ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.8 by cebix, 2002-02-01T19:25:49Z vs.
Revision 1.76 by gbeauche, 2008-01-06T16:36:00Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2
74 + };
75 +
76 + // Transfer size
77 + enum transfer_size_t {
78 +        SIZE_UNKNOWN,
79 +        SIZE_BYTE,
80 +        SIZE_WORD, // 2 bytes
81 +        SIZE_LONG, // 4 bytes
82 +        SIZE_QUAD  // 8 bytes
83 + };
84 +
85 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
86 + // Addressing mode
87 + enum addressing_mode_t {
88 +        MODE_UNKNOWN,
89 +        MODE_NORM,
90 +        MODE_U,
91 +        MODE_X,
92 +        MODE_UX
93 + };
94 +
95 + // Decoded instruction
96 + struct instruction_t {
97 +        transfer_type_t         transfer_type;
98 +        transfer_size_t         transfer_size;
99 +        addressing_mode_t       addr_mode;
100 +        unsigned int            addr;
101 +        char                            ra, rd;
102 + };
103 +
104 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105 + {
106 +        // Get opcode and divide into fields
107 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108 +        unsigned int primop = opcode >> 26;
109 +        unsigned int exop = (opcode >> 1) & 0x3ff;
110 +        unsigned int ra = (opcode >> 16) & 0x1f;
111 +        unsigned int rb = (opcode >> 11) & 0x1f;
112 +        unsigned int rd = (opcode >> 21) & 0x1f;
113 +        signed int imm = (signed short)(opcode & 0xffff);
114 +        
115 +        // Analyze opcode
116 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
118 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
119 +        switch (primop) {
120 +        case 31:
121 +                switch (exop) {
122 +                case 23:        // lwzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124 +                case 55:        // lwzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126 +                case 87:        // lbzx
127 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128 +                case 119:       // lbzux
129 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130 +                case 151:       // stwx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132 +                case 183:       // stwux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134 +                case 215:       // stbx
135 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136 +                case 247:       // stbux
137 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138 +                case 279:       // lhzx
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 311:       // lhzux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 343:       // lhax
143 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 375:       // lhaux
145 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                case 407:       // sthx
147 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148 +                case 439:       // sthux
149 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150 +                }
151 +                break;
152 +        
153 +        case 32:        // lwz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155 +        case 33:        // lwzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157 +        case 34:        // lbz
158 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159 +        case 35:        // lbzu
160 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161 +        case 36:        // stw
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163 +        case 37:        // stwu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165 +        case 38:        // stb
166 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167 +        case 39:        // stbu
168 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169 +        case 40:        // lhz
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 41:        // lhzu
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 42:        // lha
174 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 43:        // lhau
176 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 44:        // sth
178 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179 +        case 45:        // sthu
180 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193 +        }
194 +        
195 +        // Calculate effective address
196 +        unsigned int addr = 0;
197 +        switch (addr_mode) {
198 +        case MODE_X:
199 +        case MODE_UX:
200 +                if (ra == 0)
201 +                        addr = gpr[rb];
202 +                else
203 +                        addr = gpr[ra] + gpr[rb];
204 +                break;
205 +        case MODE_NORM:
206 +        case MODE_U:
207 +                if (ra == 0)
208 +                        addr = (signed int)(signed short)imm;
209 +                else
210 +                        addr = gpr[ra] + (signed int)(signed short)imm;
211 +                break;
212 +        default:
213 +                break;
214 +        }
215 +        
216 +        // Commit decoded instruction
217 +        instruction->addr = addr;
218 +        instruction->addr_mode = addr_mode;
219 +        instruction->transfer_type = transfer_type;
220 +        instruction->transfer_size = transfer_size;
221 +        instruction->ra = ra;
222 +        instruction->rd = rd;
223 + }
224 + #endif
225 +
226 +
227 + /*
228   *  OS-dependant SIGSEGV signals support section
229   */
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272 + #if (defined(i386) || defined(__i386__))
273 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 + #endif
277 + #endif
278 + #if defined(__NetBSD__)
279 + #if (defined(i386) || defined(__i386__))
280 + #include <sys/ucontext.h>
281 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285 + #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
297 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310 < #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
310 > #define SIGSEGV_CONTEXT_REGS                    ((struct sigcontext *)scp)
311 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
312 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
313 > #define SIGSEGV_SKIP_INSTRUCTION                ia64_skip_instruction
314 > #endif
315 > #if (defined(powerpc) || defined(__powerpc__))
316 > #include <sys/ucontext.h>
317 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
318 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
319 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
320 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
321 > #endif
322 > #if (defined(hppa) || defined(__hppa__))
323 > #undef  SIGSEGV_FAULT_ADDRESS
324 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
325 > #endif
326 > #if (defined(arm) || defined(__arm__))
327 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
328 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
329 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
330 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
331 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
332 > #endif
333 > #if (defined(mips) || defined(__mips__))
334 > #include <sys/ucontext.h>
335 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
336 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
337 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
338 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
339   #endif
340   #endif
341   #endif
# Line 78 | Line 347 | static bool sigsegv_do_install_handler(i
347   #if (defined(i386) || defined(__i386__))
348   #include <asm/sigcontext.h>
349   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
350 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
351 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
350 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
351 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
352 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
353 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
354 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
355 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
356   #endif
357   #if (defined(sparc) || defined(__sparc__))
358   #include <asm/sigcontext.h>
359   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
360 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
361   #define SIGSEGV_FAULT_ADDRESS                   addr
362   #endif
363   #if (defined(powerpc) || defined(__powerpc__))
364   #include <asm/sigcontext.h>
365   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
366 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
367   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
368   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
369 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
370 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
371   #endif
372   #if (defined(alpha) || defined(__alpha__))
373   #include <asm/sigcontext.h>
374   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
375 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
376   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
377   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
378 <
379 < // From Boehm's GC 6.0alpha8
380 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
381 < {
382 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
383 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
384 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
385 <        return (sigsegv_address_t)fault_address;
386 < }
378 > #endif
379 > #if (defined(arm) || defined(__arm__))
380 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
381 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
382 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
383 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
384 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
385 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
386 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
387   #endif
388   #endif
389  
390   // Irix 5 or 6 on MIPS
391 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
391 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
392 > #include <ucontext.h>
393   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
394 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
394 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
395 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
396 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
397   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
398   #endif
399  
400 + // HP-UX
401 + #if (defined(hpux) || defined(__hpux__))
402 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
403 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
404 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
405 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
406 + #endif
407 +
408   // OSF/1 on Alpha
409   #if defined(__osf__)
410 + #include <ucontext.h>
411   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
412 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
413   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
414   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
415   #endif
# Line 126 | Line 417 | static sigsegv_address_t get_fault_addre
417   // AIX
418   #if defined(_AIX)
419   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
420 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
421   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
422   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
423   #endif
424  
425 < // NetBSD or FreeBSD
426 < #if defined(__NetBSD__) || defined(__FreeBSD__)
425 > // NetBSD
426 > #if defined(__NetBSD__)
427   #if (defined(m68k) || defined(__m68k__))
428   #include <m68k/frame.h>
429   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
430 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
431 <        struct sigstate {                                                                                                                                                                       \
140 <                int ss_flags;                                                                                                                                                                   \
141 <                struct frame ss_frame;                                                                                                                                                  \
142 <        };                                                                                                                                                                                                      \
143 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
144 <        char *fault_addr;                                                                                                                                                                       \
145 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
146 <        case 7:         /* 68040 access error */                                                                                                                                \
147 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
148 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
149 <                break;                                                                                                                                                                                  \
150 <        default:                                                                                                                                                                                        \
151 <                fault_addr = (char *)code;                                                                                                                                              \
152 <                break;                                                                                                                                                                                  \
153 <        }                                                                                                                                                                                                       \
154 <        fault_addr;                                                                                                                                                                                     \
155 < })
430 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
431 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
432   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
433 < #else
434 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
435 < #define SIGSEGV_FAULT_ADDRESS                   addr
433 >
434 > // Use decoding scheme from BasiliskII/m68k native
435 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
436 > {
437 >        struct sigstate {
438 >                int ss_flags;
439 >                struct frame ss_frame;
440 >        };
441 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
442 >        char *fault_addr;
443 >        switch (state->ss_frame.f_format) {
444 >        case 7:         /* 68040 access error */
445 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
446 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
447 >                break;
448 >        default:
449 >                fault_addr = (char *)code;
450 >                break;
451 >        }
452 >        return (sigsegv_address_t)fault_addr;
453 > }
454 > #endif
455 > #if (defined(alpha) || defined(__alpha__))
456 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
457 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
458 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
459   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
460   #endif
461 + #if (defined(i386) || defined(__i386__))
462 + #error "FIXME: need to decode instruction and compute EA"
463 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
464 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #endif
467 + #endif
468 + #if defined(__FreeBSD__)
469 + #if (defined(i386) || defined(__i386__))
470 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
471 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
472 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
473 + #define SIGSEGV_FAULT_ADDRESS                   addr
474 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
475 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
476 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
477 + #endif
478 + #if (defined(alpha) || defined(__alpha__))
479 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
480 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
481 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
482 + #define SIGSEGV_FAULT_ADDRESS                   addr
483 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
484 + #endif
485 + #endif
486 +
487 + // Extract fault address out of a sigcontext
488 + #if (defined(alpha) || defined(__alpha__))
489 + // From Boehm's GC 6.0alpha8
490 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
491 + {
492 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
493 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
494 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
495 +        return (sigsegv_address_t)fault_address;
496 + }
497   #endif
498  
499 < // MacOS X
499 >
500 > // MacOS X, not sure which version this works in. Under 10.1
501 > // vm_protect does not appear to work from a signal handler. Under
502 > // 10.2 signal handlers get siginfo type arguments but the si_addr
503 > // field is the address of the faulting instruction and not the
504 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
505 > // case with Mach exception handlers there is a way to do what this
506 > // was meant to do.
507 > #ifndef HAVE_MACH_EXCEPTIONS
508   #if defined(__APPLE__) && defined(__MACH__)
509   #if (defined(ppc) || defined(__ppc__))
510   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
511 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
512   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
513   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
514   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
515 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
516 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
517  
518 < // From Boehm's GC 6.0alpha8
173 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
174 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
175 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
176 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
177 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
178 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
179 <
518 > // Use decoding scheme from SheepShaver
519   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
520   {
521 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
522 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
523 <        int            disp = 0, tmp;
524 <        unsigned int   baseA = 0, baseB = 0;
525 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
526 <
527 <        switch(EXTRACT_OP1(instr)) {
528 <        case 38:   /* stb */
529 <        case 39:   /* stbu */
530 <        case 54:   /* stfd */
531 <        case 55:   /* stfdu */
532 <        case 52:   /* stfs */
533 <        case 53:   /* stfsu */
534 <        case 44:   /* sth */
535 <        case 45:   /* sthu */
536 <        case 47:   /* stmw */
537 <        case 36:   /* stw */
538 <        case 37:   /* stwu */
539 <                tmp = EXTRACT_REGA(instr);
540 <                if(tmp > 0)
541 <                        baseA = regs[tmp];
542 <                disp = EXTRACT_DISP(instr);
521 >        unsigned int   nip = (unsigned int) scp->sc_ir;
522 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
523 >        instruction_t  instr;
524 >
525 >        powerpc_decode_instruction(&instr, nip, gpr);
526 >        return (sigsegv_address_t)instr.addr;
527 > }
528 > #endif
529 > #endif
530 > #endif
531 > #endif
532 >
533 > #if HAVE_WIN32_EXCEPTIONS
534 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
535 > #include <windows.h>
536 > #include <winerror.h>
537 >
538 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
539 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
540 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
541 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
542 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
543 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
544 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
545 > #endif
546 >
547 > #if HAVE_MACH_EXCEPTIONS
548 >
549 > // This can easily be extended to other Mach systems, but really who
550 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
551 > // Mach 2.5/3.0?
552 > #if defined(__APPLE__) && defined(__MACH__)
553 >
554 > #include <sys/types.h>
555 > #include <stdlib.h>
556 > #include <stdio.h>
557 > #include <pthread.h>
558 >
559 > /*
560 > * If you are familiar with MIG then you will understand the frustration
561 > * that was necessary to get these embedded into C++ code by hand.
562 > */
563 > extern "C" {
564 > #include <mach/mach.h>
565 > #include <mach/mach_error.h>
566 >
567 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
568 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
569 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
570 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
571 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
572 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
573 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
576 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
577 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
578 > }
579 >
580 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
581 > #define HANDLER_COUNT 64
582 >
583 > // structure to tuck away existing exception handlers
584 > typedef struct _ExceptionPorts {
585 >        mach_msg_type_number_t maskCount;
586 >        exception_mask_t masks[HANDLER_COUNT];
587 >        exception_handler_t handlers[HANDLER_COUNT];
588 >        exception_behavior_t behaviors[HANDLER_COUNT];
589 >        thread_state_flavor_t flavors[HANDLER_COUNT];
590 > } ExceptionPorts;
591 >
592 > // exception handler thread
593 > static pthread_t exc_thread;
594 >
595 > // place where old exception handler info is stored
596 > static ExceptionPorts ports;
597 >
598 > // our exception port
599 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
600 >
601 > #define MACH_CHECK_ERROR(name,ret) \
602 > if (ret != KERN_SUCCESS) { \
603 >        mach_error(#name, ret); \
604 >        exit (1); \
605 > }
606 >
607 > #ifdef __ppc__
608 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
609 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
610 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
611 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
612 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
613 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
614 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
615 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
616 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
617 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
618 > #endif
619 > #ifdef __ppc64__
620 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
621 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
622 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
623 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
624 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
625 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
626 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
627 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
628 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
629 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
630 > #endif
631 > #ifdef __i386__
632 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
633 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
634 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
635 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
636 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
637 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
638 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
639 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.eip
640 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
641 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.eax) /* EAX is the first GPR we consider */
642 > #endif
643 > #ifdef __x86_64__
644 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
645 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
646 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
647 > #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
648 > #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
649 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
650 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
651 > #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.rip
652 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
653 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.rax) /* RAX is the first GPR we consider */
654 > #endif
655 > #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
656 > #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
657 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
658 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
659 >
660 > // Since there can only be one exception thread running at any time
661 > // this is not a problem.
662 > #define MSG_SIZE 512
663 > static char msgbuf[MSG_SIZE];
664 > static char replybuf[MSG_SIZE];
665 >
666 > /*
667 > * This is the entry point for the exception handler thread. The job
668 > * of this thread is to wait for exception messages on the exception
669 > * port that was setup beforehand and to pass them on to exc_server.
670 > * exc_server is a MIG generated function that is a part of Mach.
671 > * Its job is to decide what to do with the exception message. In our
672 > * case exc_server calls catch_exception_raise on our behalf. After
673 > * exc_server returns, it is our responsibility to send the reply.
674 > */
675 > static void *
676 > handleExceptions(void *priv)
677 > {
678 >        mach_msg_header_t *msg, *reply;
679 >        kern_return_t krc;
680 >
681 >        msg = (mach_msg_header_t *)msgbuf;
682 >        reply = (mach_msg_header_t *)replybuf;
683 >
684 >        for (;;) {
685 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
686 >                                _exceptionPort, 0, MACH_PORT_NULL);
687 >                MACH_CHECK_ERROR(mach_msg, krc);
688 >
689 >                if (!exc_server(msg, reply)) {
690 >                        fprintf(stderr, "exc_server hated the message\n");
691 >                        exit(1);
692 >                }
693 >
694 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
695 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
696 >                if (krc != KERN_SUCCESS) {
697 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
698 >                                krc, mach_error_string(krc));
699 >                        exit(1);
700 >                }
701 >        }
702 > }
703 > #endif
704 > #endif
705 >
706 >
707 > /*
708 > *  Instruction skipping
709 > */
710 >
711 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
712 > // Decode and skip X86 instruction
713 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
714 > #if defined(__linux__)
715 > enum {
716 > #if (defined(i386) || defined(__i386__))
717 >        X86_REG_EIP = 14,
718 >        X86_REG_EAX = 11,
719 >        X86_REG_ECX = 10,
720 >        X86_REG_EDX = 9,
721 >        X86_REG_EBX = 8,
722 >        X86_REG_ESP = 7,
723 >        X86_REG_EBP = 6,
724 >        X86_REG_ESI = 5,
725 >        X86_REG_EDI = 4
726 > #endif
727 > #if defined(__x86_64__)
728 >        X86_REG_R8  = 0,
729 >        X86_REG_R9  = 1,
730 >        X86_REG_R10 = 2,
731 >        X86_REG_R11 = 3,
732 >        X86_REG_R12 = 4,
733 >        X86_REG_R13 = 5,
734 >        X86_REG_R14 = 6,
735 >        X86_REG_R15 = 7,
736 >        X86_REG_EDI = 8,
737 >        X86_REG_ESI = 9,
738 >        X86_REG_EBP = 10,
739 >        X86_REG_EBX = 11,
740 >        X86_REG_EDX = 12,
741 >        X86_REG_EAX = 13,
742 >        X86_REG_ECX = 14,
743 >        X86_REG_ESP = 15,
744 >        X86_REG_EIP = 16
745 > #endif
746 > };
747 > #endif
748 > #if defined(__NetBSD__)
749 > enum {
750 > #if (defined(i386) || defined(__i386__))
751 >        X86_REG_EIP = _REG_EIP,
752 >        X86_REG_EAX = _REG_EAX,
753 >        X86_REG_ECX = _REG_ECX,
754 >        X86_REG_EDX = _REG_EDX,
755 >        X86_REG_EBX = _REG_EBX,
756 >        X86_REG_ESP = _REG_ESP,
757 >        X86_REG_EBP = _REG_EBP,
758 >        X86_REG_ESI = _REG_ESI,
759 >        X86_REG_EDI = _REG_EDI
760 > #endif
761 > };
762 > #endif
763 > #if defined(__FreeBSD__)
764 > enum {
765 > #if (defined(i386) || defined(__i386__))
766 >        X86_REG_EIP = 10,
767 >        X86_REG_EAX = 7,
768 >        X86_REG_ECX = 6,
769 >        X86_REG_EDX = 5,
770 >        X86_REG_EBX = 4,
771 >        X86_REG_ESP = 13,
772 >        X86_REG_EBP = 2,
773 >        X86_REG_ESI = 1,
774 >        X86_REG_EDI = 0
775 > #endif
776 > };
777 > #endif
778 > #if defined(__OpenBSD__)
779 > enum {
780 > #if defined(__i386__)
781 >        // EDI is the first register we consider
782 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
783 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
784 >        X86_REG_EIP = DREG(eip), // 7
785 >        X86_REG_EAX = DREG(eax), // 6
786 >        X86_REG_ECX = DREG(ecx), // 5
787 >        X86_REG_EDX = DREG(edx), // 4
788 >        X86_REG_EBX = DREG(ebx), // 3
789 >        X86_REG_ESP = DREG(esp), // 10
790 >        X86_REG_EBP = DREG(ebp), // 2
791 >        X86_REG_ESI = DREG(esi), // 1
792 >        X86_REG_EDI = DREG(edi)  // 0
793 > #undef DREG
794 > #undef OREG
795 > #endif
796 > };
797 > #endif
798 > #if defined(__sun__)
799 > // Same as for Linux, need to check for x86-64
800 > enum {
801 > #if defined(__i386__)
802 >        X86_REG_EIP = EIP,
803 >        X86_REG_EAX = EAX,
804 >        X86_REG_ECX = ECX,
805 >        X86_REG_EDX = EDX,
806 >        X86_REG_EBX = EBX,
807 >        X86_REG_ESP = ESP,
808 >        X86_REG_EBP = EBP,
809 >        X86_REG_ESI = ESI,
810 >        X86_REG_EDI = EDI
811 > #endif
812 > };
813 > #endif
814 > #if defined(__APPLE__) && defined(__MACH__)
815 > enum {
816 > #if (defined(i386) || defined(__i386__))
817 > #ifdef i386_SAVED_STATE
818 >        // same as FreeBSD (in Open Darwin 8.0.1)
819 >        X86_REG_EIP = 10,
820 >        X86_REG_EAX = 7,
821 >        X86_REG_ECX = 6,
822 >        X86_REG_EDX = 5,
823 >        X86_REG_EBX = 4,
824 >        X86_REG_ESP = 13,
825 >        X86_REG_EBP = 2,
826 >        X86_REG_ESI = 1,
827 >        X86_REG_EDI = 0
828 > #else
829 >        // new layout (MacOS X 10.4.4 for x86)
830 >        X86_REG_EIP = 10,
831 >        X86_REG_EAX = 0,
832 >        X86_REG_ECX = 2,
833 >        X86_REG_EDX = 3,
834 >        X86_REG_EBX = 1,
835 >        X86_REG_ESP = 7,
836 >        X86_REG_EBP = 6,
837 >        X86_REG_ESI = 5,
838 >        X86_REG_EDI = 4
839 > #endif
840 > #endif
841 > #if defined(__x86_64__)
842 >        X86_REG_R8  = 8,
843 >        X86_REG_R9  = 9,
844 >        X86_REG_R10 = 10,
845 >        X86_REG_R11 = 11,
846 >        X86_REG_R12 = 12,
847 >        X86_REG_R13 = 13,
848 >        X86_REG_R14 = 14,
849 >        X86_REG_R15 = 15,
850 >        X86_REG_EDI = 4,
851 >        X86_REG_ESI = 5,
852 >        X86_REG_EBP = 6,
853 >        X86_REG_EBX = 1,
854 >        X86_REG_EDX = 3,
855 >        X86_REG_EAX = 0,
856 >        X86_REG_ECX = 2,
857 >        X86_REG_ESP = 7,
858 >        X86_REG_EIP = 16
859 > #endif
860 > };
861 > #endif
862 > #if defined(_WIN32)
863 > enum {
864 > #if (defined(i386) || defined(__i386__))
865 >        X86_REG_EIP = 7,
866 >        X86_REG_EAX = 5,
867 >        X86_REG_ECX = 4,
868 >        X86_REG_EDX = 3,
869 >        X86_REG_EBX = 2,
870 >        X86_REG_ESP = 10,
871 >        X86_REG_EBP = 6,
872 >        X86_REG_ESI = 1,
873 >        X86_REG_EDI = 0
874 > #endif
875 > };
876 > #endif
877 > // FIXME: this is partly redundant with the instruction decoding phase
878 > // to discover transfer type and register number
879 > static inline int ix86_step_over_modrm(unsigned char * p)
880 > {
881 >        int mod = (p[0] >> 6) & 3;
882 >        int rm = p[0] & 7;
883 >        int offset = 0;
884 >
885 >        // ModR/M Byte
886 >        switch (mod) {
887 >        case 0: // [reg]
888 >                if (rm == 5) return 4; // disp32
889                  break;
890 <        case 31:
891 <                switch(EXTRACT_OP2(instr)) {
892 <                case 86:    /* dcbf */
893 <                case 54:    /* dcbst */
894 <                case 1014:  /* dcbz */
895 <                case 247:   /* stbux */
896 <                case 215:   /* stbx */
897 <                case 759:   /* stfdux */
898 <                case 727:   /* stfdx */
899 <                case 983:   /* stfiwx */
900 <                case 695:   /* stfsux */
901 <                case 663:   /* stfsx */
902 <                case 918:   /* sthbrx */
903 <                case 439:   /* sthux */
904 <                case 407:   /* sthx */
905 <                case 661:   /* stswx */
906 <                case 662:   /* stwbrx */
907 <                case 150:   /* stwcx. */
908 <                case 183:   /* stwux */
909 <                case 151:   /* stwx */
910 <                case 135:   /* stvebx */
911 <                case 167:   /* stvehx */
912 <                case 199:   /* stvewx */
913 <                case 231:   /* stvx */
914 <                case 487:   /* stvxl */
915 <                        tmp = EXTRACT_REGA(instr);
916 <                        if(tmp > 0)
917 <                                baseA = regs[tmp];
918 <                        baseB = regs[EXTRACT_REGC(instr)];
919 <                        /* determine Altivec alignment mask */
920 <                        switch(EXTRACT_OP2(instr)) {
921 <                        case 167:   /* stvehx */
922 <                                alignmask = 0xFFFFFFFE;
923 <                                break;
924 <                        case 199:   /* stvewx */
925 <                                alignmask = 0xFFFFFFFC;
926 <                                break;
927 <                        case 231:   /* stvx */
928 <                                alignmask = 0xFFFFFFF0;
929 <                                break;
930 <                        case 487:  /* stvxl */
931 <                                alignmask = 0xFFFFFFF0;
932 <                                break;
890 >        case 1: // disp8[reg]
891 >                offset = 1;
892 >                break;
893 >        case 2: // disp32[reg]
894 >                offset = 4;
895 >                break;
896 >        case 3: // register
897 >                return 0;
898 >        }
899 >        
900 >        // SIB Byte
901 >        if (rm == 4) {
902 >                if (mod == 0 && (p[1] & 7) == 5)
903 >                        offset = 5; // disp32[index]
904 >                else
905 >                        offset++;
906 >        }
907 >
908 >        return offset;
909 > }
910 >
911 > static bool ix86_skip_instruction(unsigned long * regs)
912 > {
913 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
914 >
915 >        if (eip == 0)
916 >                return false;
917 > #ifdef _WIN32
918 >        if (IsBadCodePtr((FARPROC)eip))
919 >                return false;
920 > #endif
921 >        
922 >        enum instruction_type_t {
923 >                i_MOV,
924 >                i_ADD
925 >        };
926 >
927 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
928 >        transfer_size_t transfer_size = SIZE_LONG;
929 >        instruction_type_t instruction_type = i_MOV;
930 >        
931 >        int reg = -1;
932 >        int len = 0;
933 >
934 > #if DEBUG
935 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
936 >                   eip, eip[0], eip[1], eip[2], eip[3]);
937 > #endif
938 >
939 >        // Operand size prefix
940 >        if (*eip == 0x66) {
941 >                eip++;
942 >                len++;
943 >                transfer_size = SIZE_WORD;
944 >        }
945 >
946 >        // REX prefix
947 > #if defined(__x86_64__)
948 >        struct rex_t {
949 >                unsigned char W;
950 >                unsigned char R;
951 >                unsigned char X;
952 >                unsigned char B;
953 >        };
954 >        rex_t rex = { 0, 0, 0, 0 };
955 >        bool has_rex = false;
956 >        if ((*eip & 0xf0) == 0x40) {
957 >                has_rex = true;
958 >                const unsigned char b = *eip;
959 >                rex.W = b & (1 << 3);
960 >                rex.R = b & (1 << 2);
961 >                rex.X = b & (1 << 1);
962 >                rex.B = b & (1 << 0);
963 > #if DEBUG
964 >                printf("REX: %c,%c,%c,%c\n",
965 >                           rex.W ? 'W' : '_',
966 >                           rex.R ? 'R' : '_',
967 >                           rex.X ? 'X' : '_',
968 >                           rex.B ? 'B' : '_');
969 > #endif
970 >                eip++;
971 >                len++;
972 >                if (rex.W)
973 >                        transfer_size = SIZE_QUAD;
974 >        }
975 > #else
976 >        const bool has_rex = false;
977 > #endif
978 >
979 >        // Decode instruction
980 >        int op_len = 1;
981 >        int target_size = SIZE_UNKNOWN;
982 >        switch (eip[0]) {
983 >        case 0x0f:
984 >                target_size = transfer_size;
985 >            switch (eip[1]) {
986 >                case 0xbe: // MOVSX r32, r/m8
987 >            case 0xb6: // MOVZX r32, r/m8
988 >                        transfer_size = SIZE_BYTE;
989 >                        goto do_mov_extend;
990 >                case 0xbf: // MOVSX r32, r/m16
991 >            case 0xb7: // MOVZX r32, r/m16
992 >                        transfer_size = SIZE_WORD;
993 >                        goto do_mov_extend;
994 >                  do_mov_extend:
995 >                        op_len = 2;
996 >                        goto do_transfer_load;
997 >                }
998 >                break;
999 > #if defined(__x86_64__)
1000 >        case 0x63: // MOVSXD r64, r/m32
1001 >                if (has_rex && rex.W) {
1002 >                        transfer_size = SIZE_LONG;
1003 >                        target_size = SIZE_QUAD;
1004 >                }
1005 >                else if (transfer_size != SIZE_WORD) {
1006 >                        transfer_size = SIZE_LONG;
1007 >                        target_size = SIZE_QUAD;
1008 >                }
1009 >                goto do_transfer_load;
1010 > #endif
1011 >        case 0x02: // ADD r8, r/m8
1012 >                transfer_size = SIZE_BYTE;
1013 >        case 0x03: // ADD r32, r/m32
1014 >                instruction_type = i_ADD;
1015 >                goto do_transfer_load;
1016 >        case 0x8a: // MOV r8, r/m8
1017 >                transfer_size = SIZE_BYTE;
1018 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1019 >          do_transfer_load:
1020 >                switch (eip[op_len] & 0xc0) {
1021 >                case 0x80:
1022 >                        reg = (eip[op_len] >> 3) & 7;
1023 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1024 >                        break;
1025 >                case 0x40:
1026 >                        reg = (eip[op_len] >> 3) & 7;
1027 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1028 >                        break;
1029 >                case 0x00:
1030 >                        reg = (eip[op_len] >> 3) & 7;
1031 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1032 >                        break;
1033 >                }
1034 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1035 >                break;
1036 >        case 0x00: // ADD r/m8, r8
1037 >                transfer_size = SIZE_BYTE;
1038 >        case 0x01: // ADD r/m32, r32
1039 >                instruction_type = i_ADD;
1040 >                goto do_transfer_store;
1041 >        case 0x88: // MOV r/m8, r8
1042 >                transfer_size = SIZE_BYTE;
1043 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1044 >          do_transfer_store:
1045 >                switch (eip[op_len] & 0xc0) {
1046 >                case 0x80:
1047 >                        reg = (eip[op_len] >> 3) & 7;
1048 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1049 >                        break;
1050 >                case 0x40:
1051 >                        reg = (eip[op_len] >> 3) & 7;
1052 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1053 >                        break;
1054 >                case 0x00:
1055 >                        reg = (eip[op_len] >> 3) & 7;
1056 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1057 >                        break;
1058 >                }
1059 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1060 >                break;
1061 >        }
1062 >        if (target_size == SIZE_UNKNOWN)
1063 >                target_size = transfer_size;
1064 >
1065 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1066 >                // Unknown machine code, let it crash. Then patch the decoder
1067 >                return false;
1068 >        }
1069 >
1070 > #if defined(__x86_64__)
1071 >        if (rex.R)
1072 >                reg += 8;
1073 > #endif
1074 >
1075 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1076 >                static const int x86_reg_map[] = {
1077 >                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1078 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1079 > #if defined(__x86_64__)
1080 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1081 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1082 > #endif
1083 >                };
1084 >                
1085 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1086 >                        return false;
1087 >
1088 >                // Set 0 to the relevant register part
1089 >                // NOTE: this is only valid for MOV alike instructions
1090 >                int rloc = x86_reg_map[reg];
1091 >                switch (target_size) {
1092 >                case SIZE_BYTE:
1093 >                        if (has_rex || reg < 4)
1094 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1095 >                        else {
1096 >                                rloc = x86_reg_map[reg - 4];
1097 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1098                          }
1099                          break;
1100 <                case 725:   /* stswi */
1101 <                        tmp = EXTRACT_REGA(instr);
252 <                        if(tmp > 0)
253 <                                baseA = regs[tmp];
1100 >                case SIZE_WORD:
1101 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1102                          break;
1103 <                default:   /* ignore instruction */
1104 <                        return 0;
1103 >                case SIZE_LONG:
1104 >                case SIZE_QUAD: // zero-extension
1105 >                        regs[rloc] = 0;
1106                          break;
1107                  }
1108 +        }
1109 +
1110 + #if DEBUG
1111 +        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1112 +                   transfer_size == SIZE_BYTE ? "byte" :
1113 +                   transfer_size == SIZE_WORD ? "word" :
1114 +                   transfer_size == SIZE_LONG ? "long" :
1115 +                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1116 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1117 +        
1118 +        if (reg != -1) {
1119 +                static const char * x86_byte_reg_str_map[] = {
1120 +                        "al",   "cl",   "dl",   "bl",
1121 +                        "spl",  "bpl",  "sil",  "dil",
1122 +                        "r8b",  "r9b",  "r10b", "r11b",
1123 +                        "r12b", "r13b", "r14b", "r15b",
1124 +                        "ah",   "ch",   "dh",   "bh",
1125 +                };
1126 +                static const char * x86_word_reg_str_map[] = {
1127 +                        "ax",   "cx",   "dx",   "bx",
1128 +                        "sp",   "bp",   "si",   "di",
1129 +                        "r8w",  "r9w",  "r10w", "r11w",
1130 +                        "r12w", "r13w", "r14w", "r15w",
1131 +                };
1132 +                static const char *x86_long_reg_str_map[] = {
1133 +                        "eax",  "ecx",  "edx",  "ebx",
1134 +                        "esp",  "ebp",  "esi",  "edi",
1135 +                        "r8d",  "r9d",  "r10d", "r11d",
1136 +                        "r12d", "r13d", "r14d", "r15d",
1137 +                };
1138 +                static const char *x86_quad_reg_str_map[] = {
1139 +                        "rax", "rcx", "rdx", "rbx",
1140 +                        "rsp", "rbp", "rsi", "rdi",
1141 +                        "r8",  "r9",  "r10", "r11",
1142 +                        "r12", "r13", "r14", "r15",
1143 +                };
1144 +                const char * reg_str = NULL;
1145 +                switch (target_size) {
1146 +                case SIZE_BYTE:
1147 +                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1148 +                        break;
1149 +                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1150 +                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1151 +                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1152 +                }
1153 +                if (reg_str)
1154 +                        printf(" %s register %%%s",
1155 +                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1156 +                                   reg_str);
1157 +        }
1158 +        printf(", %d bytes instruction\n", len);
1159 + #endif
1160 +        
1161 +        regs[X86_REG_EIP] += len;
1162 +        return true;
1163 + }
1164 + #endif
1165 +
1166 + // Decode and skip IA-64 instruction
1167 + #if defined(__ia64__)
1168 + #if defined(__linux__)
1169 + // XXX: we assume everything is 8-byte aligned
1170 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
1171 + #define IREG(REG) ((OREG(REG) - OREG(flags)) / 8)
1172 + enum {
1173 +        IA64_REG_IP  = IREG(ip),
1174 +        IA64_REG_NAT = IREG(nat),
1175 +        IA64_REG_PR  = IREG(pr),
1176 +        IA64_REG_GR  = IREG(gr)
1177 + };
1178 + #undef IREG
1179 + #undef OREG
1180 + #endif
1181 +
1182 + // Helper macros to access the machine context
1183 + #define IA64_CONTEXT                    (ctx)
1184 + #define IA64_GET_PR(P)                  ((IA64_CONTEXT[IA64_REG_PR] >> (P)) & 1)
1185 + #define IA64_GET_NAT(I)                 ((IA64_CONTEXT[IA64_REG_NAT] >> (I)) & 1)
1186 + #define IA64_SET_NAT(I,V)               (IA64_CONTEXT[IA64_REG_NAT] = (IA64_CONTEXT[IA64_REG_NAT] & ~(1ul << (I))) | (((unsigned long)!!(V)) << (I)))
1187 + #define IA64_GET_GR(R)                  (IA64_CONTEXT[IA64_REG_GR + (R)])
1188 + #define IA64_SET_GR(R,V)                (IA64_CONTEXT[IA64_REG_GR + (R)] = (V))
1189 +
1190 + // Instruction operations
1191 + enum {
1192 +        IA64_INST_UNKNOWN = 0,
1193 +        IA64_INST_LD1,                          // ld1 op0=[op1]
1194 +        IA64_INST_LD1_UPDATE,           // ld1 op0=[op1],op2
1195 +        IA64_INST_LD2,                          // ld2 op0=[op1]
1196 +        IA64_INST_LD2_UPDATE,           // ld2 op0=[op1],op2
1197 +        IA64_INST_LD4,                          // ld4 op0=[op1]
1198 +        IA64_INST_LD4_UPDATE,           // ld4 op0=[op1],op2
1199 +        IA64_INST_LD8,                          // ld8 op0=[op1]
1200 +        IA64_INST_LD8_UPDATE,           // ld8 op0=[op1],op2
1201 +        IA64_INST_ST1,                          // st1 [op0]=op1
1202 +        IA64_INST_ST1_UPDATE,           // st1 [op0]=op1,op2
1203 +        IA64_INST_ST2,                          // st2 [op0]=op1
1204 +        IA64_INST_ST2_UPDATE,           // st2 [op0]=op1,op2
1205 +        IA64_INST_ST4,                          // st4 [op0]=op1
1206 +        IA64_INST_ST4_UPDATE,           // st4 [op0]=op1,op2
1207 +        IA64_INST_ST8,                          // st8 [op0]=op1
1208 +        IA64_INST_ST8_UPDATE,           // st8 [op0]=op1,op2
1209 +        IA64_INST_ADD,                          // add op0=op1,op2,op3
1210 +        IA64_INST_SUB,                          // sub op0=op1,op2,op3
1211 +        IA64_INST_SHLADD,                       // shladd op0=op1,op3,op2
1212 +        IA64_INST_AND,                          // and op0=op1,op2
1213 +        IA64_INST_ANDCM,                        // andcm op0=op1,op2
1214 +        IA64_INST_OR,                           // or op0=op1,op2
1215 +        IA64_INST_XOR,                          // xor op0=op1,op2
1216 +        IA64_INST_SXT1,                         // sxt1 op0=op1
1217 +        IA64_INST_SXT2,                         // sxt2 op0=op1
1218 +        IA64_INST_SXT4,                         // sxt4 op0=op1
1219 +        IA64_INST_ZXT1,                         // zxt1 op0=op1
1220 +        IA64_INST_ZXT2,                         // zxt2 op0=op1
1221 +        IA64_INST_ZXT4,                         // zxt4 op0=op1
1222 +        IA64_INST_NOP                           // nop op0
1223 + };
1224 +
1225 + const int IA64_N_OPERANDS = 4;
1226 +
1227 + // Decoded operand type
1228 + struct ia64_operand_t {
1229 +        unsigned char commit;           // commit result of operation to register file?
1230 +        unsigned char valid;            // XXX: not really used, can be removed (debug)
1231 +        signed char index;                      // index of GPR, or -1 if immediate value
1232 +        unsigned char nat;                      // NaT state before operation
1233 +        unsigned long value;            // register contents or immediate value
1234 + };
1235 +
1236 + // Decoded instruction type
1237 + struct ia64_instruction_t {
1238 +        unsigned char mnemo;            // operation to perform
1239 +        unsigned char pred;                     // predicate register to check
1240 +        unsigned char no_memory;        // used to emulated main fault instruction
1241 +        unsigned long inst;                     // the raw instruction bits (41-bit wide)
1242 +        ia64_operand_t operands[IA64_N_OPERANDS];
1243 + };
1244 +
1245 + // Get immediate sign-bit
1246 + static inline int ia64_inst_get_sbit(unsigned long inst)
1247 + {
1248 +        return (inst >> 36) & 1;
1249 + }
1250 +
1251 + // Get 8-bit immediate value (A3, A8, I27, M30)
1252 + static inline unsigned long ia64_inst_get_imm8(unsigned long inst)
1253 + {
1254 +        unsigned long value = (inst >> 13) & 0x7ful;
1255 +        if (ia64_inst_get_sbit(inst))
1256 +                value |= ~0x7ful;
1257 +        return value;
1258 + }
1259 +
1260 + // Get 9-bit immediate value (M3)
1261 + static inline unsigned long ia64_inst_get_imm9b(unsigned long inst)
1262 + {
1263 +        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f);
1264 +        if (ia64_inst_get_sbit(inst))
1265 +                value |= ~0xfful;
1266 +        return value;
1267 + }
1268 +
1269 + // Get 9-bit immediate value (M5)
1270 + static inline unsigned long ia64_inst_get_imm9a(unsigned long inst)
1271 + {
1272 +        unsigned long value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f);
1273 +        if (ia64_inst_get_sbit(inst))
1274 +                value |= ~0xfful;
1275 +        return value;
1276 + }
1277 +
1278 + // Get 14-bit immediate value (A4)
1279 + static inline unsigned long ia64_inst_get_imm14(unsigned long inst)
1280 + {
1281 +        unsigned long value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f);
1282 +        if (ia64_inst_get_sbit(inst))
1283 +                value |= ~0x1fful;
1284 +        return value;
1285 + }
1286 +
1287 + // Get 22-bit immediate value (A5)
1288 + static inline unsigned long ia64_inst_get_imm22(unsigned long inst)
1289 + {
1290 +        unsigned long value = ((((inst >> 22) & 0x1f) << 16) |
1291 +                                                   (((inst >> 27) & 0x1ff) << 7) |
1292 +                                                   (inst & 0x7f));
1293 +        if (ia64_inst_get_sbit(inst))
1294 +                value |= ~0x1ffffful;
1295 +        return value;
1296 + }
1297 +
1298 + // Get 21-bit immediate value (I19)
1299 + static inline unsigned long ia64_inst_get_imm21(unsigned long inst)
1300 + {
1301 +        return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff);
1302 + }
1303 +
1304 + // Get 2-bit count value (A2)
1305 + static inline int ia64_inst_get_count2(unsigned long inst)
1306 + {
1307 +        return (inst >> 27) & 0x3;
1308 + }
1309 +
1310 + // Get bundle template
1311 + static inline unsigned int ia64_get_template(unsigned long raw_ip)
1312 + {
1313 +        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1314 +        return ip[0] & 0x1f;
1315 + }
1316 +
1317 + // Get specified instruction in bundle
1318 + static unsigned long ia64_get_instruction(unsigned long raw_ip, int slot)
1319 + {
1320 +        unsigned long inst;
1321 +        unsigned long *ip = (unsigned long *)(raw_ip & ~3ul);
1322 + #if DEBUG
1323 +        printf("Bundle: %016lx%016lx\n", ip[1], ip[0]);
1324 + #endif
1325 +
1326 +        switch (slot) {
1327 +        case 0:
1328 +                inst = (ip[0] >> 5) & 0x1fffffffffful;
1329 +                break;
1330 +        case 1:
1331 +                inst = ((ip[1] & 0x7ffffful) << 18) | ((ip[0] >> 46) & 0x3fffful);
1332 +                break;
1333 +        case 2:
1334 +                inst = (ip[1] >> 23) & 0x1fffffffffful;
1335 +                break;
1336 +        case 3:
1337 +                fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot);
1338 +                abort();
1339 +                break;
1340 +        }
1341 +
1342 + #if DEBUG
1343 +        printf(" Instruction %d: 0x%016lx\n", slot, inst);
1344 + #endif
1345 +        return inst;
1346 + }
1347 +
1348 + // Decode group 0 instructions
1349 + static bool ia64_decode_instruction_0(ia64_instruction_t *inst, unsigned long *ctx)
1350 + {
1351 +        const int r1 = (inst->inst >>  6) & 0x7f;
1352 +        const int r3 = (inst->inst >> 20) & 0x7f;
1353 +
1354 +        const int x3 = (inst->inst >> 33) & 0x07;
1355 +        const int x6 = (inst->inst >> 27) & 0x3f;
1356 +        const int x2 = (inst->inst >> 31) & 0x03;
1357 +        const int x4 = (inst->inst >> 27) & 0x0f;
1358 +
1359 +        if (x3 == 0) {
1360 +                switch (x6) {
1361 +                case 0x01:                                              // nop.i (I19)
1362 +                        inst->mnemo = IA64_INST_NOP;
1363 +                        inst->operands[0].valid = true;
1364 +                        inst->operands[0].index = -1;
1365 +                        inst->operands[0].value = ia64_inst_get_imm21(inst->inst);
1366 +                        return true;
1367 +                case 0x14:                                              // sxt1 (I29)
1368 +                case 0x15:                                              // sxt2 (I29)
1369 +                case 0x16:                                              // sxt4 (I29)
1370 +                case 0x10:                                              // zxt1 (I29)
1371 +                case 0x11:                                              // zxt2 (I29)
1372 +                case 0x12:                                              // zxt4 (I29)
1373 +                        switch (x6) {
1374 +                        case 0x14: inst->mnemo = IA64_INST_SXT1; break;
1375 +                        case 0x15: inst->mnemo = IA64_INST_SXT2; break;
1376 +                        case 0x16: inst->mnemo = IA64_INST_SXT4; break;
1377 +                        case 0x10: inst->mnemo = IA64_INST_ZXT1; break;
1378 +                        case 0x11: inst->mnemo = IA64_INST_ZXT2; break;
1379 +                        case 0x12: inst->mnemo = IA64_INST_ZXT4; break;
1380 +                        default: abort();
1381 +                        }
1382 +                        inst->operands[0].valid = true;
1383 +                        inst->operands[0].index = r1;
1384 +                        inst->operands[1].valid = true;
1385 +                        inst->operands[1].index = r3;
1386 +                        inst->operands[1].value = IA64_GET_GR(r3);
1387 +                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1388 +                        return true;
1389 +                }
1390 +        }
1391 +        return false;
1392 + }
1393 +
1394 + // Decode group 4 instructions (load/store instructions)
1395 + static bool ia64_decode_instruction_4(ia64_instruction_t *inst, unsigned long *ctx)
1396 + {
1397 +        const int r1 = (inst->inst >> 6) & 0x7f;
1398 +        const int r2 = (inst->inst >> 13) & 0x7f;
1399 +        const int r3 = (inst->inst >> 20) & 0x7f;
1400 +
1401 +        const int m  = (inst->inst >> 36) & 1;
1402 +        const int x  = (inst->inst >> 27) & 1;
1403 +        const int x6 = (inst->inst >> 30) & 0x3f;
1404 +
1405 +        switch (x6) {
1406 +        case 0x00:
1407 +        case 0x01:
1408 +        case 0x02:
1409 +        case 0x03:
1410 +                if (x == 0) {
1411 +                        inst->operands[0].valid = true;
1412 +                        inst->operands[0].index = r1;
1413 +                        inst->operands[1].valid = true;
1414 +                        inst->operands[1].index = r3;
1415 +                        inst->operands[1].value = IA64_GET_GR(r3);
1416 +                        inst->operands[1].nat   = IA64_GET_NAT(r3);
1417 +                        if (m == 0) {
1418 +                                switch (x6) {
1419 +                                case 0x00: inst->mnemo = IA64_INST_LD1; break;
1420 +                                case 0x01: inst->mnemo = IA64_INST_LD2; break;
1421 +                                case 0x02: inst->mnemo = IA64_INST_LD4; break;
1422 +                                case 0x03: inst->mnemo = IA64_INST_LD8; break;
1423 +                                }
1424 +                        }
1425 +                        else {
1426 +                                inst->operands[2].valid = true;
1427 +                                inst->operands[2].index = r2;
1428 +                                inst->operands[2].value = IA64_GET_GR(r2);
1429 +                                inst->operands[2].nat   = IA64_GET_NAT(r2);
1430 +                                switch (x6) {
1431 +                                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1432 +                                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1433 +                                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1434 +                                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1435 +                                }
1436 +                        }
1437 +                        return true;
1438 +                }
1439                  break;
1440 <        default:   /* ignore instruction */
1441 <                return 0;
1440 >        case 0x30:
1441 >        case 0x31:
1442 >        case 0x32:
1443 >        case 0x33:
1444 >                if (m == 0 && x == 0) {
1445 >                        inst->operands[0].valid = true;
1446 >                        inst->operands[0].index = r3;
1447 >                        inst->operands[0].value = IA64_GET_GR(r3);
1448 >                        inst->operands[0].nat   = IA64_GET_NAT(r3);
1449 >                        inst->operands[1].valid = true;
1450 >                        inst->operands[1].index = r2;
1451 >                        inst->operands[1].value = IA64_GET_GR(r2);
1452 >                        inst->operands[1].nat   = IA64_GET_NAT(r2);
1453 >                        switch (x6) {
1454 >                        case 0x30: inst->mnemo = IA64_INST_ST1; break;
1455 >                        case 0x31: inst->mnemo = IA64_INST_ST2; break;
1456 >                        case 0x32: inst->mnemo = IA64_INST_ST4; break;
1457 >                        case 0x33: inst->mnemo = IA64_INST_ST8; break;
1458 >                        }
1459 >                        return true;
1460 >                }
1461                  break;
1462          }
1463 +        return false;
1464 + }
1465 +
1466 + // Decode group 5 instructions (load/store instructions)
1467 + static bool ia64_decode_instruction_5(ia64_instruction_t *inst, unsigned long *ctx)
1468 + {
1469 +        const int r1 = (inst->inst >> 6) & 0x7f;
1470 +        const int r2 = (inst->inst >> 13) & 0x7f;
1471 +        const int r3 = (inst->inst >> 20) & 0x7f;
1472 +
1473 +        const int x6 = (inst->inst >> 30) & 0x3f;
1474 +
1475 +        switch (x6) {
1476 +        case 0x00:
1477 +        case 0x01:
1478 +        case 0x02:
1479 +        case 0x03:
1480 +                inst->operands[0].valid = true;
1481 +                inst->operands[0].index = r1;
1482 +                inst->operands[1].valid = true;
1483 +                inst->operands[1].index = r3;
1484 +                inst->operands[1].value = IA64_GET_GR(r3);
1485 +                inst->operands[1].nat   = IA64_GET_NAT(r3);
1486 +                inst->operands[2].valid = true;
1487 +                inst->operands[2].index = -1;
1488 +                inst->operands[2].value = ia64_inst_get_imm9b(inst->inst);
1489 +                inst->operands[2].nat   = 0;
1490 +                switch (x6) {
1491 +                case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break;
1492 +                case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break;
1493 +                case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break;
1494 +                case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break;
1495 +                }
1496 +                return true;
1497 +        case 0x30:
1498 +        case 0x31:
1499 +        case 0x32:
1500 +        case 0x33:
1501 +                inst->operands[0].valid = true;
1502 +                inst->operands[0].index = r3;
1503 +                inst->operands[0].value = IA64_GET_GR(r3);
1504 +                inst->operands[0].nat   = IA64_GET_NAT(r3);
1505 +                inst->operands[1].valid = true;
1506 +                inst->operands[1].index = r2;
1507 +                inst->operands[1].value = IA64_GET_GR(r2);
1508 +                inst->operands[1].nat   = IA64_GET_NAT(r2);
1509 +                inst->operands[2].valid = true;
1510 +                inst->operands[2].index = -1;
1511 +                inst->operands[2].value = ia64_inst_get_imm9a(inst->inst);
1512 +                inst->operands[2].nat   = 0;
1513 +                switch (x6) {
1514 +                case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break;
1515 +                case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break;
1516 +                case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break;
1517 +                case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break;
1518 +                }
1519 +                return true;
1520 +        }
1521 +        return false;
1522 + }
1523 +
1524 + // Decode group 8 instructions (ALU integer)
1525 + static bool ia64_decode_instruction_8(ia64_instruction_t *inst, unsigned long *ctx)
1526 + {
1527 +        const int r1  = (inst->inst >> 6) & 0x7f;
1528 +        const int r2  = (inst->inst >> 13) & 0x7f;
1529 +        const int r3  = (inst->inst >> 20) & 0x7f;
1530 +
1531 +        const int x2a = (inst->inst >> 34) & 0x3;
1532 +        const int x2b = (inst->inst >> 27) & 0x3;
1533 +        const int x4  = (inst->inst >> 29) & 0xf;
1534 +        const int ve  = (inst->inst >> 33) & 0x1;
1535 +
1536 +        // destination register (r1) is always valid in this group
1537 +        inst->operands[0].valid = true;
1538 +        inst->operands[0].index = r1;
1539 +
1540 +        // source register (r3) is always valid in this group
1541 +        inst->operands[2].valid = true;
1542 +        inst->operands[2].index = r3;
1543 +        inst->operands[2].value = IA64_GET_GR(r3);
1544 +        inst->operands[2].nat   = IA64_GET_NAT(r3);
1545 +
1546 +        if (x2a == 0 && ve == 0) {
1547 +                inst->operands[1].valid = true;
1548 +                inst->operands[1].index = r2;
1549 +                inst->operands[1].value = IA64_GET_GR(r2);
1550 +                inst->operands[1].nat   = IA64_GET_NAT(r2);
1551 +                switch (x4) {
1552 +                case 0x0:                               // add (A1)
1553 +                        inst->mnemo = IA64_INST_ADD;
1554 +                        inst->operands[3].valid = true;
1555 +                        inst->operands[3].index = -1;
1556 +                        inst->operands[3].value = x2b == 1;
1557 +                        return true;
1558 +                case 0x1:                               // add (A1)
1559 +                        inst->mnemo = IA64_INST_SUB;
1560 +                        inst->operands[3].valid = true;
1561 +                        inst->operands[3].index = -1;
1562 +                        inst->operands[3].value = x2b == 0;
1563 +                        return true;
1564 +                case 0x4:                               // shladd (A2)
1565 +                        inst->mnemo = IA64_INST_SHLADD;
1566 +                        inst->operands[3].valid = true;
1567 +                        inst->operands[3].index = -1;
1568 +                        inst->operands[3].value = ia64_inst_get_count2(inst->inst);
1569 +                        return true;
1570 +                case 0x9:
1571 +                        if (x2b == 1) {
1572 +                                inst->mnemo = IA64_INST_SUB;
1573 +                                inst->operands[1].index = -1;
1574 +                                inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1575 +                                inst->operands[1].nat   = 0;
1576 +                                return true;
1577 +                        }
1578 +                        break;
1579 +                case 0xb:
1580 +                        inst->operands[1].index = -1;
1581 +                        inst->operands[1].value = ia64_inst_get_imm8(inst->inst);
1582 +                        inst->operands[1].nat   = 0;
1583 +                        // fall-through
1584 +                case 0x3:
1585 +                        switch (x2b) {
1586 +                        case 0: inst->mnemo = IA64_INST_AND;   break;
1587 +                        case 1: inst->mnemo = IA64_INST_ANDCM; break;
1588 +                        case 2: inst->mnemo = IA64_INST_OR;    break;
1589 +                        case 3: inst->mnemo = IA64_INST_XOR;   break;
1590 +                        }
1591 +                        return true;
1592 +                }
1593 +        }
1594 +        return false;
1595 + }
1596 +
1597 + // Decode instruction
1598 + static bool ia64_decode_instruction(ia64_instruction_t *inst, unsigned long *ctx)
1599 + {
1600 +        const int major = (inst->inst >> 37) & 0xf;
1601 +
1602 +        inst->mnemo = IA64_INST_UNKNOWN;
1603 +        inst->pred  = inst->inst & 0x3f;
1604 +        memset(&inst->operands[0], 0, sizeof(inst->operands));
1605 +
1606 +        switch (major) {
1607 +        case 0x0: return ia64_decode_instruction_0(inst, ctx);
1608 +        case 0x4: return ia64_decode_instruction_4(inst, ctx);
1609 +        case 0x5: return ia64_decode_instruction_5(inst, ctx);
1610 +        case 0x8: return ia64_decode_instruction_8(inst, ctx);
1611 +        }
1612 +        return false;
1613 + }
1614 +
1615 + static bool ia64_emulate_instruction(ia64_instruction_t *inst, unsigned long *ctx)
1616 + {
1617 +        // XXX: handle Register NaT Consumption fault?
1618 +        // XXX: this simple emulator assumes instructions in a bundle
1619 +        // don't depend on effects of other instructions in the same
1620 +        // bundle. It probably would be simpler to JIT-generate code to be
1621 +        // executed natively but probably more costly (inject/extract CPU state)
1622 +        if (inst->mnemo == IA64_INST_UNKNOWN)
1623 +                return false;
1624 +        if (inst->pred && !IA64_GET_PR(inst->pred))
1625 +                return true;
1626 +
1627 +        unsigned char nat, nat2;
1628 +        unsigned long dst, dst2, src1, src2, src3;
1629 +
1630 +        switch (inst->mnemo) {
1631 +        case IA64_INST_NOP:
1632 +                break;
1633 +        case IA64_INST_ADD:
1634 +        case IA64_INST_SUB:
1635 +        case IA64_INST_SHLADD:
1636 +                src3 = inst->operands[3].value;
1637 +                // fall-through
1638 +        case IA64_INST_AND:
1639 +        case IA64_INST_ANDCM:
1640 +        case IA64_INST_OR:
1641 +        case IA64_INST_XOR:
1642 +                src1 = inst->operands[1].value;
1643 +                src2 = inst->operands[2].value;
1644 +                switch (inst->mnemo) {
1645 +                case IA64_INST_ADD:   dst = src1 + src2 + src3; break;
1646 +                case IA64_INST_SUB:   dst = src1 - src2 - src3; break;
1647 +                case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break;
1648 +                case IA64_INST_AND:   dst = src1 & src2;                break;
1649 +                case IA64_INST_ANDCM: dst = src1 &~ src2;               break;
1650 +                case IA64_INST_OR:    dst = src1 | src2;                break;
1651 +                case IA64_INST_XOR:   dst = src1 ^ src2;                break;
1652 +                }
1653 +                inst->operands[0].commit = true;
1654 +                inst->operands[0].value  = dst;
1655 +                inst->operands[0].nat    = inst->operands[1].nat | inst->operands[2].nat;
1656 +                break;
1657 +        case IA64_INST_SXT1:
1658 +        case IA64_INST_SXT2:
1659 +        case IA64_INST_SXT4:
1660 +        case IA64_INST_ZXT1:
1661 +        case IA64_INST_ZXT2:
1662 +        case IA64_INST_ZXT4:
1663 +                src1 = inst->operands[1].value;
1664 +                switch (inst->mnemo) {
1665 +                case IA64_INST_SXT1: dst = (signed long)(signed char)src1;              break;
1666 +                case IA64_INST_SXT2: dst = (signed long)(signed short)src1;             break;
1667 +                case IA64_INST_SXT4: dst = (signed long)(signed int)src1;               break;
1668 +                case IA64_INST_ZXT1: dst = (unsigned char)src1;                                 break;
1669 +                case IA64_INST_ZXT2: dst = (unsigned short)src1;                                break;
1670 +                case IA64_INST_ZXT4: dst = (unsigned int)src1;                                  break;
1671 +                }
1672 +                inst->operands[0].commit = true;
1673 +                inst->operands[0].value  = dst;
1674 +                inst->operands[0].nat    = inst->operands[1].nat;
1675 +                break;
1676 +        case IA64_INST_LD1_UPDATE:
1677 +        case IA64_INST_LD2_UPDATE:
1678 +        case IA64_INST_LD4_UPDATE:
1679 +        case IA64_INST_LD8_UPDATE:
1680 +                inst->operands[1].commit = true;
1681 +                dst2 = inst->operands[1].value + inst->operands[2].value;
1682 +                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1683 +                // fall-through
1684 +        case IA64_INST_LD1:
1685 +        case IA64_INST_LD2:
1686 +        case IA64_INST_LD4:
1687 +        case IA64_INST_LD8:
1688 +                src1 = inst->operands[1].value;
1689 +                if (inst->no_memory)
1690 +                        dst = 0;
1691 +                else {
1692 +                        switch (inst->mnemo) {
1693 +                        case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((unsigned char *)src1);  break;
1694 +                        case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((unsigned short *)src1); break;
1695 +                        case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((unsigned int *)src1);   break;
1696 +                        case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((unsigned long *)src1);  break;
1697 +                        }
1698 +                }
1699 +                inst->operands[0].commit = true;
1700 +                inst->operands[0].value  = dst;
1701 +                inst->operands[0].nat    = 0;
1702 +                inst->operands[1].value  = dst2;
1703 +                inst->operands[1].nat    = nat2;
1704 +                break;
1705 +        case IA64_INST_ST1_UPDATE:
1706 +        case IA64_INST_ST2_UPDATE:
1707 +        case IA64_INST_ST4_UPDATE:
1708 +        case IA64_INST_ST8_UPDATE:
1709 +                inst->operands[0].commit = 0;
1710 +                dst2 = inst->operands[0].value + inst->operands[2].value;
1711 +                nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0;
1712 +                // fall-through
1713 +        case IA64_INST_ST1:
1714 +        case IA64_INST_ST2:
1715 +        case IA64_INST_ST4:
1716 +        case IA64_INST_ST8:
1717 +                dst  = inst->operands[0].value;
1718 +                src1 = inst->operands[1].value;
1719 +                if (!inst->no_memory) {
1720 +                        switch (inst->mnemo) {
1721 +                        case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((unsigned char *)dst) = src1;  break;
1722 +                        case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((unsigned short *)dst) = src1; break;
1723 +                        case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((unsigned int *)dst) = src1;   break;
1724 +                        case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((unsigned long *)dst) = src1;  break;
1725 +                        }
1726 +                }
1727 +                inst->operands[0].value  = dst2;
1728 +                inst->operands[0].nat    = nat2;
1729 +                break;
1730 +        default:
1731 +                return false;
1732 +        }
1733 +
1734 +        for (int i = 0; i < IA64_N_OPERANDS; i++) {
1735 +                ia64_operand_t const & op = inst->operands[i];
1736 +                if (!op.commit)
1737 +                        continue;
1738 +                if (op.index == -1)
1739 +                        return false; // XXX: internal error
1740 +                IA64_SET_GR(op.index, op.value);
1741 +                IA64_SET_NAT(op.index, op.nat);
1742 +        }
1743 +        return true;
1744 + }
1745 +
1746 + static bool ia64_emulate_instruction(unsigned long raw_inst, unsigned long *ctx)
1747 + {
1748 +        ia64_instruction_t inst;
1749 +        memset(&inst, 0, sizeof(inst));
1750 +        inst.inst = raw_inst;
1751 +        if (!ia64_decode_instruction(&inst, ctx))
1752 +                return false;
1753 +        return ia64_emulate_instruction(&inst, ctx);
1754 + }
1755 +
1756 + static bool ia64_skip_instruction(unsigned long *ctx)
1757 + {
1758 +        unsigned long ip = ctx[IA64_REG_IP];
1759 + #if DEBUG
1760 +        printf("IP: 0x%016lx\n", ip);
1761 + #if 0
1762 +        printf(" Template 0x%02x\n", ia64_get_template(ip));
1763 +        ia64_get_instruction(ip, 0);
1764 +        ia64_get_instruction(ip, 1);
1765 +        ia64_get_instruction(ip, 2);
1766 + #endif
1767 + #endif
1768 +
1769 +        // Select which decode switch to use
1770 +        ia64_instruction_t inst;
1771 +        inst.inst = ia64_get_instruction(ip, ip & 3);
1772 +        if (!ia64_decode_instruction(&inst, ctx)) {
1773 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n");
1774 +                return false;
1775 +        }
1776 +
1777 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1778 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
1779 +
1780 +        switch (inst.mnemo) {
1781 +        case IA64_INST_LD1:
1782 +        case IA64_INST_LD2:
1783 +        case IA64_INST_LD4:
1784 +        case IA64_INST_LD8:
1785 +        case IA64_INST_LD1_UPDATE:
1786 +        case IA64_INST_LD2_UPDATE:
1787 +        case IA64_INST_LD4_UPDATE:
1788 +        case IA64_INST_LD8_UPDATE:
1789 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
1790 +                break;
1791 +        case IA64_INST_ST1:
1792 +        case IA64_INST_ST2:
1793 +        case IA64_INST_ST4:
1794 +        case IA64_INST_ST8:
1795 +        case IA64_INST_ST1_UPDATE:
1796 +        case IA64_INST_ST2_UPDATE:
1797 +        case IA64_INST_ST4_UPDATE:
1798 +        case IA64_INST_ST8_UPDATE:
1799 +                transfer_type = SIGSEGV_TRANSFER_STORE;
1800 +                break;
1801 +        }
1802 +
1803 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1804 +                // Unknown machine code, let it crash. Then patch the decoder
1805 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n");
1806 +                return false;
1807 +        }
1808 +
1809 +        switch (inst.mnemo) {
1810 +        case IA64_INST_LD1:
1811 +        case IA64_INST_LD1_UPDATE:
1812 +        case IA64_INST_ST1:
1813 +        case IA64_INST_ST1_UPDATE:
1814 +                transfer_size = SIZE_BYTE;
1815 +                break;
1816 +        case IA64_INST_LD2:
1817 +        case IA64_INST_LD2_UPDATE:
1818 +        case IA64_INST_ST2:
1819 +        case IA64_INST_ST2_UPDATE:
1820 +                transfer_size = SIZE_WORD;
1821 +                break;
1822 +        case IA64_INST_LD4:
1823 +        case IA64_INST_LD4_UPDATE:
1824 +        case IA64_INST_ST4:
1825 +        case IA64_INST_ST4_UPDATE:
1826 +                transfer_size = SIZE_LONG;
1827 +                break;
1828 +        case IA64_INST_LD8:
1829 +        case IA64_INST_LD8_UPDATE:
1830 +        case IA64_INST_ST8:
1831 +        case IA64_INST_ST8_UPDATE:
1832 +                transfer_size = SIZE_QUAD;
1833 +                break;
1834 +        }
1835 +
1836 +        if (transfer_size == SIZE_UNKNOWN) {
1837 +                // Unknown machine code, let it crash. Then patch the decoder
1838 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n");
1839 +                return false;
1840 +        }
1841 +
1842 +        inst.no_memory = true;
1843 +        if (!ia64_emulate_instruction(&inst, ctx)) {
1844 +                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n");
1845 +                return false;
1846 +        }
1847 +
1848 +        int slot = ip & 3;
1849 +        bool emulate_next = false;
1850 +        switch (slot) {
1851 +        case 0:
1852 +                switch (ia64_get_template(ip)) {
1853 +                case 0x2: // MI;I
1854 +                case 0x3: // MI;I;
1855 +                        emulate_next = true;
1856 +                        slot = 2;
1857 +                        break;
1858 +                case 0xa: // M;MI
1859 +                case 0xb: // M;MI;
1860 +                        emulate_next = true;
1861 +                        slot = 1;
1862 +                        break;
1863 +                }
1864 +                break;
1865 +        }
1866 +        if (emulate_next) {
1867 +                while (slot < 3) {
1868 +                        if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), ctx)) {
1869 +                                fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n");
1870 +                                return false;
1871 +                        }
1872 +                        ++slot;
1873 +                }
1874 +        }
1875 +
1876 +        ctx[IA64_REG_IP] = (ip & ~3ul) + 16;
1877 + #if DEBUG
1878 +        printf("IP: 0x%016lx\n", ctx[IA64_REG_IP]);
1879 + #endif
1880 +        return true;
1881 + }
1882 + #endif
1883 +
1884 + // Decode and skip PPC instruction
1885 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1886 + static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1887 + {
1888 +        instruction_t instr;
1889 +        powerpc_decode_instruction(&instr, *nip_p, regs);
1890 +        
1891 +        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1892 +                // Unknown machine code, let it crash. Then patch the decoder
1893 +                return false;
1894 +        }
1895 +
1896 + #if DEBUG
1897 +        printf("%08x: %s %s access", *nip_p,
1898 +                   instr.transfer_size == SIZE_BYTE ? "byte" :
1899 +                   instr.transfer_size == SIZE_WORD ? "word" :
1900 +                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1901 +                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1902 +        
1903 +        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1904 +                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1905 +        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1906 +                printf(" r%d (rd = 0)\n", instr.rd);
1907 + #endif
1908          
1909 <        addr = (baseA + baseB) + disp;
1910 <        addr &= alignmask;
1911 <        return (sigsegv_address_t)addr;
1909 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1910 >                regs[instr.ra] = instr.addr;
1911 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1912 >                regs[instr.rd] = 0;
1913 >        
1914 >        *nip_p += 4;
1915 >        return true;
1916 > }
1917 > #endif
1918 >
1919 > // Decode and skip MIPS instruction
1920 > #if (defined(mips) || defined(__mips))
1921 > static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1922 > {
1923 >  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1924 >
1925 >  if (epc == 0)
1926 >        return false;
1927 >
1928 > #if DEBUG
1929 >  printf("IP: %p [%08x]\n", epc, epc[0]);
1930 > #endif
1931 >
1932 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1933 >  transfer_size_t transfer_size = SIZE_LONG;
1934 >  int direction = 0;
1935 >
1936 >  const unsigned int opcode = epc[0];
1937 >  switch (opcode >> 26) {
1938 >  case 32: // Load Byte
1939 >  case 36: // Load Byte Unsigned
1940 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1941 >        transfer_size = SIZE_BYTE;
1942 >        break;
1943 >  case 33: // Load Halfword
1944 >  case 37: // Load Halfword Unsigned
1945 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1946 >        transfer_size = SIZE_WORD;
1947 >        break;
1948 >  case 35: // Load Word
1949 >  case 39: // Load Word Unsigned
1950 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1951 >        transfer_size = SIZE_LONG;
1952 >        break;
1953 >  case 34: // Load Word Left
1954 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1955 >        transfer_size = SIZE_LONG;
1956 >        direction = -1;
1957 >        break;
1958 >  case 38: // Load Word Right
1959 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1960 >        transfer_size = SIZE_LONG;
1961 >        direction = 1;
1962 >        break;
1963 >  case 55: // Load Doubleword
1964 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1965 >        transfer_size = SIZE_QUAD;
1966 >        break;
1967 >  case 26: // Load Doubleword Left
1968 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1969 >        transfer_size = SIZE_QUAD;
1970 >        direction = -1;
1971 >        break;
1972 >  case 27: // Load Doubleword Right
1973 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1974 >        transfer_size = SIZE_QUAD;
1975 >        direction = 1;
1976 >        break;
1977 >  case 40: // Store Byte
1978 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1979 >        transfer_size = SIZE_BYTE;
1980 >        break;
1981 >  case 41: // Store Halfword
1982 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1983 >        transfer_size = SIZE_WORD;
1984 >        break;
1985 >  case 43: // Store Word
1986 >  case 42: // Store Word Left
1987 >  case 46: // Store Word Right
1988 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1989 >        transfer_size = SIZE_LONG;
1990 >        break;
1991 >  case 63: // Store Doubleword
1992 >  case 44: // Store Doubleword Left
1993 >  case 45: // Store Doubleword Right
1994 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1995 >        transfer_size = SIZE_QUAD;
1996 >        break;
1997 >  /* Misc instructions unlikely to be used within CPU emulators */
1998 >  case 48: // Load Linked Word
1999 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2000 >        transfer_size = SIZE_LONG;
2001 >        break;
2002 >  case 52: // Load Linked Doubleword
2003 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2004 >        transfer_size = SIZE_QUAD;
2005 >        break;
2006 >  case 56: // Store Conditional Word
2007 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2008 >        transfer_size = SIZE_LONG;
2009 >        break;
2010 >  case 60: // Store Conditional Doubleword
2011 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2012 >        transfer_size = SIZE_QUAD;
2013 >        break;
2014 >  }
2015 >
2016 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2017 >        // Unknown machine code, let it crash. Then patch the decoder
2018 >        return false;
2019 >  }
2020 >
2021 >  // Zero target register in case of a load operation
2022 >  const int reg = (opcode >> 16) & 0x1f;
2023 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
2024 >        if (direction == 0)
2025 >          regs[reg] = 0;
2026 >        else {
2027 >          // FIXME: untested code
2028 >          unsigned long ea = regs[(opcode >> 21) & 0x1f];
2029 >          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
2030 >          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
2031 >          unsigned long value;
2032 >          if (direction > 0) {
2033 >                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
2034 >                value = regs[reg] & rmask;
2035 >          }
2036 >          else {
2037 >                const unsigned long lmask = (1L << (offset * 8)) - 1;
2038 >                value = regs[reg] & lmask;
2039 >          }
2040 >          // restore most significant bits
2041 >          if (transfer_size == SIZE_LONG)
2042 >                value = (signed long)(signed int)value;
2043 >          regs[reg] = value;
2044 >        }
2045 >  }
2046 >
2047 > #if DEBUG
2048 > #if (defined(_ABIN32) || defined(_ABI64))
2049 >  static const char * mips_gpr_names[32] = {
2050 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2051 >        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
2052 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2053 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2054 >  };
2055 > #else
2056 >  static const char * mips_gpr_names[32] = {
2057 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
2058 >        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
2059 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
2060 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
2061 >  };
2062 > #endif
2063 >  printf("%s %s register %s\n",
2064 >                 transfer_size == SIZE_BYTE ? "byte" :
2065 >                 transfer_size == SIZE_WORD ? "word" :
2066 >                 transfer_size == SIZE_LONG ? "long" :
2067 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2068 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2069 >                 mips_gpr_names[reg]);
2070 > #endif
2071 >
2072 >  *pc_p += 4;
2073 >  return true;
2074 > }
2075 > #endif
2076 >
2077 > // Decode and skip SPARC instruction
2078 > #if (defined(sparc) || defined(__sparc__))
2079 > enum {
2080 > #if (defined(__sun__))
2081 >  SPARC_REG_G1 = REG_G1,
2082 >  SPARC_REG_O0 = REG_O0,
2083 >  SPARC_REG_PC = REG_PC,
2084 >  SPARC_REG_nPC = REG_nPC
2085 > #endif
2086 > };
2087 > static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
2088 > {
2089 >  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
2090 >
2091 >  if (pc == 0)
2092 >        return false;
2093 >
2094 > #if DEBUG
2095 >  printf("IP: %p [%08x]\n", pc, pc[0]);
2096 > #endif
2097 >
2098 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2099 >  transfer_size_t transfer_size = SIZE_LONG;
2100 >  bool register_pair = false;
2101 >
2102 >  const unsigned int opcode = pc[0];
2103 >  if ((opcode >> 30) != 3)
2104 >        return false;
2105 >  switch ((opcode >> 19) & 0x3f) {
2106 >  case 9: // Load Signed Byte
2107 >  case 1: // Load Unsigned Byte
2108 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2109 >        transfer_size = SIZE_BYTE;
2110 >        break;
2111 >  case 10:// Load Signed Halfword
2112 >  case 2: // Load Unsigned Word
2113 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2114 >        transfer_size = SIZE_WORD;
2115 >        break;
2116 >  case 8: // Load Word
2117 >  case 0: // Load Unsigned Word
2118 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2119 >        transfer_size = SIZE_LONG;
2120 >        break;
2121 >  case 11:// Load Extended Word
2122 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2123 >        transfer_size = SIZE_QUAD;
2124 >        break;
2125 >  case 3: // Load Doubleword
2126 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
2127 >        transfer_size = SIZE_LONG;
2128 >        register_pair = true;
2129 >        break;
2130 >  case 5: // Store Byte
2131 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2132 >        transfer_size = SIZE_BYTE;
2133 >        break;
2134 >  case 6: // Store Halfword
2135 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2136 >        transfer_size = SIZE_WORD;
2137 >        break;
2138 >  case 4: // Store Word
2139 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2140 >        transfer_size = SIZE_LONG;
2141 >        break;
2142 >  case 14:// Store Extended Word
2143 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2144 >        transfer_size = SIZE_QUAD;
2145 >        break;
2146 >  case 7: // Store Doubleword
2147 >        transfer_type = SIGSEGV_TRANSFER_STORE;
2148 >        transfer_size = SIZE_LONG;
2149 >        register_pair = true;
2150 >        break;
2151 >  }
2152 >
2153 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
2154 >        // Unknown machine code, let it crash. Then patch the decoder
2155 >        return false;
2156 >  }
2157 >
2158 >  const int reg = (opcode >> 25) & 0x1f;
2159 >
2160 > #if DEBUG
2161 >  static const char * reg_names[] = {
2162 >        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2163 >        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2164 >        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2165 >        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
2166 >  };
2167 >  printf("%s %s register %s\n",
2168 >                 transfer_size == SIZE_BYTE ? "byte" :
2169 >                 transfer_size == SIZE_WORD ? "word" :
2170 >                 transfer_size == SIZE_LONG ? "long" :
2171 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
2172 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2173 >                 reg_names[reg]);
2174 > #endif
2175 >
2176 >  // Zero target register in case of a load operation
2177 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
2178 >        // FIXME: code to handle local & input registers is not tested
2179 >        if (reg >= 1 && reg < 8) {
2180 >          // global registers
2181 >          regs[reg - 1 + SPARC_REG_G1] = 0;
2182 >        }
2183 >        else if (reg >= 8 && reg < 16) {
2184 >          // output registers
2185 >          regs[reg - 8 + SPARC_REG_O0] = 0;
2186 >        }
2187 >        else if (reg >= 16 && reg < 24) {
2188 >          // local registers (in register windows)
2189 >          if (gwins)
2190 >                gwins->wbuf->rw_local[reg - 16] = 0;
2191 >          else
2192 >                rwin->rw_local[reg - 16] = 0;
2193 >        }
2194 >        else {
2195 >          // input registers (in register windows)
2196 >          if (gwins)
2197 >                gwins->wbuf->rw_in[reg - 24] = 0;
2198 >          else
2199 >                rwin->rw_in[reg - 24] = 0;
2200 >        }
2201 >  }
2202 >
2203 >  regs[SPARC_REG_PC] += 4;
2204 >  regs[SPARC_REG_nPC] += 4;
2205 >  return true;
2206   }
2207   #endif
2208   #endif
2209 +
2210 + // Decode and skip ARM instruction
2211 + #if (defined(arm) || defined(__arm__))
2212 + enum {
2213 + #if (defined(__linux__))
2214 +  ARM_REG_PC = 15,
2215 +  ARM_REG_CPSR = 16
2216 + #endif
2217 + };
2218 + static bool arm_skip_instruction(unsigned long * regs)
2219 + {
2220 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
2221 +
2222 +  if (pc == 0)
2223 +        return false;
2224 +
2225 + #if DEBUG
2226 +  printf("IP: %p [%08x]\n", pc, pc[0]);
2227 + #endif
2228 +
2229 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
2230 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
2231 +  enum { op_sdt = 1, op_sdth = 2 };
2232 +  int op = 0;
2233 +
2234 +  // Handle load/store instructions only
2235 +  const unsigned int opcode = pc[0];
2236 +  switch ((opcode >> 25) & 7) {
2237 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
2238 +        op = op_sdth;
2239 +        // Determine transfer size (S/H bits)
2240 +        switch ((opcode >> 5) & 3) {
2241 +        case 0: // SWP instruction
2242 +          break;
2243 +        case 1: // Unsigned halfwords
2244 +        case 3: // Signed halfwords
2245 +          transfer_size = SIZE_WORD;
2246 +          break;
2247 +        case 2: // Signed byte
2248 +          transfer_size = SIZE_BYTE;
2249 +          break;
2250 +        }
2251 +        break;
2252 +  case 2:
2253 +  case 3: // Single Data Transfer (LDR, STR)
2254 +        op = op_sdt;
2255 +        // Determine transfer size (B bit)
2256 +        if (((opcode >> 22) & 1) == 1)
2257 +          transfer_size = SIZE_BYTE;
2258 +        else
2259 +          transfer_size = SIZE_LONG;
2260 +        break;
2261 +  default:
2262 +        // FIXME: support load/store mutliple?
2263 +        return false;
2264 +  }
2265 +
2266 +  // Check for invalid transfer size (SWP instruction?)
2267 +  if (transfer_size == SIZE_UNKNOWN)
2268 +        return false;
2269 +
2270 +  // Determine transfer type (L bit)
2271 +  if (((opcode >> 20) & 1) == 1)
2272 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
2273 +  else
2274 +        transfer_type = SIGSEGV_TRANSFER_STORE;
2275 +
2276 +  // Compute offset
2277 +  int offset;
2278 +  if (((opcode >> 25) & 1) == 0) {
2279 +        if (op == op_sdt)
2280 +          offset = opcode & 0xfff;
2281 +        else if (op == op_sdth) {
2282 +          int rm = opcode & 0xf;
2283 +          if (((opcode >> 22) & 1) == 0) {
2284 +                // register offset
2285 +                offset = regs[rm];
2286 +          }
2287 +          else {
2288 +                // immediate offset
2289 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
2290 +          }
2291 +        }
2292 +  }
2293 +  else {
2294 +        const int rm = opcode & 0xf;
2295 +        const int sh = (opcode >> 7) & 0x1f;
2296 +        if (((opcode >> 4) & 1) == 1) {
2297 +          // we expect only legal load/store instructions
2298 +          printf("FATAL: invalid shift operand\n");
2299 +          return false;
2300 +        }
2301 +        const unsigned int v = regs[rm];
2302 +        switch ((opcode >> 5) & 3) {
2303 +        case 0: // logical shift left
2304 +          offset = sh ? v << sh : v;
2305 +          break;
2306 +        case 1: // logical shift right
2307 +          offset = sh ? v >> sh : 0;
2308 +          break;
2309 +        case 2: // arithmetic shift right
2310 +          if (sh)
2311 +                offset = ((signed int)v) >> sh;
2312 +          else
2313 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
2314 +          break;
2315 +        case 3: // rotate right
2316 +          if (sh)
2317 +                offset = (v >> sh) | (v << (32 - sh));
2318 +          else
2319 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
2320 +          break;
2321 +        }
2322 +  }
2323 +  if (((opcode >> 23) & 1) == 0)
2324 +        offset = -offset;
2325 +
2326 +  int rd = (opcode >> 12) & 0xf;
2327 +  int rn = (opcode >> 16) & 0xf;
2328 + #if DEBUG
2329 +  static const char * reg_names[] = {
2330 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2331 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
2332 +  };
2333 +  printf("%s %s register %s\n",
2334 +                 transfer_size == SIZE_BYTE ? "byte" :
2335 +                 transfer_size == SIZE_WORD ? "word" :
2336 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
2337 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
2338 +                 reg_names[rd]);
2339 + #endif
2340 +
2341 +  unsigned int base = regs[rn];
2342 +  if (((opcode >> 24) & 1) == 1)
2343 +        base += offset;
2344 +
2345 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
2346 +        regs[rd] = 0;
2347 +
2348 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
2349 +        regs[rn] += offset;
2350 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
2351 +        regs[rn] = base;
2352 +
2353 +  regs[ARM_REG_PC] += 4;
2354 +  return true;
2355 + }
2356   #endif
2357  
2358 +
2359   // Fallbacks
2360 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
2361 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
2362 + #endif
2363 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
2364 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
2365 + #endif
2366   #ifndef SIGSEGV_FAULT_INSTRUCTION
2367 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
2367 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
2368 > #endif
2369 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
2370 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
2371 > #endif
2372 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
2373 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
2374   #endif
2375  
2376   // SIGSEGV recovery supported ?
# Line 285 | Line 2383 | static sigsegv_address_t get_fault_addre
2383   *  SIGSEGV global handler
2384   */
2385  
2386 + struct sigsegv_info_t {
2387 +        sigsegv_address_t addr;
2388 +        sigsegv_address_t pc;
2389 + #ifdef HAVE_MACH_EXCEPTIONS
2390 +        mach_port_t thread;
2391 +        bool has_exc_state;
2392 +        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
2393 +        mach_msg_type_number_t exc_state_count;
2394 +        bool has_thr_state;
2395 +        SIGSEGV_THREAD_STATE_TYPE thr_state;
2396 +        mach_msg_type_number_t thr_state_count;
2397 + #endif
2398 + };
2399 +
2400 + #ifdef HAVE_MACH_EXCEPTIONS
2401 + static void mach_get_exception_state(sigsegv_info_t *SIP)
2402 + {
2403 +        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
2404 +        kern_return_t krc = thread_get_state(SIP->thread,
2405 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
2406 +                                                                                 (natural_t *)&SIP->exc_state,
2407 +                                                                                 &SIP->exc_state_count);
2408 +        MACH_CHECK_ERROR(thread_get_state, krc);
2409 +        SIP->has_exc_state = true;
2410 + }
2411 +
2412 + static void mach_get_thread_state(sigsegv_info_t *SIP)
2413 + {
2414 +        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
2415 +        kern_return_t krc = thread_get_state(SIP->thread,
2416 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2417 +                                                                                 (natural_t *)&SIP->thr_state,
2418 +                                                                                 &SIP->thr_state_count);
2419 +        MACH_CHECK_ERROR(thread_get_state, krc);
2420 +        SIP->has_thr_state = true;
2421 + }
2422 +
2423 + static void mach_set_thread_state(sigsegv_info_t *SIP)
2424 + {
2425 +        kern_return_t krc = thread_set_state(SIP->thread,
2426 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
2427 +                                                                                 (natural_t *)&SIP->thr_state,
2428 +                                                                                 SIP->thr_state_count);
2429 +        MACH_CHECK_ERROR(thread_set_state, krc);
2430 + }
2431 + #endif
2432 +
2433 + // Return the address of the invalid memory reference
2434 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
2435 + {
2436 + #ifdef HAVE_MACH_EXCEPTIONS
2437 +        static int use_fast_path = -1;
2438 +        if (use_fast_path != 1 && !SIP->has_exc_state) {
2439 +                mach_get_exception_state(SIP);
2440 +
2441 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
2442 +                if (use_fast_path < 0)
2443 +                        use_fast_path = addr == SIP->addr;
2444 +                SIP->addr = addr;
2445 +        }
2446 + #endif
2447 +        return SIP->addr;
2448 + }
2449 +
2450 + // Return the address of the instruction that caused the fault, or
2451 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
2452 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
2453 + {
2454 + #ifdef HAVE_MACH_EXCEPTIONS
2455 +        if (!SIP->has_thr_state) {
2456 +                mach_get_thread_state(SIP);
2457 +
2458 +                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
2459 +        }
2460 + #endif
2461 +        return SIP->pc;
2462 + }
2463 +
2464 + // This function handles the badaccess to memory.
2465 + // It is called from the signal handler or the exception handler.
2466 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
2467 + {
2468 +        sigsegv_info_t SI;
2469 +        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
2470 +        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
2471 + #ifdef HAVE_MACH_EXCEPTIONS
2472 +        SI.thread = thread;
2473 +        SI.has_exc_state = false;
2474 +        SI.has_thr_state = false;
2475 + #endif
2476 +        sigsegv_info_t * const SIP = &SI;
2477 +
2478 +        // Call user's handler and reinstall the global handler, if required
2479 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
2480 +        case SIGSEGV_RETURN_SUCCESS:
2481 +                return true;
2482 +
2483 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
2484 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
2485 +                // Call the instruction skipper with the register file
2486 +                // available
2487 + #ifdef HAVE_MACH_EXCEPTIONS
2488 +                if (!SIP->has_thr_state)
2489 +                        mach_get_thread_state(SIP);
2490 + #endif
2491 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
2492 + #ifdef HAVE_MACH_EXCEPTIONS
2493 +                        // Unlike UNIX signals where the thread state
2494 +                        // is modified off of the stack, in Mach we
2495 +                        // need to actually call thread_set_state to
2496 +                        // have the register values updated.
2497 +                        mach_set_thread_state(SIP);
2498 + #endif
2499 +                        return true;
2500 +                }
2501 +                break;
2502 + #endif
2503 +        case SIGSEGV_RETURN_FAILURE:
2504 +                // We can't do anything with the fault_address, dump state?
2505 +                if (sigsegv_state_dumper != 0)
2506 +                        sigsegv_state_dumper(SIP);
2507 +                break;
2508 +        }
2509 +
2510 +        return false;
2511 + }
2512 +
2513 +
2514 + /*
2515 + * There are two mechanisms for handling a bad memory access,
2516 + * Mach exceptions and UNIX signals. The implementation specific
2517 + * code appears below. Its reponsibility is to call handle_badaccess
2518 + * which is the routine that handles the fault in an implementation
2519 + * agnostic manner. The implementation specific code below is then
2520 + * reponsible for checking whether handle_badaccess was able
2521 + * to handle the memory access error and perform any implementation
2522 + * specific tasks necessary afterwards.
2523 + */
2524 +
2525 + #ifdef HAVE_MACH_EXCEPTIONS
2526 + /*
2527 + * We need to forward all exceptions that we do not handle.
2528 + * This is important, there are many exceptions that may be
2529 + * handled by other exception handlers. For example debuggers
2530 + * use exceptions and the exception hander is in another
2531 + * process in such a case. (Timothy J. Wood states in his
2532 + * message to the list that he based this code on that from
2533 + * gdb for Darwin.)
2534 + */
2535 + static inline kern_return_t
2536 + forward_exception(mach_port_t thread_port,
2537 +                                  mach_port_t task_port,
2538 +                                  exception_type_t exception_type,
2539 +                                  exception_data_t exception_data,
2540 +                                  mach_msg_type_number_t data_count,
2541 +                                  ExceptionPorts *oldExceptionPorts)
2542 + {
2543 +        kern_return_t kret;
2544 +        unsigned int portIndex;
2545 +        mach_port_t port;
2546 +        exception_behavior_t behavior;
2547 +        thread_state_flavor_t flavor;
2548 +        thread_state_data_t thread_state;
2549 +        mach_msg_type_number_t thread_state_count;
2550 +
2551 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
2552 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
2553 +                        // This handler wants the exception
2554 +                        break;
2555 +                }
2556 +        }
2557 +
2558 +        if (portIndex >= oldExceptionPorts->maskCount) {
2559 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
2560 +                return KERN_FAILURE;
2561 +        }
2562 +
2563 +        port = oldExceptionPorts->handlers[portIndex];
2564 +        behavior = oldExceptionPorts->behaviors[portIndex];
2565 +        flavor = oldExceptionPorts->flavors[portIndex];
2566 +
2567 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
2568 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
2569 +                return KERN_FAILURE;
2570 +        }
2571 +
2572 +        /*
2573 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
2574 +         */
2575 +
2576 +        if (behavior != EXCEPTION_DEFAULT) {
2577 +                thread_state_count = THREAD_STATE_MAX;
2578 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
2579 +                                                                 &thread_state_count);
2580 +                MACH_CHECK_ERROR (thread_get_state, kret);
2581 +        }
2582 +
2583 +        switch (behavior) {
2584 +        case EXCEPTION_DEFAULT:
2585 +          // fprintf(stderr, "forwarding to exception_raise\n");
2586 +          kret = exception_raise(port, thread_port, task_port, exception_type,
2587 +                                                         exception_data, data_count);
2588 +          MACH_CHECK_ERROR (exception_raise, kret);
2589 +          break;
2590 +        case EXCEPTION_STATE:
2591 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
2592 +          kret = exception_raise_state(port, exception_type, exception_data,
2593 +                                                                   data_count, &flavor,
2594 +                                                                   (natural_t *)&thread_state, thread_state_count,
2595 +                                                                   (natural_t *)&thread_state, &thread_state_count);
2596 +          MACH_CHECK_ERROR (exception_raise_state, kret);
2597 +          break;
2598 +        case EXCEPTION_STATE_IDENTITY:
2599 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
2600 +          kret = exception_raise_state_identity(port, thread_port, task_port,
2601 +                                                                                        exception_type, exception_data,
2602 +                                                                                        data_count, &flavor,
2603 +                                                                                        (natural_t *)&thread_state, thread_state_count,
2604 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
2605 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
2606 +          break;
2607 +        default:
2608 +          fprintf(stderr, "forward_exception got unknown behavior\n");
2609 +          kret = KERN_FAILURE;
2610 +          break;
2611 +        }
2612 +
2613 +        if (behavior != EXCEPTION_DEFAULT) {
2614 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
2615 +                                                                 thread_state_count);
2616 +                MACH_CHECK_ERROR (thread_set_state, kret);
2617 +        }
2618 +
2619 +        return kret;
2620 + }
2621 +
2622 + /*
2623 + * This is the code that actually handles the exception.
2624 + * It is called by exc_server. For Darwin 5 Apple changed
2625 + * this a bit from how this family of functions worked in
2626 + * Mach. If you are familiar with that it is a little
2627 + * different. The main variation that concerns us here is
2628 + * that code is an array of exception specific codes and
2629 + * codeCount is a count of the number of codes in the code
2630 + * array. In typical Mach all exceptions have a code
2631 + * and sub-code. It happens to be the case that for a
2632 + * EXC_BAD_ACCESS exception the first entry is the type of
2633 + * bad access that occurred and the second entry is the
2634 + * faulting address so these entries correspond exactly to
2635 + * how the code and sub-code are used on Mach.
2636 + *
2637 + * This is a MIG interface. No code in Basilisk II should
2638 + * call this directley. This has to have external C
2639 + * linkage because that is what exc_server expects.
2640 + */
2641 + kern_return_t
2642 + catch_exception_raise(mach_port_t exception_port,
2643 +                                          mach_port_t thread,
2644 +                                          mach_port_t task,
2645 +                                          exception_type_t exception,
2646 +                                          exception_data_t code,
2647 +                                          mach_msg_type_number_t code_count)
2648 + {
2649 +        kern_return_t krc;
2650 +
2651 +        if (exception == EXC_BAD_ACCESS) {
2652 +                switch (code[0]) {
2653 +                case KERN_PROTECTION_FAILURE:
2654 +                case KERN_INVALID_ADDRESS:
2655 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
2656 +                                return KERN_SUCCESS;
2657 +                        break;
2658 +                }
2659 +        }
2660 +
2661 +        // In Mach we do not need to remove the exception handler.
2662 +        // If we forward the exception, eventually some exception handler
2663 +        // will take care of this exception.
2664 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
2665 +
2666 +        return krc;
2667 + }
2668 + #endif
2669 +
2670   #ifdef HAVE_SIGSEGV_RECOVERY
2671 + // Handle bad memory accesses with signal handler
2672   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
2673   {
2674 <        // Call user's handler and reinstall the global handler, if required
2675 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
2674 >        // Call handler and reinstall the global handler, if required
2675 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
2676   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
2677                  sigsegv_do_install_handler(sig);
2678   #endif
2679 +                return;
2680          }
2681 <        else {
2682 <                // FAIL: reinstall default handler for "safe" crash
2681 >
2682 >        // Failure: reinstall default handler for "safe" crash
2683   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2684 <                SIGSEGV_ALL_SIGNALS
2684 >        SIGSEGV_ALL_SIGNALS
2685   #undef FAULT_HANDLER
302        }
2686   }
2687   #endif
2688  
# Line 313 | Line 2696 | static bool sigsegv_do_install_handler(i
2696   {
2697          // Setup SIGSEGV handler to process writes to frame buffer
2698   #ifdef HAVE_SIGACTION
2699 <        struct sigaction vosf_sa;
2700 <        sigemptyset(&vosf_sa.sa_mask);
2701 <        vosf_sa.sa_sigaction = sigsegv_handler;
2702 <        vosf_sa.sa_flags = SA_SIGINFO;
2703 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2699 >        struct sigaction sigsegv_sa;
2700 >        sigemptyset(&sigsegv_sa.sa_mask);
2701 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
2702 >        sigsegv_sa.sa_flags = SA_SIGINFO;
2703 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2704   #else
2705          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2706   #endif
# Line 329 | Line 2712 | static bool sigsegv_do_install_handler(i
2712   {
2713          // Setup SIGSEGV handler to process writes to frame buffer
2714   #ifdef HAVE_SIGACTION
2715 <        struct sigaction vosf_sa;
2716 <        sigemptyset(&vosf_sa.sa_mask);
2717 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
2715 >        struct sigaction sigsegv_sa;
2716 >        sigemptyset(&sigsegv_sa.sa_mask);
2717 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
2718 >        sigsegv_sa.sa_flags = 0;
2719   #if !EMULATED_68K && defined(__NetBSD__)
2720 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2721 <        vosf_sa.sa_flags = SA_ONSTACK;
338 < #else
339 <        vosf_sa.sa_flags = 0;
2720 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2721 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2722   #endif
2723 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2723 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2724   #else
2725          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2726   #endif
2727   }
2728   #endif
2729  
2730 < bool sigsegv_install_handler(sigsegv_handler_t handler)
2730 > #if defined(HAVE_MACH_EXCEPTIONS)
2731 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2732   {
2733 < #ifdef HAVE_SIGSEGV_RECOVERY
2734 <        sigsegv_user_handler = handler;
2733 >        /*
2734 >         * Except for the exception port functions, this should be
2735 >         * pretty much stock Mach. If later you choose to support
2736 >         * other Mach's besides Darwin, just check for __MACH__
2737 >         * here and __APPLE__ where the actual differences are.
2738 >         */
2739 > #if defined(__APPLE__) && defined(__MACH__)
2740 >        if (sigsegv_fault_handler != NULL) {
2741 >                sigsegv_fault_handler = handler;
2742 >                return true;
2743 >        }
2744 >
2745 >        kern_return_t krc;
2746 >
2747 >        // create the the exception port
2748 >        krc = mach_port_allocate(mach_task_self(),
2749 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2750 >        if (krc != KERN_SUCCESS) {
2751 >                mach_error("mach_port_allocate", krc);
2752 >                return false;
2753 >        }
2754 >
2755 >        // add a port send right
2756 >        krc = mach_port_insert_right(mach_task_self(),
2757 >                              _exceptionPort, _exceptionPort,
2758 >                              MACH_MSG_TYPE_MAKE_SEND);
2759 >        if (krc != KERN_SUCCESS) {
2760 >                mach_error("mach_port_insert_right", krc);
2761 >                return false;
2762 >        }
2763 >
2764 >        // get the old exception ports
2765 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2766 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2767 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2768 >        if (krc != KERN_SUCCESS) {
2769 >                mach_error("thread_get_exception_ports", krc);
2770 >                return false;
2771 >        }
2772 >
2773 >        // set the new exception port
2774 >        //
2775 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2776 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2777 >        // message, but it turns out that in the common case this is not
2778 >        // neccessary. If we need it we can later ask for it from the
2779 >        // suspended thread.
2780 >        //
2781 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2782 >        // counter in the thread state.  The comments in the header file
2783 >        // seem to imply that you can count on the GPR's on an exception
2784 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2785 >        // you have to ask for all of the GPR's anyway just to get the
2786 >        // program counter. In any case because of update effective
2787 >        // address from immediate and update address from effective
2788 >        // addresses of ra and rb modes (as good an name as any for these
2789 >        // addressing modes) used in PPC instructions, you will need the
2790 >        // GPR state anyway.
2791 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2792 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2793 >        if (krc != KERN_SUCCESS) {
2794 >                mach_error("thread_set_exception_ports", krc);
2795 >                return false;
2796 >        }
2797 >
2798 >        // create the exception handler thread
2799 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2800 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2801 >                return false;
2802 >        }
2803 >
2804 >        // do not care about the exception thread any longer, let is run standalone
2805 >        (void)pthread_detach(exc_thread);
2806 >
2807 >        sigsegv_fault_handler = handler;
2808 >        return true;
2809 > #else
2810 >        return false;
2811 > #endif
2812 > }
2813 > #endif
2814 >
2815 > #ifdef HAVE_WIN32_EXCEPTIONS
2816 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2817 > {
2818 >        if (sigsegv_fault_handler != NULL
2819 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2820 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2821 >                && handle_badaccess(ExceptionInfo))
2822 >                return EXCEPTION_CONTINUE_EXECUTION;
2823 >
2824 >        return EXCEPTION_CONTINUE_SEARCH;
2825 > }
2826 >
2827 > #if defined __CYGWIN__ && defined __i386__
2828 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2829 >   installs a global exception handler.  We have to dig deep in order to install
2830 >   our main_exception_filter.  */
2831 >
2832 > /* Data structures for the current thread's exception handler chain.
2833 >   On the x86 Windows uses register fs, offset 0 to point to the current
2834 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2835 >
2836 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2837 >
2838 > struct exception_list {
2839 >    struct exception_list *prev;
2840 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2841 > };
2842 > typedef struct exception_list exception_list;
2843 >
2844 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2845 >
2846 > __asm__ (".equ __except_list,0");
2847 >
2848 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2849 >
2850 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2851 > static exception_list *
2852 > debug_get_except_list ()
2853 > {
2854 >  return _except_list;
2855 > }
2856 >
2857 > /* Cygwin's original exception handler.  */
2858 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2859 >
2860 > /* Our exception handler.  */
2861 > static int
2862 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2863 > {
2864 >  EXCEPTION_POINTERS ExceptionInfo;
2865 >  ExceptionInfo.ExceptionRecord = exception;
2866 >  ExceptionInfo.ContextRecord = context;
2867 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2868 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2869 >  else
2870 >    return 0;
2871 > }
2872 >
2873 > static void
2874 > do_install_main_exception_filter ()
2875 > {
2876 >  /* We cannot insert any handler into the chain, because such handlers
2877 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2878 >     global exception handler.  */
2879 >  cygwin_exception_handler = _except_list->handler;
2880 >  _except_list->handler = libsigsegv_exception_handler;
2881 > }
2882 >
2883 > #else
2884 >
2885 > static void
2886 > do_install_main_exception_filter ()
2887 > {
2888 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2889 > }
2890 > #endif
2891 >
2892 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2893 > {
2894 >        static bool main_exception_filter_installed = false;
2895 >        if (!main_exception_filter_installed) {
2896 >                do_install_main_exception_filter();
2897 >                main_exception_filter_installed = true;
2898 >        }
2899 >        sigsegv_fault_handler = handler;
2900 >        return true;
2901 > }
2902 > #endif
2903 >
2904 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2905 > {
2906 > #if defined(HAVE_SIGSEGV_RECOVERY)
2907          bool success = true;
2908   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2909          SIGSEGV_ALL_SIGNALS
2910   #undef FAULT_HANDLER
2911 +        if (success)
2912 +            sigsegv_fault_handler = handler;
2913          return success;
2914 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2915 +        return sigsegv_do_install_handler(handler);
2916   #else
2917          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2918          return false;
# Line 367 | Line 2926 | bool sigsegv_install_handler(sigsegv_han
2926  
2927   void sigsegv_deinstall_handler(void)
2928   {
2929 +  // We do nothing for Mach exceptions, the thread would need to be
2930 +  // suspended if not already so, and we might mess with other
2931 +  // exception handlers that came after we registered ours. There is
2932 +  // no need to remove the exception handler, in fact this function is
2933 +  // not called anywhere in Basilisk II.
2934   #ifdef HAVE_SIGSEGV_RECOVERY
2935 <        sigsegv_user_handler = 0;
2935 >        sigsegv_fault_handler = 0;
2936   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2937          SIGSEGV_ALL_SIGNALS
2938   #undef FAULT_HANDLER
2939   #endif
2940 + #ifdef HAVE_WIN32_EXCEPTIONS
2941 +        sigsegv_fault_handler = NULL;
2942 + #endif
2943   }
2944  
2945 +
2946 + /*
2947 + *  Set callback function when we cannot handle the fault
2948 + */
2949 +
2950 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
2951 + {
2952 +        sigsegv_state_dumper = handler;
2953 + }
2954 +
2955 +
2956   /*
2957   *  Test program used for configure/test
2958   */
# Line 383 | Line 2961 | void sigsegv_deinstall_handler(void)
2961   #include <stdio.h>
2962   #include <stdlib.h>
2963   #include <fcntl.h>
2964 + #ifdef HAVE_SYS_MMAN_H
2965   #include <sys/mman.h>
2966 + #endif
2967   #include "vm_alloc.h"
2968  
2969 + const int REF_INDEX = 123;
2970 + const int REF_VALUE = 45;
2971 +
2972   static int page_size;
2973   static volatile char * page = 0;
2974   static volatile int handler_called = 0;
2975  
2976 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2976 > /* Barriers */
2977 > #ifdef __GNUC__
2978 > #define BARRIER() asm volatile ("" : : : "memory")
2979 > #else
2980 > #define BARRIER() /* nothing */
2981 > #endif
2982 >
2983 > #ifdef __GNUC__
2984 > // Code range where we expect the fault to come from
2985 > static void *b_region, *e_region;
2986 > #endif
2987 >
2988 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
2989   {
2990 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2991 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2992 + #if DEBUG
2993 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2994 +        printf("expected fault at %p\n", page + REF_INDEX);
2995 + #ifdef __GNUC__
2996 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2997 + #endif
2998 + #endif
2999          handler_called++;
3000 <        if ((fault_address - 123) != page)
3001 <                exit(1);
3000 >        if ((fault_address - REF_INDEX) != page)
3001 >                exit(10);
3002 > #ifdef __GNUC__
3003 >        // Make sure reported fault instruction address falls into
3004 >        // expected code range
3005 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
3006 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
3007 >                        (instruction_address >= (sigsegv_address_t)e_region)))
3008 >                exit(11);
3009 > #endif
3010          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
3011 <                exit(1);
3011 >                exit(12);
3012 >        return SIGSEGV_RETURN_SUCCESS;
3013 > }
3014 >
3015 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3016 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
3017 > {
3018 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
3019 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
3020 > #if DEBUG
3021 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
3022 > #endif
3023 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
3024 > #ifdef __GNUC__
3025 >                // Make sure reported fault instruction address falls into
3026 >                // expected code range
3027 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
3028 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
3029 >                                (instruction_address >= (sigsegv_address_t)e_region)))
3030 >                        return SIGSEGV_RETURN_FAILURE;
3031 > #endif
3032 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
3033 >        }
3034 >
3035 >        return SIGSEGV_RETURN_FAILURE;
3036 > }
3037 >
3038 > // More sophisticated tests for instruction skipper
3039 > static bool arch_insn_skipper_tests()
3040 > {
3041 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
3042 >        static const unsigned char code[] = {
3043 >                0x8a, 0x00,                    // mov    (%eax),%al
3044 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
3045 >                0x88, 0x20,                    // mov    %ah,(%eax)
3046 >                0x88, 0x08,                    // mov    %cl,(%eax)
3047 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
3048 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
3049 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
3050 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
3051 >                0x8b, 0x00,                    // mov    (%eax),%eax
3052 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
3053 >                0x89, 0x00,                    // mov    %eax,(%eax)
3054 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
3055 > #if defined(__x86_64__)
3056 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
3057 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
3058 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
3059 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
3060 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
3061 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
3062 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
3063 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
3064 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
3065 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
3066 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
3067 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
3068 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
3069 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
3070 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
3071 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
3072 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
3073 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
3074 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
3075 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
3076 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
3077 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
3078 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
3079 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
3080 > #endif
3081 >                0                              // end
3082 >        };
3083 >        const int N_REGS = 20;
3084 >        unsigned long regs[N_REGS];
3085 >        for (int i = 0; i < N_REGS; i++)
3086 >                regs[i] = i;
3087 >        const unsigned long start_code = (unsigned long)&code;
3088 >        regs[X86_REG_EIP] = start_code;
3089 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
3090 >                   && ix86_skip_instruction(regs))
3091 >                ; /* simply iterate */
3092 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
3093 > #endif
3094          return true;
3095   }
3096 + #endif
3097  
3098   int main(void)
3099   {
3100          if (vm_init() < 0)
3101                  return 1;
3102  
3103 <        page_size = getpagesize();
3103 >        page_size = vm_get_page_size();
3104          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
3105 <                return 1;
3105 >                return 2;
3106          
3107 +        memset((void *)page, 0, page_size);
3108          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
3109 <                return 1;
3109 >                return 3;
3110          
3111          if (!sigsegv_install_handler(sigsegv_test_handler))
3112 <                return 1;
3112 >                return 4;
3113 >
3114 > #ifdef __GNUC__
3115 >        b_region = &&L_b_region1;
3116 >        e_region = &&L_e_region1;
3117 > #endif
3118 >        /* This is a really awful hack but otherwise gcc is smart enough
3119 >         * (or bug'ous enough?) to optimize the labels and place them
3120 >         * e.g. at the "main" entry point, which is wrong.
3121 >         */
3122 >        volatile int label_hack = 1;
3123 >        switch (label_hack) {
3124 >        case 1:
3125 >        L_b_region1:
3126 >                page[REF_INDEX] = REF_VALUE;
3127 >                if (page[REF_INDEX] != REF_VALUE)
3128 >                        exit(20);
3129 >                page[REF_INDEX] = REF_VALUE;
3130 >                BARRIER();
3131 >                // fall-through
3132 >        case 2:
3133 >        L_e_region1:
3134 >                BARRIER();
3135 >                break;
3136 >        }
3137 >
3138 >        if (handler_called != 1)
3139 >                return 5;
3140 >
3141 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
3142 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
3143 >                return 6;
3144          
3145 <        page[123] = 45;
3146 <        page[123] = 45;
3145 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
3146 >                return 7;
3147          
3148 <        if (handler_called != 1)
3149 <                return 1;
3148 >        for (int i = 0; i < page_size; i++)
3149 >                page[i] = (i + 1) % page_size;
3150 >        
3151 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
3152 >                return 8;
3153 >        
3154 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
3155 >                const unsigned long TAG = 0x12345678 |                  \
3156 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
3157 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
3158 >                volatile unsigned long effect = data + TAG;             \
3159 >                if (effect != TAG)                                                              \
3160 >                        return 9;                                                                       \
3161 >        } while (0)
3162 >        
3163 > #ifdef __GNUC__
3164 >        b_region = &&L_b_region2;
3165 >        e_region = &&L_e_region2;
3166 > #endif
3167 >        switch (label_hack) {
3168 >        case 1:
3169 >        L_b_region2:
3170 >                TEST_SKIP_INSTRUCTION(unsigned char);
3171 >                TEST_SKIP_INSTRUCTION(unsigned short);
3172 >                TEST_SKIP_INSTRUCTION(unsigned int);
3173 >                TEST_SKIP_INSTRUCTION(unsigned long);
3174 >                TEST_SKIP_INSTRUCTION(signed char);
3175 >                TEST_SKIP_INSTRUCTION(signed short);
3176 >                TEST_SKIP_INSTRUCTION(signed int);
3177 >                TEST_SKIP_INSTRUCTION(signed long);
3178 >                BARRIER();
3179 >                // fall-through
3180 >        case 2:
3181 >        L_e_region2:
3182 >                BARRIER();
3183 >                break;
3184 >        }
3185 >        if (!arch_insn_skipper_tests())
3186 >                return 20;
3187 > #endif
3188  
3189          vm_exit();
3190          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines