsigned Byte
2106 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2107 +        transfer_size = SIZE_BYTE;
2108 +        break;
2109 +  case 10:// Load Signed Halfword
2110 +  case 2: // Load Unsigned Word
2111 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2112 +        transfer_size = SIZE_WORD;
2113 +        break;
2114 +  case 8: // Load Word
2115 +  case 0: // Load Unsigned Word
2116 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2117 +        transfer_size = SIZE_LONG;
2118 +        break;
2119 +  case 11:// Load Extended Word
2120 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2121 +        transfer_size = SIZE_QUAD;
2122 +        break;
2123 +  case 3: // Load Doubleword
2124 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2125 +        transfer_size = SIZE_LONG;
2126 +        register_pair = true;
2127 +        break;
2128 +  case 5: // Store Byte
2129 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2130 +        transfer_size = SIZE_BYTE;
2131 +        break;
2132 +  case 6: // Store Halfword
2133 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2134 +        transfer_size = SIZE_WORD;
2135 +        break;
2136 +  case 4: // Store Word
2137 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2138 +        transfer_size = SIZE_LONG;
2139 +        break;
2140 +  case 14:// Store Extended Word
2141 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2142 +        transfer_size = SIZE_QUAD;
2143 +        break;
2144 +  case 7: // Store Doubleword
2145 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2146 +        transfer_size = SIZE_LONG;
2147 +        register_pair = true;
2148 +        break;
2149 +  }
2150 +
2151 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2152 +        // Unknown machine code, let it crash. Then patch the decoder
2153 +        return false;
2154 +  }
2155 +
2156 +  const int reg = (opcode >> 25) & 0x1f;
2157 +
2158 + #if DEBUG
2159 +  static const char * reg_names[] = {
2160 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2161 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2162 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2163 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
2164 +  };
2165 +  printf("%s %s register %s\n",
2166 +                 transfer_size == SIZE_BYTE ? "byte" :
2167 +                 transfer_size == SIZE_WORD ? "word" :
2168 +                 transfer_size == SIZE_LONG ? "long" :
2169 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2170 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2171 +                 reg_names[reg]);
2172 + #endif
2173 +
2174 +  // Zero target register in case of a load operation
2175 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
2176 +        // FIXME: code to handle local & input registers is not tested
2177 +        if (reg >= 1 && reg < 8) {
2178 +          // global registers
2179 +          regs[reg - 1 + SPARC_REG_G1] = 0;
2180 +        }
2181 +        else if (reg >= 8 && reg < 16) {
2182 +          // output registers
2183 +          regs[reg - 8 + SPARC_REG_O0] = 0;
2184 +        }
2185 +        else if (reg >= 16 && reg < 24) {
2186 +          // local registers (in register windows)
2187 +          if (gwins)
2188 +                gwins->wbuf->rw_local[reg - 16] = 0;
2189 +          else
2190 +                rwin->rw_local[reg - 16] = 0;
2191 +        }
2192 +        else {
2193 +          // input registers (in register windows)
2194 +          if (gwins)
2195 +                gwins->wbuf->rw_in[reg - 24] = 0;
2196 +          else
2197 +                rwin->rw_in[reg - 24] = 0;
2198 +        }
2199 +  }
2200 +
2201 +  regs[SPARC_REG_PC] += 4;
2202 +  regs[SPARC_REG_nPC] += 4;
2203 +  return true;
2204 + }
2205 + #endif
2206 + #endif
2207 +
2208 + // Decode and skip ARM instruction
2209 + #if (defined(arm) || defined(__arm__))
2210 + enum {
2211 + #if (defined(__linux__))
2212 +  ARM_REG_PC = 15,
2213 +  ARM_REG_CPSR = 16
2214 + #endif
2215 + };
2216 + static bool arm_skip_instruction(unsigned long * regs)
2217 + {
2218 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
2219 +
2220 +  if (pc == 0)
2221 +        return false;
2222 +
2223 + #if DEBUG
2224 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2225 + #endif
2226 +
2227 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2228 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
2229 +  enum { op_sdt = 1, op_sdth = 2 };
2230 +  int op = 0;
2231 +
2232 +  // Handle load/store instructions only
2233 +  const unsigned int opcode = pc[0];
2234 +  switch ((opcode >> 25) & 7) {
2235 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
2236 +        op = op_sdth;
2237 +        // Determine transfer size (S/H bits)
2238 +        switch ((opcode >> 5) & 3) {
2239 +        case 0: // SWP instruction
2240 +          break;
2241 +        case 1: // Unsigned halfwords
2242 +        case 3: // Signed halfwords
2243 +          transfer_size = SIZE_WORD;
2244 +          break;
2245 +        case 2: // Signed byte
2246 +          transfer_size = SIZE_BYTE;
2247 +          break;
2248 +        }
2249 +        break;
2250 +  case 2:
2251 +  case 3: // Single Data Transfer (LDR, STR)
2252 +        op = op_sdt;
2253 +        // Determine transfer size (B bit)
2254 +        if (((opcode >> 22) & 1) == 1)
2255 +          transfer_size = SIZE_BYTE;
2256 +        else
2257 +          transfer_size = SIZE_LONG;
2258 +        break;
2259 +  default:
2260 +        // FIXME: support load/store mutliple?
2261 +        return false;
2262 +  }
2263 +
2264 +  // Check for invalid transfer size (SWP instruction?)
2265 +  if (transfer_size == SIZE_UNKNOWN)
2266 +        return false;
2267 +
2268 +  // Determine transfer type (L bit)
2269 +  if (((opcode >> 20) & 1) == 1)
2270 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2271 +  else
2272 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2273 +
2274 +  // Compute offset
2275 +  int offset;
2276 +  if (((opcode >> 25) & 1) == 0) {
2277 +        if (op == op_sdt)
2278 +          offset = opcode & 0xfff;
2279 +        else if (op == op_sdth) {
2280 +          int rm = opcode & 0xf;
2281 +          if (((opcode >> 22) & 1) == 0) {
2282 +                // register offset
2283 +                offset = regs[rm];
2284 +          }
2285 +          else {
2286 +                // immediate offset
2287 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
2288 +          }
2289 +        }
2290 +  }
2291 +  else {
2292 +        const int rm = opcode & 0xf;
2293 +        const int sh = (opcode >> 7) & 0x1f;
2294 +        if (((opcode >> 4) & 1) == 1) {
2295 +          // we expect only legal load/store instructions
2296 +          printf("FATAL: invalid shift operand\n");
2297 +          return false;
2298 +        }
2299 +        const unsigned int v = regs[rm];
2300 +        switch ((opcode >> 5) & 3) {
2301 +        case 0: // logical shift left
2302 +          offset = sh ? v << sh : v;
2303 +          break;
2304 +        case 1: // logical shift right
2305 +          offset = sh ? v >> sh : 0;
2306 +          break;
2307 +        case 2: // arithmetic shift right
2308 +          if (sh)
2309 +                offset = ((signed int)v) >> sh;
2310 +          else
2311 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
2312 +          break;
2313 +        case 3: // rotate right
2314 +          if (sh)
2315 +                offset = (v >> sh) | (v << (32 - sh));
2316 +          else
2317 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
2318 +          break;
2319 +        }
2320 +  }
2321 +  if (((opcode >> 23) & 1) == 0)
2322 +        offset = -offset;
2323 +
2324 +  int rd = (opcode >> 12) & 0xf;
2325 +  int rn = (opcode >> 16) & 0xf;
2326 + #if DEBUG
2327 +  static const char * reg_names[] = {
2328 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2329 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
2330 +  };
2331 +  printf("%s %s register %s\n",
2332 +                 transfer_size == SIZE_BYTE ? "byte" :
2333 +                 transfer_size == SIZE_WORD ? "word" :
2334 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
2335 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2336 +                 reg_names[rd]);
2337 + #endif
2338 +
2339 +  unsigned int base = regs[rn];
2340 +  if (((opcode >> 24) & 1) == 1)
2341 +        base += offset;
2342 +
2343 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
2344 +        regs[rd] = 0;
2345 +
2346 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
2347 +        regs[rn] += offset;
2348 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
2349 +        regs[rn] = base;
2350 +
2351 +  regs[ARM_REG_PC] += 4;
2352 +  return true;
2353 + }
2354 + #endif
2355 +
2356 +
2357   // Fallbacks
2358 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
2359 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
2360 + #endif
2361 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
2362 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
2363 + #endif
2364   #ifndef SIGSEGV_FAULT_INSTRUCTION
2365 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
2365 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
2366 > #endif
2367 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
2368 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
2369 > #endif
2370 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
2371 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
2372   #endif
2373  
2374   // SIGSEGV recovery supported ?
# Line 289 | Line 2381 | static sigsegv_address_t get_fault_addre
2381   *  SIGSEGV global handler
2382   */
2383  
2384 + struct sigsegv_info_t {
2385 +        sigsegv_address_t addr;
2386 +        sigsegv_address_t pc;
2387 + #ifdef HAVE_MACH_EXCEPTIONS
2388 +        mach_port_t thread;
2389 +        bool has_exc_state;
2390 +        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
2391 +        mach_msg_type_number_t exc_state_count;
2392 +        bool has_thr_state;
2393 +        SIGSEGV_THREAD_STATE_TYPE thr_state;
2394 +        mach_msg_type_number_t thr_state_count;
2395 + #endif
2396 + };
2397 +
2398 + #ifdef HAVE_MACH_EXCEPTIONS
2399 + static void mach_get_exception_state(sigsegv_info_t *SIP)
2400 + {
2401 +        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
2402 +        kern_return_t krc = thread_get_state(SIP->thread,
2403 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
2404 +                                                                                 (natural_t *)&SIP->exc_state,
2405 +                                                                                 &SIP->exc_state_count);
2406 +        MACH_CHECK_ERROR(thread_get_state, krc);
2407 +        SIP->has_exc_state = true;
2408 + }
2409 +
2410 + static void mach_get_thread_state(sigsegv_info_t *SIP)
2411 + {
2412 +        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
2413 +        kern_return_t krc = thread_get_state(SIP->thread,
2414 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2415 +                                                                                 (natural_t *)&SIP->thr_state,
2416 +                                                                                 &SIP->thr_state_count);
2417 +        MACH_CHECK_ERROR(thread_get_state, krc);
2418 +        SIP->has_thr_state = true;
2419 + }
2420 +
2421 + static void mach_set_thread_state(sigsegv_info_t *SIP)
2422 + {
2423 +        kern_return_t krc = thread_set_state(SIP->thread,
2424 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2425 +                                                                                 (natural_t *)&SIP->thr_state,
2426 +                                                                                 SIP->thr_state_count);
2427 +        MACH_CHECK_ERROR(thread_set_state, krc);
2428 + }
2429 + #endif
2430 +
2431 + // Return the address of the invalid memory reference
2432 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
2433 + {
2434 + #ifdef HAVE_MACH_EXCEPTIONS
2435 +        static int use_fast_path = -1;
2436 +        if (use_fast_path != 1 && !SIP->has_exc_state) {
2437 +                mach_get_exception_state(SIP);
2438 +
2439 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2440 +                if (use_fast_path < 0) {
2441 +                        const char *machfault = getenv("SIGSEGV_MACH_FAULT");
2442 +                        if (machfault) {
2443 +                                if (strcmp(machfault, "fast") == 0)
2444 +                                        use_fast_path = 1;
2445 +                                else if (strcmp(machfault, "slow") == 0)
2446 +                                        use_fast_path = 0;
2447 +                        }
2448 +                        if (use_fast_path < 0)
2449 +                                use_fast_path = addr == SIP->addr;
2450 +                }
2451 +                SIP->addr = addr;
2452 +        }
2453 + #endif
2454 +        return SIP->addr;
2455 + }
2456 +
2457 + // Return the address of the instruction that caused the fault, or
2458 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
2459 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
2460 + {
2461 + #ifdef HAVE_MACH_EXCEPTIONS
2462 +        if (!SIP->has_thr_state) {
2463 +                mach_get_thread_state(SIP);
2464 +
2465 +                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2466 +        }
2467 + #endif
2468 +        return SIP->pc;
2469 + }
2470 +
2471 + // This function handles the badaccess to memory.
2472 + // It is called from the signal handler or the exception handler.
2473 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
2474 + {
2475 +        sigsegv_info_t SI;
2476 +        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
2477 +        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
2478 + #ifdef HAVE_MACH_EXCEPTIONS
2479 +        SI.thread = thread;
2480 +        SI.has_exc_state = false;
2481 +        SI.has_thr_state = false;
2482 + #endif
2483 +        sigsegv_info_t * const SIP = &SI;
2484 +
2485 +        // Call user's handler and reinstall the global handler, if required
2486 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
2487 +        case SIGSEGV_RETURN_SUCCESS:
2488 +                return true;
2489 +
2490 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
2491 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
2492 +                // Call the instruction skipper with the register file
2493 +                // available
2494 + #ifdef HAVE_MACH_EXCEPTIONS
2495 +                if (!SIP->has_thr_state)
2496 +                        mach_get_thread_state(SIP);
2497 + #endif
2498 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
2499 + #ifdef HAVE_MACH_EXCEPTIONS
2500 +                        // Unlike UNIX signals where the thread state
2501 +                        // is modified off of the stack, in Mach we
2502 +                        // need to actually call thread_set_state to
2503 +                        // have the register values updated.
2504 +                        mach_set_thread_state(SIP);
2505 + #endif
2506 +                        return true;
2507 +                }
2508 +                break;
2509 + #endif
2510 +        case SIGSEGV_RETURN_FAILURE:
2511 +                // We can't do anything with the fault_address, dump state?
2512 +                if (sigsegv_state_dumper != 0)
2513 +                        sigsegv_state_dumper(SIP);
2514 +                break;
2515 +        }
2516 +
2517 +        return false;
2518 + }
2519 +
2520 +
2521 + /*
2522 + * There are two mechanisms for handling a bad memory access,
2523 + * Mach exceptions and UNIX signals. The implementation specific
2524 + * code appears below. Its reponsibility is to call handle_badaccess
2525 + * which is the routine that handles the fault in an implementation
2526 + * agnostic manner. The implementation specific code below is then
2527 + * reponsible for checking whether handle_badaccess was able
2528 + * to handle the memory access error and perform any implementation
2529 + * specific tasks necessary afterwards.
2530 + */
2531 +
2532 + #ifdef HAVE_MACH_EXCEPTIONS
2533 + /*
2534 + * We need to forward all exceptions that we do not handle.
2535 + * This is important, there are many exceptions that may be
2536 + * handled by other exception handlers. For example debuggers
2537 + * use exceptions and the exception hander is in another
2538 + * process in such a case. (Timothy J. Wood states in his
2539 + * message to the list that he based this code on that from
2540 + * gdb for Darwin.)
2541 + */
2542 + static inline kern_return_t
2543 + forward_exception(mach_port_t thread_port,
2544 +                                  mach_port_t task_port,
2545 +                                  exception_type_t exception_type,
2546 +                                  exception_data_t exception_data,
2547 +                                  mach_msg_type_number_t data_count,
2548 +                                  ExceptionPorts *oldExceptionPorts)
2549 + {
2550 +        kern_return_t kret;
2551 +        unsigned int portIndex;
2552 +        mach_port_t port;
2553 +        exception_behavior_t behavior;
2554 +        thread_state_flavor_t flavor;
2555 +        thread_state_data_t thread_state;
2556 +        mach_msg_type_number_t thread_state_count;
2557 +
2558 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
2559 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
2560 +                        // This handler wants the exception
2561 +                        break;
2562 +                }
2563 +        }
2564 +
2565 +        if (portIndex >= oldExceptionPorts->maskCount) {
2566 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
2567 +                return KERN_FAILURE;
2568 +        }
2569 +
2570 +        port = oldExceptionPorts->handlers[portIndex];
2571 +        behavior = oldExceptionPorts->behaviors[portIndex];
2572 +        flavor = oldExceptionPorts->flavors[portIndex];
2573 +
2574 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
2575 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
2576 +                return KERN_FAILURE;
2577 +        }
2578 +
2579 +        /*
2580 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
2581 +         */
2582 +
2583 +        if (behavior != EXCEPTION_DEFAULT) {
2584 +                thread_state_count = THREAD_STATE_MAX;
2585 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
2586 +                                                                 &thread_state_count);
2587 +                MACH_CHECK_ERROR (thread_get_state, kret);
2588 +        }
2589 +
2590 +        switch (behavior) {
2591 +        case EXCEPTION_DEFAULT:
2592 +          // fprintf(stderr, "forwarding to exception_raise\n");
2593 +          kret = exception_raise(port, thread_port, task_port, exception_type,
2594 +                                                         exception_data, data_count);
2595 +          MACH_CHECK_ERROR (exception_raise, kret);
2596 +          break;
2597 +        case EXCEPTION_STATE:
2598 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
2599 +          kret = exception_raise_state(port, exception_type, exception_data,
2600 +                                                                   data_count, &flavor,
2601 +                                                                   (natural_t *)&thread_state, thread_state_count,
2602 +                                                                   (natural_t *)&thread_state, &thread_state_count);
2603 +          MACH_CHECK_ERROR (exception_raise_state, kret);
2604 +          break;
2605 +        case EXCEPTION_STATE_IDENTITY:
2606 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
2607 +          kret = exception_raise_state_identity(port, thread_port, task_port,
2608 +                                                                                        exception_type, exception_data,
2609 +                                                                                        data_count, &flavor,
2610 +                                                                                        (natural_t *)&thread_state, thread_state_count,
2611 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
2612 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
2613 +          break;
2614 +        default:
2615 +          fprintf(stderr, "forward_exception got unknown behavior\n");
2616 +          kret = KERN_FAILURE;
2617 +          break;
2618 +        }
2619 +
2620 +        if (behavior != EXCEPTION_DEFAULT) {
2621 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
2622 +                                                                 thread_state_count);
2623 +                MACH_CHECK_ERROR (thread_set_state, kret);
2624 +        }
2625 +
2626 +        return kret;
2627 + }
2628 +
2629 + /*
2630 + * This is the code that actually handles the exception.
2631 + * It is called by exc_server. For Darwin 5 Apple changed
2632 + * this a bit from how this family of functions worked in
2633 + * Mach. If you are familiar with that it is a little
2634 + * different. The main variation that concerns us here is
2635 + * that code is an array of exception specific codes and
2636 + * codeCount is a count of the number of codes in the code
2637 + * array. In typical Mach all exceptions have a code
2638 + * and sub-code. It happens to be the case that for a
2639 + * EXC_BAD_ACCESS exception the first entry is the type of
2640 + * bad access that occurred and the second entry is the
2641 + * faulting address so these entries correspond exactly to
2642 + * how the code and sub-code are used on Mach.
2643 + *
2644 + * This is a MIG interface. No code in Basilisk II should
2645 + * call this directley. This has to have external C
2646 + * linkage because that is what exc_server expects.
2647 + */
2648 + kern_return_t
2649 + catch_exception_raise(mach_port_t exception_port,
2650 +                                          mach_port_t thread,
2651 +                                          mach_port_t task,
2652 +                                          exception_type_t exception,
2653 +                                          exception_data_t code,
2654 +                                          mach_msg_type_number_t code_count)
2655 + {
2656 +        kern_return_t krc;
2657 +
2658 +        if (exception == EXC_BAD_ACCESS) {
2659 +                switch (code[0]) {
2660 +                case KERN_PROTECTION_FAILURE:
2661 +                case KERN_INVALID_ADDRESS:
2662 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2663 +                                return KERN_SUCCESS;
2664 +                        break;
2665 +                }
2666 +        }
2667 +
2668 +        // In Mach we do not need to remove the exception handler.
2669 +        // If we forward the exception, eventually some exception handler
2670 +        // will take care of this exception.
2671 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
2672 +
2673 +        return krc;
2674 + }
2675 + #endif
2676 +
2677   #ifdef HAVE_SIGSEGV_RECOVERY
2678 + // Handle bad memory accesses with signal handler
2679   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
2680   {
2681 <        // Call user's handler and reinstall the global handler, if required
2682 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
2681 >        // Call handler and reinstall the global handler, if required
2682 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
2683   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
2684                  sigsegv_do_install_handler(sig);
2685   #endif
2686 +                return;
2687          }
2688 <        else {
2689 <                // FAIL: reinstall default handler for "safe" crash
2688 >
2689 >        // Failure: reinstall default handler for "safe" crash
2690   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2691 <                SIGSEGV_ALL_SIGNALS
2691 >        SIGSEGV_ALL_SIGNALS
2692   #undef FAULT_HANDLER
306        }
2693   }
2694   #endif
2695  
# Line 317 | Line 2703 | static bool sigsegv_do_install_handler(i
2703   {
2704          // Setup SIGSEGV handler to process writes to frame buffer
2705   #ifdef HAVE_SIGACTION
2706 <        struct sigaction vosf_sa;
2707 <        sigemptyset(&vosf_sa.sa_mask);
2708 <        vosf_sa.sa_sigaction = sigsegv_handler;
2709 <        vosf_sa.sa_flags = SA_SIGINFO;
2710 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2706 >        struct sigaction sigsegv_sa;
2707 >        sigemptyset(&sigsegv_sa.sa_mask);
2708 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
2709 >        sigsegv_sa.sa_flags = SA_SIGINFO;
2710 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2711   #else
2712          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2713   #endif
# Line 333 | Line 2719 | static bool sigsegv_do_install_handler(i
2719   {
2720          // Setup SIGSEGV handler to process writes to frame buffer
2721   #ifdef HAVE_SIGACTION
2722 <        struct sigaction vosf_sa;
2723 <        sigemptyset(&vosf_sa.sa_mask);
2724 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
2722 >        struct sigaction sigsegv_sa;
2723 >        sigemptyset(&sigsegv_sa.sa_mask);
2724 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
2725 >        sigsegv_sa.sa_flags = 0;
2726   #if !EMULATED_68K && defined(__NetBSD__)
2727 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2728 <        vosf_sa.sa_flags = SA_ONSTACK;
342 < #else
343 <        vosf_sa.sa_flags = 0;
2727 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2728 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2729   #endif
2730 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2730 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2731   #else
2732          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2733   #endif
2734   }
2735   #endif
2736  
2737 < bool sigsegv_install_handler(sigsegv_handler_t handler)
2737 > #if defined(HAVE_MACH_EXCEPTIONS)
2738 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2739   {
2740 < #ifdef HAVE_SIGSEGV_RECOVERY
2741 <        sigsegv_user_handler = handler;
2740 >        /*
2741 >         * Except for the exception port functions, this should be
2742 >         * pretty much stock Mach. If later you choose to support
2743 >         * other Mach's besides Darwin, just check for __MACH__
2744 >         * here and __APPLE__ where the actual differences are.
2745 >         */
2746 > #if defined(__APPLE__) && defined(__MACH__)
2747 >        if (sigsegv_fault_handler != NULL) {
2748 >                sigsegv_fault_handler = handler;
2749 >                return true;
2750 >        }
2751 >
2752 >        kern_return_t krc;
2753 >
2754 >        // create the the exception port
2755 >        krc = mach_port_allocate(mach_task_self(),
2756 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2757 >        if (krc != KERN_SUCCESS) {
2758 >                mach_error("mach_port_allocate", krc);
2759 >                return false;
2760 >        }
2761 >
2762 >        // add a port send right
2763 >        krc = mach_port_insert_right(mach_task_self(),
2764 >                              _exceptionPort, _exceptionPort,
2765 >                              MACH_MSG_TYPE_MAKE_SEND);
2766 >        if (krc != KERN_SUCCESS) {
2767 >                mach_error("mach_port_insert_right", krc);
2768 >                return false;
2769 >        }
2770 >
2771 >        // get the old exception ports
2772 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2773 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2774 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2775 >        if (krc != KERN_SUCCESS) {
2776 >                mach_error("thread_get_exception_ports", krc);
2777 >                return false;
2778 >        }
2779 >
2780 >        // set the new exception port
2781 >        //
2782 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2783 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2784 >        // message, but it turns out that in the common case this is not
2785 >        // neccessary. If we need it we can later ask for it from the
2786 >        // suspended thread.
2787 >        //
2788 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2789 >        // counter in the thread state.  The comments in the header file
2790 >        // seem to imply that you can count on the GPR's on an exception
2791 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2792 >        // you have to ask for all of the GPR's anyway just to get the
2793 >        // program counter. In any case because of update effective
2794 >        // address from immediate and update address from effective
2795 >        // addresses of ra and rb modes (as good an name as any for these
2796 >        // addressing modes) used in PPC instructions, you will need the
2797 >        // GPR state anyway.
2798 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2799 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2800 >        if (krc != KERN_SUCCESS) {
2801 >                mach_error("thread_set_exception_ports", krc);
2802 >                return false;
2803 >        }
2804 >
2805 >        // create the exception handler thread
2806 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2807 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2808 >                return false;
2809 >        }
2810 >
2811 >        // do not care about the exception thread any longer, let is run standalone
2812 >        (void)pthread_detach(exc_thread);
2813 >
2814 >        sigsegv_fault_handler = handler;
2815 >        return true;
2816 > #else
2817 >        return false;
2818 > #endif
2819 > }
2820 > #endif
2821 >
2822 > #ifdef HAVE_WIN32_EXCEPTIONS
2823 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2824 > {
2825 >        if (sigsegv_fault_handler != NULL
2826 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2827 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2828 >                && handle_badaccess(ExceptionInfo))
2829 >                return EXCEPTION_CONTINUE_EXECUTION;
2830 >
2831 >        return EXCEPTION_CONTINUE_SEARCH;
2832 > }
2833 >
2834 > #if defined __CYGWIN__ && defined __i386__
2835 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2836 >   installs a global exception handler.  We have to dig deep in order to install
2837 >   our main_exception_filter.  */
2838 >
2839 > /* Data structures for the current thread's exception handler chain.
2840 >   On the x86 Windows uses register fs, offset 0 to point to the current
2841 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2842 >
2843 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2844 >
2845 > struct exception_list {
2846 >    struct exception_list *prev;
2847 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2848 > };
2849 > typedef struct exception_list exception_list;
2850 >
2851 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2852 >
2853 > __asm__ (".equ __except_list,0");
2854 >
2855 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2856 >
2857 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2858 > static exception_list *
2859 > debug_get_except_list ()
2860 > {
2861 >  return _except_list;
2862 > }
2863 >
2864 > /* Cygwin's original exception handler.  */
2865 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2866 >
2867 > /* Our exception handler.  */
2868 > static int
2869 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2870 > {
2871 >  EXCEPTION_POINTERS ExceptionInfo;
2872 >  ExceptionInfo.ExceptionRecord = exception;
2873 >  ExceptionInfo.ContextRecord = context;
2874 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2875 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2876 >  else
2877 >    return 0;
2878 > }
2879 >
2880 > static void
2881 > do_install_main_exception_filter ()
2882 > {
2883 >  /* We cannot insert any handler into the chain, because such handlers
2884 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2885 >     global exception handler.  */
2886 >  cygwin_exception_handler = _except_list->handler;
2887 >  _except_list->handler = libsigsegv_exception_handler;
2888 > }
2889 >
2890 > #else
2891 >
2892 > static void
2893 > do_install_main_exception_filter ()
2894 > {
2895 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2896 > }
2897 > #endif
2898 >
2899 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2900 > {
2901 >        static bool main_exception_filter_installed = false;
2902 >        if (!main_exception_filter_installed) {
2903 >                do_install_main_exception_filter();
2904 >                main_exception_filter_installed = true;
2905 >        }
2906 >        sigsegv_fault_handler = handler;
2907 >        return true;
2908 > }
2909 > #endif
2910 >
2911 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2912 > {
2913 > #if defined(HAVE_SIGSEGV_RECOVERY)
2914          bool success = true;
2915   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2916          SIGSEGV_ALL_SIGNALS
2917   #undef FAULT_HANDLER
2918 +        if (success)
2919 +            sigsegv_fault_handler = handler;
2920          return success;
2921 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2922 +        return sigsegv_do_install_handler(handler);
2923   #else
2924          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2925          return false;
# Line 371 | Line 2933 | bool sigsegv_install_handler(sigsegv_han
2933  
2934   void sigsegv_deinstall_handler(void)
2935   {
2936 +  // We do nothing for Mach exceptions, the thread would need to be
2937 +  // suspended if not already so, and we might mess with other
2938 +  // exception handlers that came after we registered ours. There is
2939 +  // no need to remove the exception handler, in fact this function is
2940 +  // not called anywhere in Basilisk II.
2941   #ifdef HAVE_SIGSEGV_RECOVERY
2942 <        sigsegv_user_handler = 0;
2942 >        sigsegv_fault_handler = 0;
2943   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2944          SIGSEGV_ALL_SIGNALS
2945   #undef FAULT_HANDLER
2946   #endif
2947 + #ifdef HAVE_WIN32_EXCEPTIONS
2948 +        sigsegv_fault_handler = NULL;
2949 + #endif
2950   }
2951  
2952 +
2953 + /*
2954 + *  Set callback function when we cannot handle the fault
2955 + */
2956 +
2957 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
2958 + {
2959 +        sigsegv_state_dumper = handler;
2960 + }
2961 +
2962 +
2963   /*
2964   *  Test program used for configure/test
2965   */
# Line 387 | Line 2968 | void sigsegv_deinstall_handler(void)
2968   #include <stdio.h>
2969   #include <stdlib.h>
2970   #include <fcntl.h>
2971 + #ifdef HAVE_SYS_MMAN_H
2972   #include <sys/mman.h>
2973 + #endif
2974   #include "vm_alloc.h"
2975  
2976 + const int REF_INDEX = 123;
2977 + const int REF_VALUE = 45;
2978 +
2979   static int page_size;
2980   static volatile char * page = 0;
2981   static volatile int handler_called = 0;
2982  
2983 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2983 > /* Barriers */
2984 > #ifdef __GNUC__
2985 > #define BARRIER() asm volatile ("" : : : "memory")
2986 > #else
2987 > #define BARRIER() /* nothing */
2988 > #endif
2989 >
2990 > #ifdef __GNUC__
2991 > // Code range where we expect the fault to come from
2992 > static void *b_region, *e_region;
2993 > #endif
2994 >
2995 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
2996   {
2997 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2998 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2999 + #if DEBUG
3000 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
3001 +        printf("expected fault at %p\n", page + REF_INDEX);
3002 + #ifdef __GNUC__
3003 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
3004 + #endif
3005 + #endif
3006          handler_called++;
3007 <        if ((fault_address - 123) != page)
3008 <                exit(1);
3007 >        if ((fault_address - REF_INDEX) != page)
3008 >                exit(10);
3009 > #ifdef __GNUC__
3010 >        // Make sure reported fault instruction address falls into
3011 >        // expected code range
3012 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
3013 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
3014 >                        (instruction_address >= (sigsegv_address_t)e_region)))
3015 >                exit(11);
3016 > #endif
3017          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3018 <                exit(1);
3018 >                exit(12);
3019 >        return SIGSEGV_RETURN_SUCCESS;
3020 > }
3021 >
3022 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3023 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
3024 > {
3025 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3026 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3027 > #if DEBUG
3028 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
3029 > #endif
3030 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
3031 > #ifdef __GNUC__
3032 >                // Make sure reported fault instruction address falls into
3033 >                // expected code range
3034 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
3035 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
3036 >                                (instruction_address >= (sigsegv_address_t)e_region)))
3037 >                        return SIGSEGV_RETURN_FAILURE;
3038 > #endif
3039 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
3040 >        }
3041 >
3042 >        return SIGSEGV_RETURN_FAILURE;
3043 > }
3044 >
3045 > // More sophisticated tests for instruction skipper
3046 > static bool arch_insn_skipper_tests()
3047 > {
3048 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
3049 >        static const unsigned char code[] = {
3050 >                0x8a, 0x00,                    // mov    (%eax),%al
3051 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
3052 >                0x88, 0x20,                    // mov    %ah,(%eax)
3053 >                0x88, 0x08,                    // mov    %cl,(%eax)
3054 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
3055 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
3056 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
3057 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
3058 >                0x8b, 0x00,                    // mov    (%eax),%eax
3059 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
3060 >                0x89, 0x00,                    // mov    %eax,(%eax)
3061 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
3062 > #if defined(__x86_64__)
3063 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
3064 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
3065 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
3066 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
3067 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
3068 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
3069 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
3070 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
3071 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
3072 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
3073 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
3074 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
3075 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
3076 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
3077 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
3078 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
3079 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
3080 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
3081 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
3082 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
3083 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
3084 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
3085 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
3086 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
3087 > #endif
3088 >                0                              // end
3089 >        };
3090 >        const int N_REGS = 20;
3091 >        unsigned long regs[N_REGS];
3092 >        for (int i = 0; i < N_REGS; i++)
3093 >                regs[i] = i;
3094 >        const unsigned long start_code = (unsigned long)&code;
3095 >        regs[X86_REG_EIP] = start_code;
3096 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
3097 >                   && ix86_skip_instruction(regs))
3098 >                ; /* simply iterate */
3099 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
3100 > #endif
3101          return true;
3102   }
3103 + #endif
3104  
3105   int main(void)
3106   {
3107          if (vm_init() < 0)
3108                  return 1;
3109  
3110 <        page_size = getpagesize();
3110 >        page_size = vm_get_page_size();
3111          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
3112 <                return 1;
3112 >                return 2;
3113          
3114 +        memset((void *)page, 0, page_size);
3115          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
3116 <                return 1;
3116 >                return 3;
3117          
3118          if (!sigsegv_install_handler(sigsegv_test_handler))
3119 <                return 1;
3119 >                return 4;
3120 >
3121 > #ifdef __GNUC__
3122 >        b_region = &&L_b_region1;
3123 >        e_region = &&L_e_region1;
3124 > #endif
3125 >        /* This is a really awful hack but otherwise gcc is smart enough
3126 >         * (or bug'ous enough?) to optimize the labels and place them
3127 >         * e.g. at the "main" entry point, which is wrong.
3128 >         */
3129 >        volatile int label_hack = 1;
3130 >        switch (label_hack) {
3131 >        case 1:
3132 >        L_b_region1:
3133 >                page[REF_INDEX] = REF_VALUE;
3134 >                if (page[REF_INDEX] != REF_VALUE)
3135 >                        exit(20);
3136 >                page[REF_INDEX] = REF_VALUE;
3137 >                BARRIER();
3138 >                // fall-through
3139 >        case 2:
3140 >        L_e_region1:
3141 >                BARRIER();
3142 >                break;
3143 >        }
3144 >
3145 >        if (handler_called != 1)
3146 >                return 5;
3147 >
3148 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3149 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
3150 >                return 6;
3151          
3152 <        page[123] = 45;
3153 <        page[123] = 45;
3152 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
3153 >                return 7;
3154          
3155 <        if (handler_called != 1)
3156 <                return 1;
3155 >        for (int i = 0; i < page_size; i++)
3156 >                page[i] = (i + 1) % page_size;
3157 >        
3158 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
3159 >                return 8;
3160 >        
3161 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
3162 >                const unsigned long TAG = 0x12345678 |                  \
3163 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
3164 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
3165 >                volatile unsigned long effect = data + TAG;             \
3166 >                if (effect != TAG)                                                              \
3167 >                        return 9;                                                                       \
3168 >        } while (0)
3169 >        
3170 > #ifdef __GNUC__
3171 >        b_region = &&L_b_region2;
3172 >        e_region = &&L_e_region2;
3173 > #endif
3174 >        switch (label_hack) {
3175 >        case 1:
3176 >        L_b_region2:
3177 >                TEST_SKIP_INSTRUCTION(unsigned char);
3178 >                TEST_SKIP_INSTRUCTION(unsigned short);
3179 >                TEST_SKIP_INSTRUCTION(unsigned int);
3180 >                TEST_SKIP_INSTRUCTION(unsigned long);
3181 >                TEST_SKIP_INSTRUCTION(signed char);
3182 >                TEST_SKIP_INSTRUCTION(signed short);
3183 >                TEST_SKIP_INSTRUCTION(signed int);
3184 >                TEST_SKIP_INSTRUCTION(signed long);
3185 >                BARRIER();
3186 >                // fall-through
3187 >        case 2:
3188 >        L_e_region2:
3189 >                BARRIER();
3190 >                break;
3191 >        }
3192 >        if (!arch_insn_skipper_tests())
3193 >                return 20;
3194 > #endif
3195  
3196          vm_exit();
3197          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines