ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.9 by gbeauche, 2002-03-16T21:36:12Z vs.
Revision 1.28 by gbeauche, 2003-10-12T21:41:19Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 + *  MacOS X support derived from the post by Timothy J. Wood to the
8 + *  omnigroup macosx-dev list:
9 + *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 + *    tjw@omnigroup.com Sun, 4 Jun 2000
11 + *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 + *
13   *  Basilisk II (C) 1997-2002 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39   #include <signal.h>
40   #include "sigsegv.h"
41  
42 + #ifndef NO_STD_NAMESPACE
43 + using std::list;
44 + #endif
45 +
46   // Return value type of a signal handler (standard type if not defined)
47   #ifndef RETSIGTYPE
48   #define RETSIGTYPE void
# Line 41 | Line 52
52   typedef RETSIGTYPE (*signal_handler)(int);
53  
54   // User's SIGSEGV handler
55 < static sigsegv_handler_t sigsegv_user_handler = 0;
55 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
56 >
57 > // Function called to dump state if we can't handle the fault
58 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
59  
60   // Actual SIGSEGV handler installer
61   static bool sigsegv_do_install_handler(int sig);
62  
63  
64   /*
65 + *  Instruction decoding aids
66 + */
67 +
68 + // Transfer size
69 + enum transfer_size_t {
70 +        SIZE_UNKNOWN,
71 +        SIZE_BYTE,
72 +        SIZE_WORD,
73 +        SIZE_LONG
74 + };
75 +
76 + // Transfer type
77 + typedef sigsegv_transfer_type_t transfer_type_t;
78 +
79 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
80 + // Addressing mode
81 + enum addressing_mode_t {
82 +        MODE_UNKNOWN,
83 +        MODE_NORM,
84 +        MODE_U,
85 +        MODE_X,
86 +        MODE_UX
87 + };
88 +
89 + // Decoded instruction
90 + struct instruction_t {
91 +        transfer_type_t         transfer_type;
92 +        transfer_size_t         transfer_size;
93 +        addressing_mode_t       addr_mode;
94 +        unsigned int            addr;
95 +        char                            ra, rd;
96 + };
97 +
98 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
99 + {
100 +        // Get opcode and divide into fields
101 +        unsigned int opcode = *((unsigned int *)nip);
102 +        unsigned int primop = opcode >> 26;
103 +        unsigned int exop = (opcode >> 1) & 0x3ff;
104 +        unsigned int ra = (opcode >> 16) & 0x1f;
105 +        unsigned int rb = (opcode >> 11) & 0x1f;
106 +        unsigned int rd = (opcode >> 21) & 0x1f;
107 +        signed int imm = (signed short)(opcode & 0xffff);
108 +        
109 +        // Analyze opcode
110 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
111 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
112 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
113 +        switch (primop) {
114 +        case 31:
115 +                switch (exop) {
116 +                case 23:        // lwzx
117 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
118 +                case 55:        // lwzux
119 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
120 +                case 87:        // lbzx
121 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
122 +                case 119:       // lbzux
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
124 +                case 151:       // stwx
125 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
126 +                case 183:       // stwux
127 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
128 +                case 215:       // stbx
129 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
130 +                case 247:       // stbux
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
132 +                case 279:       // lhzx
133 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
134 +                case 311:       // lhzux
135 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
136 +                case 343:       // lhax
137 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
138 +                case 375:       // lhaux
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
140 +                case 407:       // sthx
141 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
142 +                case 439:       // sthux
143 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
144 +                }
145 +                break;
146 +        
147 +        case 32:        // lwz
148 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
149 +        case 33:        // lwzu
150 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
151 +        case 34:        // lbz
152 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
153 +        case 35:        // lbzu
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
155 +        case 36:        // stw
156 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
157 +        case 37:        // stwu
158 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
159 +        case 38:        // stb
160 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
161 +        case 39:        // stbu
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
163 +        case 40:        // lhz
164 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
165 +        case 41:        // lhzu
166 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
167 +        case 42:        // lha
168 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
169 +        case 43:        // lhau
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
171 +        case 44:        // sth
172 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
173 +        case 45:        // sthu
174 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
175 +        }
176 +        
177 +        // Calculate effective address
178 +        unsigned int addr = 0;
179 +        switch (addr_mode) {
180 +        case MODE_X:
181 +        case MODE_UX:
182 +                if (ra == 0)
183 +                        addr = gpr[rb];
184 +                else
185 +                        addr = gpr[ra] + gpr[rb];
186 +                break;
187 +        case MODE_NORM:
188 +        case MODE_U:
189 +                if (ra == 0)
190 +                        addr = (signed int)(signed short)imm;
191 +                else
192 +                        addr = gpr[ra] + (signed int)(signed short)imm;
193 +                break;
194 +        default:
195 +                break;
196 +        }
197 +        
198 +        // Commit decoded instruction
199 +        instruction->addr = addr;
200 +        instruction->addr_mode = addr_mode;
201 +        instruction->transfer_type = transfer_type;
202 +        instruction->transfer_size = transfer_size;
203 +        instruction->ra = ra;
204 +        instruction->rd = rd;
205 + }
206 + #endif
207 +
208 +
209 + /*
210   *  OS-dependant SIGSEGV signals support section
211   */
212  
213   #if HAVE_SIGINFO_T
214   // Generic extended signal handler
215 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
216   #if defined(__NetBSD__) || defined(__FreeBSD__)
217   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
218   #else
219   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
220   #endif
221   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
222 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, sip, scp
223   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
224 + #if defined(__NetBSD__) || defined(__FreeBSD__)
225 + #if (defined(i386) || defined(__i386__))
226 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
227 + #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
228 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
229 + #endif
230 + #endif
231   #if defined(__linux__)
232   #if (defined(i386) || defined(__i386__))
233   #include <sys/ucontext.h>
234 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
234 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
235 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
236 > #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
237 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
238 > #endif
239 > #if (defined(x86_64) || defined(__x86_64__))
240 > #include <sys/ucontext.h>
241 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
242 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
243 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
244   #endif
245   #if (defined(ia64) || defined(__ia64__))
246   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
247   #endif
248   #if (defined(powerpc) || defined(__powerpc__))
249   #include <sys/ucontext.h>
250 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
250 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
251 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
252 > #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
253 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
254   #endif
255   #endif
256   #endif
257  
258   #if HAVE_SIGCONTEXT_SUBTERFUGE
259 + #define SIGSEGV_FAULT_HANDLER                   sigsegv_fault_handler
260   // Linux kernels prior to 2.4 ?
261   #if defined(__linux__)
262   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
263   #if (defined(i386) || defined(__i386__))
264   #include <asm/sigcontext.h>
265   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
266 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, scs
267   #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
268   #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
269 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
270 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
271   #endif
272   #if (defined(sparc) || defined(__sparc__))
273   #include <asm/sigcontext.h>
274   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
275 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp, addr
276   #define SIGSEGV_FAULT_ADDRESS                   addr
277   #endif
278   #if (defined(powerpc) || defined(__powerpc__))
279   #include <asm/sigcontext.h>
280   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
281 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, scp
282   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
283   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
284 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
285 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
286   #endif
287   #if (defined(alpha) || defined(__alpha__))
288   #include <asm/sigcontext.h>
289   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
290 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
291   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
292   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
293  
# Line 115 | Line 304 | static sigsegv_address_t get_fault_addre
304  
305   // Irix 5 or 6 on MIPS
306   #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
307 + #include <ucontext.h>
308   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
309 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
310   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
311   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
312   #endif
313  
314 + // HP-UX
315 + #if (defined(hpux) || defined(__hpux__))
316 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
317 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
318 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
319 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
320 + #endif
321 +
322   // OSF/1 on Alpha
323   #if defined(__osf__)
324 + #include <ucontext.h>
325   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
326 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
327   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
328   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
329   #endif
# Line 130 | Line 331 | static sigsegv_address_t get_fault_addre
331   // AIX
332   #if defined(_AIX)
333   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
334 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
335   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
336   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
337   #endif
# Line 139 | Line 341 | static sigsegv_address_t get_fault_addre
341   #if (defined(m68k) || defined(__m68k__))
342   #include <m68k/frame.h>
343   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
344 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
345 <        struct sigstate {                                                                                                                                                                       \
144 <                int ss_flags;                                                                                                                                                                   \
145 <                struct frame ss_frame;                                                                                                                                                  \
146 <        };                                                                                                                                                                                                      \
147 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
148 <        char *fault_addr;                                                                                                                                                                       \
149 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
150 <        case 7:         /* 68040 access error */                                                                                                                                \
151 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
152 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
153 <                break;                                                                                                                                                                                  \
154 <        default:                                                                                                                                                                                        \
155 <                fault_addr = (char *)code;                                                                                                                                              \
156 <                break;                                                                                                                                                                                  \
157 <        }                                                                                                                                                                                                       \
158 <        fault_addr;                                                                                                                                                                                     \
159 < })
344 > #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp
345 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
346   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
347 +
348 + // Use decoding scheme from BasiliskII/m68k native
349 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
350 + {
351 +        struct sigstate {
352 +                int ss_flags;
353 +                struct frame ss_frame;
354 +        };
355 +        struct sigstate *state = (struct sigstate *)scp->sc_ap;
356 +        char *fault_addr;
357 +        switch (state->ss_frame.f_format) {
358 +        case 7:         /* 68040 access error */
359 +                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
360 +                fault_addr = state->ss_frame.f_fmt7.f_fa;
361 +                break;
362 +        default:
363 +                fault_addr = (char *)code;
364 +                break;
365 +        }
366 +        return (sigsegv_address_t)fault_addr;
367 + }
368   #else
369   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
370 + #define SIGSEGV_FAULT_HANDLER_ARGS      sig, code, scp, addr
371   #define SIGSEGV_FAULT_ADDRESS                   addr
372   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
373   #endif
374   #endif
375  
376 < // MacOS X
376 > // MacOS X, not sure which version this works in. Under 10.1
377 > // vm_protect does not appear to work from a signal handler. Under
378 > // 10.2 signal handlers get siginfo type arguments but the si_addr
379 > // field is the address of the faulting instruction and not the
380 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
381 > // case with Mach exception handlers there is a way to do what this
382 > // was meant to do.
383 > #ifndef HAVE_MACH_EXCEPTIONS
384   #if defined(__APPLE__) && defined(__MACH__)
385   #if (defined(ppc) || defined(__ppc__))
386   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
387 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
388   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
389   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
390   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
391 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
392 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
393  
394 < // From Boehm's GC 6.0alpha8
177 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
178 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
179 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
180 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
181 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
182 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
183 <
394 > // Use decoding scheme from SheepShaver
395   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
396   {
397 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
398 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
399 <        int            disp = 0, tmp;
400 <        unsigned int   baseA = 0, baseB = 0;
401 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
402 <
403 <        switch(EXTRACT_OP1(instr)) {
404 <        case 38:   /* stb */
405 <        case 39:   /* stbu */
406 <        case 54:   /* stfd */
407 <        case 55:   /* stfdu */
408 <        case 52:   /* stfs */
409 <        case 53:   /* stfsu */
410 <        case 44:   /* sth */
411 <        case 45:   /* sthu */
412 <        case 47:   /* stmw */
413 <        case 36:   /* stw */
414 <        case 37:   /* stwu */
415 <                tmp = EXTRACT_REGA(instr);
416 <                if(tmp > 0)
417 <                        baseA = regs[tmp];
418 <                disp = EXTRACT_DISP(instr);
397 >        unsigned int   nip = (unsigned int) scp->sc_ir;
398 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
399 >        instruction_t  instr;
400 >
401 >        powerpc_decode_instruction(&instr, nip, gpr);
402 >        return (sigsegv_address_t)instr.addr;
403 > }
404 > #endif
405 > #endif
406 > #endif
407 > #endif
408 >
409 > #if HAVE_MACH_EXCEPTIONS
410 >
411 > // This can easily be extended to other Mach systems, but really who
412 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
413 > // Mach 2.5/3.0?
414 > #if defined(__APPLE__) && defined(__MACH__)
415 >
416 > #include <sys/types.h>
417 > #include <stdlib.h>
418 > #include <stdio.h>
419 > #include <pthread.h>
420 >
421 > /*
422 > * If you are familiar with MIG then you will understand the frustration
423 > * that was necessary to get these embedded into C++ code by hand.
424 > */
425 > extern "C" {
426 > #include <mach/mach.h>
427 > #include <mach/mach_error.h>
428 >
429 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
430 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
431 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
432 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
433 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
434 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
435 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
436 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
437 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
438 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
439 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
440 > }
441 >
442 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
443 > #define HANDLER_COUNT 64
444 >
445 > // structure to tuck away existing exception handlers
446 > typedef struct _ExceptionPorts {
447 >        mach_msg_type_number_t maskCount;
448 >        exception_mask_t masks[HANDLER_COUNT];
449 >        exception_handler_t handlers[HANDLER_COUNT];
450 >        exception_behavior_t behaviors[HANDLER_COUNT];
451 >        thread_state_flavor_t flavors[HANDLER_COUNT];
452 > } ExceptionPorts;
453 >
454 > // exception handler thread
455 > static pthread_t exc_thread;
456 >
457 > // place where old exception handler info is stored
458 > static ExceptionPorts ports;
459 >
460 > // our exception port
461 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
462 >
463 > #define MACH_CHECK_ERROR(name,ret) \
464 > if (ret != KERN_SUCCESS) { \
465 >        mach_error(#name, ret); \
466 >        exit (1); \
467 > }
468 >
469 > #define SIGSEGV_FAULT_ADDRESS                   code[1]
470 > #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
471 > #define SIGSEGV_FAULT_HANDLER                   (code[0] == KERN_PROTECTION_FAILURE) && sigsegv_fault_handler
472 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
473 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
474 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
475 > #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
476 >
477 > // Given a suspended thread, stuff the current instruction and
478 > // registers into state.
479 > //
480 > // It would have been nice to have this be ppc/x86 independant which
481 > // could have been done easily with a thread_state_t instead of
482 > // ppc_thread_state_t, but because of the way this is called it is
483 > // easier to do it this way.
484 > #if (defined(ppc) || defined(__ppc__))
485 > static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
486 > {
487 >        kern_return_t krc;
488 >        mach_msg_type_number_t count;
489 >
490 >        count = MACHINE_THREAD_STATE_COUNT;
491 >        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
492 >        MACH_CHECK_ERROR (thread_get_state, krc);
493 >
494 >        return (sigsegv_address_t)state->srr0;
495 > }
496 > #endif
497 >
498 > // Since there can only be one exception thread running at any time
499 > // this is not a problem.
500 > #define MSG_SIZE 512
501 > static char msgbuf[MSG_SIZE];
502 > static char replybuf[MSG_SIZE];
503 >
504 > /*
505 > * This is the entry point for the exception handler thread. The job
506 > * of this thread is to wait for exception messages on the exception
507 > * port that was setup beforehand and to pass them on to exc_server.
508 > * exc_server is a MIG generated function that is a part of Mach.
509 > * Its job is to decide what to do with the exception message. In our
510 > * case exc_server calls catch_exception_raise on our behalf. After
511 > * exc_server returns, it is our responsibility to send the reply.
512 > */
513 > static void *
514 > handleExceptions(void *priv)
515 > {
516 >        mach_msg_header_t *msg, *reply;
517 >        kern_return_t krc;
518 >
519 >        msg = (mach_msg_header_t *)msgbuf;
520 >        reply = (mach_msg_header_t *)replybuf;
521 >
522 >        for (;;) {
523 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
524 >                                _exceptionPort, 0, MACH_PORT_NULL);
525 >                MACH_CHECK_ERROR(mach_msg, krc);
526 >
527 >                if (!exc_server(msg, reply)) {
528 >                        fprintf(stderr, "exc_server hated the message\n");
529 >                        exit(1);
530 >                }
531 >
532 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
533 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
534 >                if (krc != KERN_SUCCESS) {
535 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
536 >                                krc, mach_error_string(krc));
537 >                        exit(1);
538 >                }
539 >        }
540 > }
541 > #endif
542 > #endif
543 >
544 >
545 > /*
546 > *  Instruction skipping
547 > */
548 >
549 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
550 > // Decode and skip X86 instruction
551 > #if (defined(i386) || defined(__i386__))
552 > #if defined(__linux__)
553 > enum {
554 >        X86_REG_EIP = 14,
555 >        X86_REG_EAX = 11,
556 >        X86_REG_ECX = 10,
557 >        X86_REG_EDX = 9,
558 >        X86_REG_EBX = 8,
559 >        X86_REG_ESP = 7,
560 >        X86_REG_EBP = 6,
561 >        X86_REG_ESI = 5,
562 >        X86_REG_EDI = 4
563 > };
564 > #endif
565 > #if defined(__NetBSD__) || defined(__FreeBSD__)
566 > enum {
567 >        X86_REG_EIP = 10,
568 >        X86_REG_EAX = 7,
569 >        X86_REG_ECX = 6,
570 >        X86_REG_EDX = 5,
571 >        X86_REG_EBX = 4,
572 >        X86_REG_ESP = 13,
573 >        X86_REG_EBP = 2,
574 >        X86_REG_ESI = 1,
575 >        X86_REG_EDI = 0
576 > };
577 > #endif
578 > // FIXME: this is partly redundant with the instruction decoding phase
579 > // to discover transfer type and register number
580 > static inline int ix86_step_over_modrm(unsigned char * p)
581 > {
582 >        int mod = (p[0] >> 6) & 3;
583 >        int rm = p[0] & 7;
584 >        int offset = 0;
585 >
586 >        // ModR/M Byte
587 >        switch (mod) {
588 >        case 0: // [reg]
589 >                if (rm == 5) return 4; // disp32
590                  break;
591 <        case 31:
592 <                switch(EXTRACT_OP2(instr)) {
593 <                case 86:    /* dcbf */
594 <                case 54:    /* dcbst */
595 <                case 1014:  /* dcbz */
596 <                case 247:   /* stbux */
597 <                case 215:   /* stbx */
598 <                case 759:   /* stfdux */
599 <                case 727:   /* stfdx */
600 <                case 983:   /* stfiwx */
601 <                case 695:   /* stfsux */
602 <                case 663:   /* stfsx */
603 <                case 918:   /* sthbrx */
604 <                case 439:   /* sthux */
605 <                case 407:   /* sthx */
606 <                case 661:   /* stswx */
607 <                case 662:   /* stwbrx */
608 <                case 150:   /* stwcx. */
609 <                case 183:   /* stwux */
610 <                case 151:   /* stwx */
611 <                case 135:   /* stvebx */
612 <                case 167:   /* stvehx */
613 <                case 199:   /* stvewx */
614 <                case 231:   /* stvx */
615 <                case 487:   /* stvxl */
616 <                        tmp = EXTRACT_REGA(instr);
617 <                        if(tmp > 0)
618 <                                baseA = regs[tmp];
619 <                        baseB = regs[EXTRACT_REGC(instr)];
620 <                        /* determine Altivec alignment mask */
621 <                        switch(EXTRACT_OP2(instr)) {
622 <                        case 167:   /* stvehx */
623 <                                alignmask = 0xFFFFFFFE;
624 <                                break;
625 <                        case 199:   /* stvewx */
626 <                                alignmask = 0xFFFFFFFC;
627 <                                break;
628 <                        case 231:   /* stvx */
629 <                                alignmask = 0xFFFFFFF0;
630 <                                break;
631 <                        case 487:  /* stvxl */
632 <                                alignmask = 0xFFFFFFF0;
633 <                                break;
634 <                        }
591 >        case 1: // disp8[reg]
592 >                offset = 1;
593 >                break;
594 >        case 2: // disp32[reg]
595 >                offset = 4;
596 >                break;
597 >        case 3: // register
598 >                return 0;
599 >        }
600 >        
601 >        // SIB Byte
602 >        if (rm == 4) {
603 >                if (mod == 0 && (p[1] & 7) == 5)
604 >                        offset = 5; // disp32[index]
605 >                else
606 >                        offset++;
607 >        }
608 >
609 >        return offset;
610 > }
611 >
612 > static bool ix86_skip_instruction(unsigned int * regs)
613 > {
614 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
615 >
616 >        if (eip == 0)
617 >                return false;
618 >        
619 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
620 >        transfer_size_t transfer_size = SIZE_LONG;
621 >        
622 >        int reg = -1;
623 >        int len = 0;
624 >        
625 >        // Operand size prefix
626 >        if (*eip == 0x66) {
627 >                eip++;
628 >                len++;
629 >                transfer_size = SIZE_WORD;
630 >        }
631 >
632 >        // Decode instruction
633 >        switch (eip[0]) {
634 >        case 0x0f:
635 >            switch (eip[1]) {
636 >            case 0xb6: // MOVZX r32, r/m8
637 >            case 0xb7: // MOVZX r32, r/m16
638 >                switch (eip[2] & 0xc0) {
639 >                case 0x80:
640 >                    reg = (eip[2] >> 3) & 7;
641 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
642 >                    break;
643 >                case 0x40:
644 >                    reg = (eip[2] >> 3) & 7;
645 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
646 >                    break;
647 >                case 0x00:
648 >                    reg = (eip[2] >> 3) & 7;
649 >                    transfer_type = SIGSEGV_TRANSFER_LOAD;
650 >                    break;
651 >                }
652 >                len += 3 + ix86_step_over_modrm(eip + 2);
653 >                break;
654 >            }
655 >          break;
656 >        case 0x8a: // MOV r8, r/m8
657 >                transfer_size = SIZE_BYTE;
658 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
659 >                switch (eip[1] & 0xc0) {
660 >                case 0x80:
661 >                        reg = (eip[1] >> 3) & 7;
662 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
663                          break;
664 <                case 725:   /* stswi */
665 <                        tmp = EXTRACT_REGA(instr);
666 <                        if(tmp > 0)
257 <                                baseA = regs[tmp];
664 >                case 0x40:
665 >                        reg = (eip[1] >> 3) & 7;
666 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
667                          break;
668 <                default:   /* ignore instruction */
669 <                        return 0;
668 >                case 0x00:
669 >                        reg = (eip[1] >> 3) & 7;
670 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
671                          break;
672                  }
673 +                len += 2 + ix86_step_over_modrm(eip + 1);
674                  break;
675 <        default:   /* ignore instruction */
676 <                return 0;
675 >        case 0x88: // MOV r/m8, r8
676 >                transfer_size = SIZE_BYTE;
677 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
678 >                switch (eip[1] & 0xc0) {
679 >                case 0x80:
680 >                        reg = (eip[1] >> 3) & 7;
681 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
682 >                        break;
683 >                case 0x40:
684 >                        reg = (eip[1] >> 3) & 7;
685 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
686 >                        break;
687 >                case 0x00:
688 >                        reg = (eip[1] >> 3) & 7;
689 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
690 >                        break;
691 >                }
692 >                len += 2 + ix86_step_over_modrm(eip + 1);
693                  break;
694          }
695 +
696 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
697 +                // Unknown machine code, let it crash. Then patch the decoder
698 +                return false;
699 +        }
700 +
701 +        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
702 +                static const int x86_reg_map[8] = {
703 +                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
704 +                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
705 +                };
706 +                
707 +                if (reg < 0 || reg >= 8)
708 +                        return false;
709 +
710 +                int rloc = x86_reg_map[reg];
711 +                switch (transfer_size) {
712 +                case SIZE_BYTE:
713 +                        regs[rloc] = (regs[rloc] & ~0xff);
714 +                        break;
715 +                case SIZE_WORD:
716 +                        regs[rloc] = (regs[rloc] & ~0xffff);
717 +                        break;
718 +                case SIZE_LONG:
719 +                        regs[rloc] = 0;
720 +                        break;
721 +                }
722 +        }
723 +
724 + #if DEBUG
725 +        printf("%08x: %s %s access", regs[X86_REG_EIP],
726 +                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
727 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
728 +        
729 +        if (reg != -1) {
730 +                static const char * x86_reg_str_map[8] = {
731 +                        "eax", "ecx", "edx", "ebx",
732 +                        "esp", "ebp", "esi", "edi"
733 +                };
734 +                printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", x86_reg_str_map[reg]);
735 +        }
736 +        printf(", %d bytes instruction\n", len);
737 + #endif
738          
739 <        addr = (baseA + baseB) + disp;
740 <        addr &= alignmask;
271 <        return (sigsegv_address_t)addr;
739 >        regs[X86_REG_EIP] += len;
740 >        return true;
741   }
742   #endif
743 +
744 + // Decode and skip PPC instruction
745 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
746 + static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
747 + {
748 +        instruction_t instr;
749 +        powerpc_decode_instruction(&instr, *nip_p, regs);
750 +        
751 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
752 +                // Unknown machine code, let it crash. Then patch the decoder
753 +                return false;
754 +        }
755 +
756 + #if DEBUG
757 +        printf("%08x: %s %s access", *nip_p,
758 +                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
759 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
760 +        
761 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
762 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
763 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
764 +                printf(" r%d (rd = 0)\n", instr.rd);
765 + #endif
766 +        
767 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
768 +                regs[instr.ra] = instr.addr;
769 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
770 +                regs[instr.rd] = 0;
771 +        
772 +        *nip_p += 4;
773 +        return true;
774 + }
775   #endif
776   #endif
777  
# Line 289 | Line 790 | static sigsegv_address_t get_fault_addre
790   *  SIGSEGV global handler
791   */
792  
793 + #if defined(HAVE_SIGSEGV_RECOVERY) || defined(HAVE_MACH_EXCEPTIONS)
794 + // This function handles the badaccess to memory.
795 + // It is called from the signal handler or the exception handler.
796 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST)
797 + {
798 +        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
799 +        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
800 +        
801 +        // Call user's handler and reinstall the global handler, if required
802 +        switch (sigsegv_fault_handler(fault_address, fault_instruction)) {
803 +        case SIGSEGV_RETURN_SUCCESS:
804 +                return true;
805 +
806 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
807 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
808 +                // Call the instruction skipper with the register file
809 +                // available
810 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
811 + #ifdef HAVE_MACH_EXCEPTIONS
812 +                        // Unlike UNIX signals where the thread state
813 +                        // is modified off of the stack, in Mach we
814 +                        // need to actually call thread_set_state to
815 +                        // have the register values updated.
816 +                        kern_return_t krc;
817 +
818 +                        krc = thread_set_state(thread,
819 +                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
820 +                                                                   MACHINE_THREAD_STATE_COUNT);
821 +                        MACH_CHECK_ERROR (thread_get_state, krc);
822 + #endif
823 +                        return true;
824 +                }
825 +                break;
826 + #endif
827 +        }
828 +        
829 +        // We can't do anything with the fault_address, dump state?
830 +        if (sigsegv_state_dumper != 0)
831 +                sigsegv_state_dumper(fault_address, fault_instruction);
832 +
833 +        return false;
834 + }
835 + #endif
836 +
837 +
838 + /*
839 + * There are two mechanisms for handling a bad memory access,
840 + * Mach exceptions and UNIX signals. The implementation specific
841 + * code appears below. Its reponsibility is to call handle_badaccess
842 + * which is the routine that handles the fault in an implementation
843 + * agnostic manner. The implementation specific code below is then
844 + * reponsible for checking whether handle_badaccess was able
845 + * to handle the memory access error and perform any implementation
846 + * specific tasks necessary afterwards.
847 + */
848 +
849 + #ifdef HAVE_MACH_EXCEPTIONS
850 + /*
851 + * We need to forward all exceptions that we do not handle.
852 + * This is important, there are many exceptions that may be
853 + * handled by other exception handlers. For example debuggers
854 + * use exceptions and the exception hander is in another
855 + * process in such a case. (Timothy J. Wood states in his
856 + * message to the list that he based this code on that from
857 + * gdb for Darwin.)
858 + */
859 + static inline kern_return_t
860 + forward_exception(mach_port_t thread_port,
861 +                                  mach_port_t task_port,
862 +                                  exception_type_t exception_type,
863 +                                  exception_data_t exception_data,
864 +                                  mach_msg_type_number_t data_count,
865 +                                  ExceptionPorts *oldExceptionPorts)
866 + {
867 +        kern_return_t kret;
868 +        unsigned int portIndex;
869 +        mach_port_t port;
870 +        exception_behavior_t behavior;
871 +        thread_state_flavor_t flavor;
872 +        thread_state_t thread_state;
873 +        mach_msg_type_number_t thread_state_count;
874 +
875 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
876 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
877 +                        // This handler wants the exception
878 +                        break;
879 +                }
880 +        }
881 +
882 +        if (portIndex >= oldExceptionPorts->maskCount) {
883 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
884 +                return KERN_FAILURE;
885 +        }
886 +
887 +        port = oldExceptionPorts->handlers[portIndex];
888 +        behavior = oldExceptionPorts->behaviors[portIndex];
889 +        flavor = oldExceptionPorts->flavors[portIndex];
890 +
891 +        /*
892 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
893 +         */
894 +
895 +        if (behavior != EXCEPTION_DEFAULT) {
896 +                thread_state_count = THREAD_STATE_MAX;
897 +                kret = thread_get_state (thread_port, flavor, thread_state,
898 +                                                                 &thread_state_count);
899 +                MACH_CHECK_ERROR (thread_get_state, kret);
900 +        }
901 +
902 +        switch (behavior) {
903 +        case EXCEPTION_DEFAULT:
904 +          // fprintf(stderr, "forwarding to exception_raise\n");
905 +          kret = exception_raise(port, thread_port, task_port, exception_type,
906 +                                                         exception_data, data_count);
907 +          MACH_CHECK_ERROR (exception_raise, kret);
908 +          break;
909 +        case EXCEPTION_STATE:
910 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
911 +          kret = exception_raise_state(port, exception_type, exception_data,
912 +                                                                   data_count, &flavor,
913 +                                                                   thread_state, thread_state_count,
914 +                                                                   thread_state, &thread_state_count);
915 +          MACH_CHECK_ERROR (exception_raise_state, kret);
916 +          break;
917 +        case EXCEPTION_STATE_IDENTITY:
918 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
919 +          kret = exception_raise_state_identity(port, thread_port, task_port,
920 +                                                                                        exception_type, exception_data,
921 +                                                                                        data_count, &flavor,
922 +                                                                                        thread_state, thread_state_count,
923 +                                                                                        thread_state, &thread_state_count);
924 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
925 +          break;
926 +        default:
927 +          fprintf(stderr, "forward_exception got unknown behavior\n");
928 +          break;
929 +        }
930 +
931 +        if (behavior != EXCEPTION_DEFAULT) {
932 +                kret = thread_set_state (thread_port, flavor, thread_state,
933 +                                                                 thread_state_count);
934 +                MACH_CHECK_ERROR (thread_set_state, kret);
935 +        }
936 +
937 +        return KERN_SUCCESS;
938 + }
939 +
940 + /*
941 + * This is the code that actually handles the exception.
942 + * It is called by exc_server. For Darwin 5 Apple changed
943 + * this a bit from how this family of functions worked in
944 + * Mach. If you are familiar with that it is a little
945 + * different. The main variation that concerns us here is
946 + * that code is an array of exception specific codes and
947 + * codeCount is a count of the number of codes in the code
948 + * array. In typical Mach all exceptions have a code
949 + * and sub-code. It happens to be the case that for a
950 + * EXC_BAD_ACCESS exception the first entry is the type of
951 + * bad access that occurred and the second entry is the
952 + * faulting address so these entries correspond exactly to
953 + * how the code and sub-code are used on Mach.
954 + *
955 + * This is a MIG interface. No code in Basilisk II should
956 + * call this directley. This has to have external C
957 + * linkage because that is what exc_server expects.
958 + */
959 + kern_return_t
960 + catch_exception_raise(mach_port_t exception_port,
961 +                                          mach_port_t thread,
962 +                                          mach_port_t task,
963 +                                          exception_type_t exception,
964 +                                          exception_data_t code,
965 +                                          mach_msg_type_number_t codeCount)
966 + {
967 +        ppc_thread_state_t state;
968 +        kern_return_t krc;
969 +
970 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
971 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
972 +                        return KERN_SUCCESS;
973 +        }
974 +
975 +        // In Mach we do not need to remove the exception handler.
976 +        // If we forward the exception, eventually some exception handler
977 +        // will take care of this exception.
978 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
979 +
980 +        return krc;
981 + }
982 + #endif
983 +
984   #ifdef HAVE_SIGSEGV_RECOVERY
985 + // Handle bad memory accesses with signal handler
986   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
987   {
988 <        // Call user's handler and reinstall the global handler, if required
989 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
988 >        // Call handler and reinstall the global handler, if required
989 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
990   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
991                  sigsegv_do_install_handler(sig);
992   #endif
993 +                return;
994          }
995 <        else {
996 <                // FAIL: reinstall default handler for "safe" crash
995 >
996 >        // Failure: reinstall default handler for "safe" crash
997   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
998 <                SIGSEGV_ALL_SIGNALS
998 >        SIGSEGV_ALL_SIGNALS
999   #undef FAULT_HANDLER
306        }
1000   }
1001   #endif
1002  
# Line 317 | Line 1010 | static bool sigsegv_do_install_handler(i
1010   {
1011          // Setup SIGSEGV handler to process writes to frame buffer
1012   #ifdef HAVE_SIGACTION
1013 <        struct sigaction vosf_sa;
1014 <        sigemptyset(&vosf_sa.sa_mask);
1015 <        vosf_sa.sa_sigaction = sigsegv_handler;
1016 <        vosf_sa.sa_flags = SA_SIGINFO;
1017 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1013 >        struct sigaction sigsegv_sa;
1014 >        sigemptyset(&sigsegv_sa.sa_mask);
1015 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1016 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1017 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1018   #else
1019          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1020   #endif
# Line 333 | Line 1026 | static bool sigsegv_do_install_handler(i
1026   {
1027          // Setup SIGSEGV handler to process writes to frame buffer
1028   #ifdef HAVE_SIGACTION
1029 <        struct sigaction vosf_sa;
1030 <        sigemptyset(&vosf_sa.sa_mask);
1031 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1029 >        struct sigaction sigsegv_sa;
1030 >        sigemptyset(&sigsegv_sa.sa_mask);
1031 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1032 >        sigsegv_sa.sa_flags = 0;
1033   #if !EMULATED_68K && defined(__NetBSD__)
1034 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1035 <        vosf_sa.sa_flags = SA_ONSTACK;
342 < #else
343 <        vosf_sa.sa_flags = 0;
1034 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1035 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1036   #endif
1037 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1037 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1038   #else
1039          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1040   #endif
1041   }
1042   #endif
1043  
1044 < bool sigsegv_install_handler(sigsegv_handler_t handler)
1044 > #if defined(HAVE_MACH_EXCEPTIONS)
1045 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1046   {
1047 < #ifdef HAVE_SIGSEGV_RECOVERY
1048 <        sigsegv_user_handler = handler;
1047 >        /*
1048 >         * Except for the exception port functions, this should be
1049 >         * pretty much stock Mach. If later you choose to support
1050 >         * other Mach's besides Darwin, just check for __MACH__
1051 >         * here and __APPLE__ where the actual differences are.
1052 >         */
1053 > #if defined(__APPLE__) && defined(__MACH__)
1054 >        if (sigsegv_fault_handler != NULL) {
1055 >                sigsegv_fault_handler = handler;
1056 >                return true;
1057 >        }
1058 >
1059 >        kern_return_t krc;
1060 >
1061 >        // create the the exception port
1062 >        krc = mach_port_allocate(mach_task_self(),
1063 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1064 >        if (krc != KERN_SUCCESS) {
1065 >                mach_error("mach_port_allocate", krc);
1066 >                return false;
1067 >        }
1068 >
1069 >        // add a port send right
1070 >        krc = mach_port_insert_right(mach_task_self(),
1071 >                              _exceptionPort, _exceptionPort,
1072 >                              MACH_MSG_TYPE_MAKE_SEND);
1073 >        if (krc != KERN_SUCCESS) {
1074 >                mach_error("mach_port_insert_right", krc);
1075 >                return false;
1076 >        }
1077 >
1078 >        // get the old exception ports
1079 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1080 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1081 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1082 >        if (krc != KERN_SUCCESS) {
1083 >                mach_error("thread_get_exception_ports", krc);
1084 >                return false;
1085 >        }
1086 >
1087 >        // set the new exception port
1088 >        //
1089 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1090 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1091 >        // message, but it turns out that in the common case this is not
1092 >        // neccessary. If we need it we can later ask for it from the
1093 >        // suspended thread.
1094 >        //
1095 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1096 >        // counter in the thread state.  The comments in the header file
1097 >        // seem to imply that you can count on the GPR's on an exception
1098 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1099 >        // you have to ask for all of the GPR's anyway just to get the
1100 >        // program counter. In any case because of update effective
1101 >        // address from immediate and update address from effective
1102 >        // addresses of ra and rb modes (as good an name as any for these
1103 >        // addressing modes) used in PPC instructions, you will need the
1104 >        // GPR state anyway.
1105 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1106 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1107 >        if (krc != KERN_SUCCESS) {
1108 >                mach_error("thread_set_exception_ports", krc);
1109 >                return false;
1110 >        }
1111 >
1112 >        // create the exception handler thread
1113 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1114 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1115 >                return false;
1116 >        }
1117 >
1118 >        // do not care about the exception thread any longer, let is run standalone
1119 >        (void)pthread_detach(exc_thread);
1120 >
1121 >        sigsegv_fault_handler = handler;
1122 >        return true;
1123 > #else
1124 >        return false;
1125 > #endif
1126 > }
1127 > #endif
1128 >
1129 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1130 > {
1131 > #if defined(HAVE_SIGSEGV_RECOVERY)
1132          bool success = true;
1133   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1134          SIGSEGV_ALL_SIGNALS
1135   #undef FAULT_HANDLER
1136 +        if (success)
1137 +            sigsegv_fault_handler = handler;
1138          return success;
1139 + #elif defined(HAVE_MACH_EXCEPTIONS)
1140 +        return sigsegv_do_install_handler(handler);
1141   #else
1142          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1143          return false;
# Line 371 | Line 1151 | bool sigsegv_install_handler(sigsegv_han
1151  
1152   void sigsegv_deinstall_handler(void)
1153   {
1154 +  // We do nothing for Mach exceptions, the thread would need to be
1155 +  // suspended if not already so, and we might mess with other
1156 +  // exception handlers that came after we registered ours. There is
1157 +  // no need to remove the exception handler, in fact this function is
1158 +  // not called anywhere in Basilisk II.
1159   #ifdef HAVE_SIGSEGV_RECOVERY
1160 <        sigsegv_user_handler = 0;
1160 >        sigsegv_fault_handler = 0;
1161   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1162          SIGSEGV_ALL_SIGNALS
1163   #undef FAULT_HANDLER
1164   #endif
1165   }
1166  
1167 +
1168 + /*
1169 + *  Set callback function when we cannot handle the fault
1170 + */
1171 +
1172 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
1173 + {
1174 +        sigsegv_state_dumper = handler;
1175 + }
1176 +
1177 +
1178   /*
1179   *  Test program used for configure/test
1180   */
# Line 394 | Line 1190 | static int page_size;
1190   static volatile char * page = 0;
1191   static volatile int handler_called = 0;
1192  
1193 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1193 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1194   {
1195          handler_called++;
1196          if ((fault_address - 123) != page)
1197                  exit(1);
1198          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
1199                  exit(1);
1200 <        return true;
1200 >        return SIGSEGV_RETURN_SUCCESS;
1201 > }
1202 >
1203 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1204 > #ifdef __GNUC__
1205 > // Code range where we expect the fault to come from
1206 > static void *b_region, *e_region;
1207 > #endif
1208 >
1209 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
1210 > {
1211 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
1212 > #ifdef __GNUC__
1213 >                // Make sure reported fault instruction address falls into
1214 >                // expected code range
1215 >                if (instruction_address != SIGSEGV_INVALID_PC
1216 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
1217 >                                (instruction_address >= (sigsegv_address_t)e_region)))
1218 >                        return SIGSEGV_RETURN_FAILURE;
1219 > #endif
1220 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
1221 >        }
1222 >
1223 >        return SIGSEGV_RETURN_FAILURE;
1224   }
1225 + #endif
1226  
1227   int main(void)
1228   {
# Line 425 | Line 1245 | int main(void)
1245          if (handler_called != 1)
1246                  return 1;
1247  
1248 + #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
1249 +        if (!sigsegv_install_handler(sigsegv_insn_handler))
1250 +                return 1;
1251 +        
1252 +        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
1253 +                return 1;
1254 +        
1255 +        for (int i = 0; i < page_size; i++)
1256 +                page[i] = (i + 1) % page_size;
1257 +        
1258 +        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
1259 +                return 1;
1260 +        
1261 + #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
1262 +                const unsigned int TAG = 0x12345678;                    \
1263 +                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
1264 +                volatile unsigned int effect = data + TAG;              \
1265 +                if (effect != TAG)                                                              \
1266 +                        return 1;                                                                       \
1267 +        } while (0)
1268 +        
1269 + #ifdef __GNUC__
1270 +        b_region = &&L_b_region;
1271 +        e_region = &&L_e_region;
1272 + #endif
1273 + L_b_region:
1274 +        TEST_SKIP_INSTRUCTION(unsigned char);
1275 +        TEST_SKIP_INSTRUCTION(unsigned short);
1276 +        TEST_SKIP_INSTRUCTION(unsigned int);
1277 + L_e_region:
1278 + #endif
1279 +
1280          vm_exit();
1281          return 0;
1282   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines