ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.16 by gbeauche, 2002-05-20T16:03:37Z vs.
Revision 1.72 by gbeauche, 2008-01-05T08:35:08Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 59 | Line 68 | static bool sigsegv_do_install_handler(i
68  
69   // Transfer type
70   enum transfer_type_t {
71 <        TYPE_UNKNOWN,
72 <        TYPE_LOAD,
73 <        TYPE_STORE
71 >        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 >        SIGSEGV_TRANSFER_LOAD           = 1,
73 >        SIGSEGV_TRANSFER_STORE          = 2,
74   };
75  
76   // Transfer size
77   enum transfer_size_t {
78          SIZE_UNKNOWN,
79          SIZE_BYTE,
80 <        SIZE_WORD,
81 <        SIZE_LONG
80 >        SIZE_WORD, // 2 bytes
81 >        SIZE_LONG, // 4 bytes
82 >        SIZE_QUAD, // 8 bytes
83   };
84  
85 < #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
85 > #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
86   // Addressing mode
87   enum addressing_mode_t {
88          MODE_UNKNOWN,
# Line 91 | Line 101 | struct instruction_t {
101          char                            ra, rd;
102   };
103  
104 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
104 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105   {
106          // Get opcode and divide into fields
107 <        unsigned int opcode = *((unsigned int *)nip);
107 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108          unsigned int primop = opcode >> 26;
109          unsigned int exop = (opcode >> 1) & 0x3ff;
110          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 113 | static void powerpc_decode_instruction(i
113          signed int imm = (signed short)(opcode & 0xffff);
114          
115          // Analyze opcode
116 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
116 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117          transfer_size_t transfer_size = SIZE_UNKNOWN;
118          addressing_mode_t addr_mode = MODE_UNKNOWN;
119          switch (primop) {
120          case 31:
121                  switch (exop) {
122                  case 23:        // lwzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124                  case 55:        // lwzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126                  case 87:        // lbzx
127 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128                  case 119:       // lbzux
129 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130                  case 151:       // stwx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132                  case 183:       // stwux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134                  case 215:       // stbx
135 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136                  case 247:       // stbux
137 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138                  case 279:       // lhzx
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 311:       // lhzux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 343:       // lhax
143 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 375:       // lhaux
145 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  case 407:       // sthx
147 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
147 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148                  case 439:       // sthux
149 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
149 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150                  }
151                  break;
152          
153          case 32:        // lwz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155          case 33:        // lwzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157          case 34:        // lbz
158 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159          case 35:        // lbzu
160 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161          case 36:        // stw
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163          case 37:        // stwu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165          case 38:        // stb
166 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167          case 39:        // stbu
168 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169          case 40:        // lhz
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 41:        // lhzu
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 42:        // lha
174 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 43:        // lhau
176 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177          case 44:        // sth
178 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
178 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179          case 45:        // sthu
180 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
180 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 >        case 58:        // ld, ldu, lwa
182 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 >                transfer_size = SIZE_QUAD;
184 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 >                imm &= ~3;
186 >                break;
187 >        case 62:        // std, stdu, stq
188 >                transfer_type = SIGSEGV_TRANSFER_STORE;
189 >                transfer_size = SIZE_QUAD;
190 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 >                imm &= ~3;
192 >                break;
193          }
194          
195          // Calculate effective address
# Line 208 | Line 230 | static void powerpc_decode_instruction(i
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272 + #if (defined(i386) || defined(__i386__))
273 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 + #endif
277 + #endif
278 + #if defined(__NetBSD__)
279 + #if (defined(i386) || defined(__i386__))
280 + #include <sys/ucontext.h>
281 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285 + #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
# Line 230 | Line 313 | static void powerpc_decode_instruction(i
313   #include <sys/ucontext.h>
314   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318   #endif
319 + #if (defined(hppa) || defined(__hppa__))
320 + #undef  SIGSEGV_FAULT_ADDRESS
321 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 + #endif
323 + #if (defined(arm) || defined(__arm__))
324 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 + #endif
330 + #if (defined(mips) || defined(__mips__))
331 + #include <sys/ucontext.h>
332 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
333 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
334 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
335 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
336 + #endif
337   #endif
338   #endif
339  
# Line 243 | Line 344 | static void powerpc_decode_instruction(i
344   #if (defined(i386) || defined(__i386__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
347 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
348 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
349 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
347 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
348 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
349 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
350 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
351 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
352   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
353   #endif
354   #if (defined(sparc) || defined(__sparc__))
355   #include <asm/sigcontext.h>
356   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
357 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
358   #define SIGSEGV_FAULT_ADDRESS                   addr
359   #endif
360   #if (defined(powerpc) || defined(__powerpc__))
361   #include <asm/sigcontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
365   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
366 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
366 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
367   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
368   #endif
369   #if (defined(alpha) || defined(__alpha__))
370   #include <asm/sigcontext.h>
371   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
372 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
373   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
374   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
375 <
376 < // From Boehm's GC 6.0alpha8
377 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
378 < {
379 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
380 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
381 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
382 <        return (sigsegv_address_t)fault_address;
383 < }
375 > #endif
376 > #if (defined(arm) || defined(__arm__))
377 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
378 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
379 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
380 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
381 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
382 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
383 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
384   #endif
385   #endif
386  
387   // Irix 5 or 6 on MIPS
388 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
388 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
389   #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
391 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
393 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397   // HP-UX
398   #if (defined(hpux) || defined(__hpux__))
399   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
400 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
401   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
402   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
403   #endif
# Line 297 | Line 406 | static sigsegv_address_t get_fault_addre
406   #if defined(__osf__)
407   #include <ucontext.h>
408   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
409 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
410   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
411   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
412   #endif
# Line 304 | Line 414 | static sigsegv_address_t get_fault_addre
414   // AIX
415   #if defined(_AIX)
416   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
417 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
418   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
419   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
420   #endif
421  
422 < // NetBSD or FreeBSD
423 < #if defined(__NetBSD__) || defined(__FreeBSD__)
422 > // NetBSD
423 > #if defined(__NetBSD__)
424   #if (defined(m68k) || defined(__m68k__))
425   #include <m68k/frame.h>
426   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
427 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
428   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
429   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
430  
# Line 336 | Line 448 | static sigsegv_address_t get_fault_addre
448          }
449          return (sigsegv_address_t)fault_addr;
450   }
451 < #else
452 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
453 < #define SIGSEGV_FAULT_ADDRESS                   addr
451 > #endif
452 > #if (defined(alpha) || defined(__alpha__))
453 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
456 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 > #endif
458 > #if (defined(i386) || defined(__i386__))
459 > #error "FIXME: need to decode instruction and compute EA"
460 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
461 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
462 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
463 > #endif
464 > #endif
465 > #if defined(__FreeBSD__)
466 > #if (defined(i386) || defined(__i386__))
467   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
468 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
469 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
470 + #define SIGSEGV_FAULT_ADDRESS                   addr
471 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
472 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
473 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
474   #endif
475 + #if (defined(alpha) || defined(__alpha__))
476 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
478 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
479 + #define SIGSEGV_FAULT_ADDRESS                   addr
480 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
481 + #endif
482 + #endif
483 +
484 + // Extract fault address out of a sigcontext
485 + #if (defined(alpha) || defined(__alpha__))
486 + // From Boehm's GC 6.0alpha8
487 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
488 + {
489 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
490 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
491 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
492 +        return (sigsegv_address_t)fault_address;
493 + }
494   #endif
495  
496 < // MacOS X
496 >
497 > // MacOS X, not sure which version this works in. Under 10.1
498 > // vm_protect does not appear to work from a signal handler. Under
499 > // 10.2 signal handlers get siginfo type arguments but the si_addr
500 > // field is the address of the faulting instruction and not the
501 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
502 > // case with Mach exception handlers there is a way to do what this
503 > // was meant to do.
504 > #ifndef HAVE_MACH_EXCEPTIONS
505   #if defined(__APPLE__) && defined(__MACH__)
506   #if (defined(ppc) || defined(__ppc__))
507   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
508 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
509   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
510   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
511   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 366 | Line 525 | static sigsegv_address_t get_fault_addre
525   #endif
526   #endif
527   #endif
528 + #endif
529 +
530 + #if HAVE_WIN32_EXCEPTIONS
531 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
532 + #include <windows.h>
533 + #include <winerror.h>
534 +
535 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
536 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
537 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
538 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
539 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
540 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
541 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
542 + #endif
543 +
544 + #if HAVE_MACH_EXCEPTIONS
545 +
546 + // This can easily be extended to other Mach systems, but really who
547 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
548 + // Mach 2.5/3.0?
549 + #if defined(__APPLE__) && defined(__MACH__)
550 +
551 + #include <sys/types.h>
552 + #include <stdlib.h>
553 + #include <stdio.h>
554 + #include <pthread.h>
555 +
556 + /*
557 + * If you are familiar with MIG then you will understand the frustration
558 + * that was necessary to get these embedded into C++ code by hand.
559 + */
560 + extern "C" {
561 + #include <mach/mach.h>
562 + #include <mach/mach_error.h>
563 +
564 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
565 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
566 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
567 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
568 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
569 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
570 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
571 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
572 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
573 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 + }
576 +
577 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
578 + #define HANDLER_COUNT 64
579 +
580 + // structure to tuck away existing exception handlers
581 + typedef struct _ExceptionPorts {
582 +        mach_msg_type_number_t maskCount;
583 +        exception_mask_t masks[HANDLER_COUNT];
584 +        exception_handler_t handlers[HANDLER_COUNT];
585 +        exception_behavior_t behaviors[HANDLER_COUNT];
586 +        thread_state_flavor_t flavors[HANDLER_COUNT];
587 + } ExceptionPorts;
588 +
589 + // exception handler thread
590 + static pthread_t exc_thread;
591 +
592 + // place where old exception handler info is stored
593 + static ExceptionPorts ports;
594 +
595 + // our exception port
596 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
597 +
598 + #define MACH_CHECK_ERROR(name,ret) \
599 + if (ret != KERN_SUCCESS) { \
600 +        mach_error(#name, ret); \
601 +        exit (1); \
602 + }
603 +
604 + #ifdef __ppc__
605 + #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
606 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
607 + #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
608 + #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
609 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
610 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
611 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
612 + #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
613 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
614 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
615 + #endif
616 + #ifdef __ppc64__
617 + #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
618 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
619 + #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
620 + #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.dar
621 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
622 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
623 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
624 + #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.srr0
625 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
626 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIP->thr_state.srr0, (unsigned long *)&SIP->thr_state.r0
627 + #endif
628 + #ifdef __i386__
629 + #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
630 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
631 + #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
632 + #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
633 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
634 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
635 + #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
636 + #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.eip
637 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
638 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.eax) /* EAX is the first GPR we consider */
639 + #endif
640 + #ifdef __x86_64__
641 + #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
642 + #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
643 + #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
644 + #define SIGSEGV_FAULT_ADDRESS                   SIP->exc_state.faultvaddr
645 + #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
646 + #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
647 + #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
648 + #define SIGSEGV_FAULT_INSTRUCTION               SIP->thr_state.rip
649 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
650 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIP->thr_state.rax) /* RAX is the first GPR we consider */
651 + #endif
652 + #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
653 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
654 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
655 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
656 +
657 + // Since there can only be one exception thread running at any time
658 + // this is not a problem.
659 + #define MSG_SIZE 512
660 + static char msgbuf[MSG_SIZE];
661 + static char replybuf[MSG_SIZE];
662 +
663 + /*
664 + * This is the entry point for the exception handler thread. The job
665 + * of this thread is to wait for exception messages on the exception
666 + * port that was setup beforehand and to pass them on to exc_server.
667 + * exc_server is a MIG generated function that is a part of Mach.
668 + * Its job is to decide what to do with the exception message. In our
669 + * case exc_server calls catch_exception_raise on our behalf. After
670 + * exc_server returns, it is our responsibility to send the reply.
671 + */
672 + static void *
673 + handleExceptions(void *priv)
674 + {
675 +        mach_msg_header_t *msg, *reply;
676 +        kern_return_t krc;
677 +
678 +        msg = (mach_msg_header_t *)msgbuf;
679 +        reply = (mach_msg_header_t *)replybuf;
680 +
681 +        for (;;) {
682 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
683 +                                _exceptionPort, 0, MACH_PORT_NULL);
684 +                MACH_CHECK_ERROR(mach_msg, krc);
685 +
686 +                if (!exc_server(msg, reply)) {
687 +                        fprintf(stderr, "exc_server hated the message\n");
688 +                        exit(1);
689 +                }
690 +
691 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
692 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
693 +                if (krc != KERN_SUCCESS) {
694 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
695 +                                krc, mach_error_string(krc));
696 +                        exit(1);
697 +                }
698 +        }
699 + }
700 + #endif
701 + #endif
702  
703  
704   /*
# Line 374 | Line 707 | static sigsegv_address_t get_fault_addre
707  
708   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
709   // Decode and skip X86 instruction
710 < #if (defined(i386) || defined(__i386__))
710 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
711   #if defined(__linux__)
712   enum {
713 + #if (defined(i386) || defined(__i386__))
714          X86_REG_EIP = 14,
715          X86_REG_EAX = 11,
716          X86_REG_ECX = 10,
# Line 386 | Line 720 | enum {
720          X86_REG_EBP = 6,
721          X86_REG_ESI = 5,
722          X86_REG_EDI = 4
723 + #endif
724 + #if defined(__x86_64__)
725 +        X86_REG_R8  = 0,
726 +        X86_REG_R9  = 1,
727 +        X86_REG_R10 = 2,
728 +        X86_REG_R11 = 3,
729 +        X86_REG_R12 = 4,
730 +        X86_REG_R13 = 5,
731 +        X86_REG_R14 = 6,
732 +        X86_REG_R15 = 7,
733 +        X86_REG_EDI = 8,
734 +        X86_REG_ESI = 9,
735 +        X86_REG_EBP = 10,
736 +        X86_REG_EBX = 11,
737 +        X86_REG_EDX = 12,
738 +        X86_REG_EAX = 13,
739 +        X86_REG_ECX = 14,
740 +        X86_REG_ESP = 15,
741 +        X86_REG_EIP = 16
742 + #endif
743 + };
744 + #endif
745 + #if defined(__NetBSD__)
746 + enum {
747 + #if (defined(i386) || defined(__i386__))
748 +        X86_REG_EIP = _REG_EIP,
749 +        X86_REG_EAX = _REG_EAX,
750 +        X86_REG_ECX = _REG_ECX,
751 +        X86_REG_EDX = _REG_EDX,
752 +        X86_REG_EBX = _REG_EBX,
753 +        X86_REG_ESP = _REG_ESP,
754 +        X86_REG_EBP = _REG_EBP,
755 +        X86_REG_ESI = _REG_ESI,
756 +        X86_REG_EDI = _REG_EDI
757 + #endif
758 + };
759 + #endif
760 + #if defined(__FreeBSD__)
761 + enum {
762 + #if (defined(i386) || defined(__i386__))
763 +        X86_REG_EIP = 10,
764 +        X86_REG_EAX = 7,
765 +        X86_REG_ECX = 6,
766 +        X86_REG_EDX = 5,
767 +        X86_REG_EBX = 4,
768 +        X86_REG_ESP = 13,
769 +        X86_REG_EBP = 2,
770 +        X86_REG_ESI = 1,
771 +        X86_REG_EDI = 0
772 + #endif
773 + };
774 + #endif
775 + #if defined(__OpenBSD__)
776 + enum {
777 + #if defined(__i386__)
778 +        // EDI is the first register we consider
779 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
780 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
781 +        X86_REG_EIP = DREG(eip), // 7
782 +        X86_REG_EAX = DREG(eax), // 6
783 +        X86_REG_ECX = DREG(ecx), // 5
784 +        X86_REG_EDX = DREG(edx), // 4
785 +        X86_REG_EBX = DREG(ebx), // 3
786 +        X86_REG_ESP = DREG(esp), // 10
787 +        X86_REG_EBP = DREG(ebp), // 2
788 +        X86_REG_ESI = DREG(esi), // 1
789 +        X86_REG_EDI = DREG(edi)  // 0
790 + #undef DREG
791 + #undef OREG
792 + #endif
793 + };
794 + #endif
795 + #if defined(__sun__)
796 + // Same as for Linux, need to check for x86-64
797 + enum {
798 + #if defined(__i386__)
799 +        X86_REG_EIP = EIP,
800 +        X86_REG_EAX = EAX,
801 +        X86_REG_ECX = ECX,
802 +        X86_REG_EDX = EDX,
803 +        X86_REG_EBX = EBX,
804 +        X86_REG_ESP = ESP,
805 +        X86_REG_EBP = EBP,
806 +        X86_REG_ESI = ESI,
807 +        X86_REG_EDI = EDI
808 + #endif
809 + };
810 + #endif
811 + #if defined(__APPLE__) && defined(__MACH__)
812 + enum {
813 + #if (defined(i386) || defined(__i386__))
814 + #ifdef i386_SAVED_STATE
815 +        // same as FreeBSD (in Open Darwin 8.0.1)
816 +        X86_REG_EIP = 10,
817 +        X86_REG_EAX = 7,
818 +        X86_REG_ECX = 6,
819 +        X86_REG_EDX = 5,
820 +        X86_REG_EBX = 4,
821 +        X86_REG_ESP = 13,
822 +        X86_REG_EBP = 2,
823 +        X86_REG_ESI = 1,
824 +        X86_REG_EDI = 0
825 + #else
826 +        // new layout (MacOS X 10.4.4 for x86)
827 +        X86_REG_EIP = 10,
828 +        X86_REG_EAX = 0,
829 +        X86_REG_ECX = 2,
830 +        X86_REG_EDX = 3,
831 +        X86_REG_EBX = 1,
832 +        X86_REG_ESP = 7,
833 +        X86_REG_EBP = 6,
834 +        X86_REG_ESI = 5,
835 +        X86_REG_EDI = 4
836 + #endif
837 + #endif
838 + #if defined(__x86_64__)
839 +        X86_REG_R8  = 8,
840 +        X86_REG_R9  = 9,
841 +        X86_REG_R10 = 10,
842 +        X86_REG_R11 = 11,
843 +        X86_REG_R12 = 12,
844 +        X86_REG_R13 = 13,
845 +        X86_REG_R14 = 14,
846 +        X86_REG_R15 = 15,
847 +        X86_REG_EDI = 4,
848 +        X86_REG_ESI = 5,
849 +        X86_REG_EBP = 6,
850 +        X86_REG_EBX = 1,
851 +        X86_REG_EDX = 3,
852 +        X86_REG_EAX = 0,
853 +        X86_REG_ECX = 2,
854 +        X86_REG_ESP = 7,
855 +        X86_REG_EIP = 16
856 + #endif
857 + };
858 + #endif
859 + #if defined(_WIN32)
860 + enum {
861 + #if (defined(i386) || defined(__i386__))
862 +        X86_REG_EIP = 7,
863 +        X86_REG_EAX = 5,
864 +        X86_REG_ECX = 4,
865 +        X86_REG_EDX = 3,
866 +        X86_REG_EBX = 2,
867 +        X86_REG_ESP = 10,
868 +        X86_REG_EBP = 6,
869 +        X86_REG_ESI = 1,
870 +        X86_REG_EDI = 0
871 + #endif
872   };
873   #endif
874   // FIXME: this is partly redundant with the instruction decoding phase
# Line 422 | Line 905 | static inline int ix86_step_over_modrm(u
905          return offset;
906   }
907  
908 < static bool ix86_skip_instruction(unsigned int * regs)
908 > static bool ix86_skip_instruction(unsigned long * regs)
909   {
910          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
911  
912          if (eip == 0)
913                  return false;
914 + #ifdef _WIN32
915 +        if (IsBadCodePtr((FARPROC)eip))
916 +                return false;
917 + #endif
918          
919 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
919 >        enum instruction_type_t {
920 >                i_MOV,
921 >                i_ADD
922 >        };
923 >
924 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
925          transfer_size_t transfer_size = SIZE_LONG;
926 +        instruction_type_t instruction_type = i_MOV;
927          
928          int reg = -1;
929          int len = 0;
930 <        
930 >
931 > #if DEBUG
932 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
933 >                   eip, eip[0], eip[1], eip[2], eip[3]);
934 > #endif
935 >
936          // Operand size prefix
937          if (*eip == 0x66) {
938                  eip++;
# Line 442 | Line 940 | static bool ix86_skip_instruction(unsign
940                  transfer_size = SIZE_WORD;
941          }
942  
943 +        // REX prefix
944 + #if defined(__x86_64__)
945 +        struct rex_t {
946 +                unsigned char W;
947 +                unsigned char R;
948 +                unsigned char X;
949 +                unsigned char B;
950 +        };
951 +        rex_t rex = { 0, 0, 0, 0 };
952 +        bool has_rex = false;
953 +        if ((*eip & 0xf0) == 0x40) {
954 +                has_rex = true;
955 +                const unsigned char b = *eip;
956 +                rex.W = b & (1 << 3);
957 +                rex.R = b & (1 << 2);
958 +                rex.X = b & (1 << 1);
959 +                rex.B = b & (1 << 0);
960 + #if DEBUG
961 +                printf("REX: %c,%c,%c,%c\n",
962 +                           rex.W ? 'W' : '_',
963 +                           rex.R ? 'R' : '_',
964 +                           rex.X ? 'X' : '_',
965 +                           rex.B ? 'B' : '_');
966 + #endif
967 +                eip++;
968 +                len++;
969 +                if (rex.W)
970 +                        transfer_size = SIZE_QUAD;
971 +        }
972 + #else
973 +        const bool has_rex = false;
974 + #endif
975 +
976          // Decode instruction
977 +        int op_len = 1;
978 +        int target_size = SIZE_UNKNOWN;
979          switch (eip[0]) {
980 +        case 0x0f:
981 +                target_size = transfer_size;
982 +            switch (eip[1]) {
983 +                case 0xbe: // MOVSX r32, r/m8
984 +            case 0xb6: // MOVZX r32, r/m8
985 +                        transfer_size = SIZE_BYTE;
986 +                        goto do_mov_extend;
987 +                case 0xbf: // MOVSX r32, r/m16
988 +            case 0xb7: // MOVZX r32, r/m16
989 +                        transfer_size = SIZE_WORD;
990 +                        goto do_mov_extend;
991 +                  do_mov_extend:
992 +                        op_len = 2;
993 +                        goto do_transfer_load;
994 +                }
995 +                break;
996 + #if defined(__x86_64__)
997 +        case 0x63: // MOVSXD r64, r/m32
998 +                if (has_rex && rex.W) {
999 +                        transfer_size = SIZE_LONG;
1000 +                        target_size = SIZE_QUAD;
1001 +                }
1002 +                else if (transfer_size != SIZE_WORD) {
1003 +                        transfer_size = SIZE_LONG;
1004 +                        target_size = SIZE_QUAD;
1005 +                }
1006 +                goto do_transfer_load;
1007 + #endif
1008 +        case 0x02: // ADD r8, r/m8
1009 +                transfer_size = SIZE_BYTE;
1010 +        case 0x03: // ADD r32, r/m32
1011 +                instruction_type = i_ADD;
1012 +                goto do_transfer_load;
1013          case 0x8a: // MOV r8, r/m8
1014                  transfer_size = SIZE_BYTE;
1015          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1016 <                switch (eip[1] & 0xc0) {
1016 >          do_transfer_load:
1017 >                switch (eip[op_len] & 0xc0) {
1018                  case 0x80:
1019 <                        reg = (eip[1] >> 3) & 7;
1020 <                        transfer_type = TYPE_LOAD;
1019 >                        reg = (eip[op_len] >> 3) & 7;
1020 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1021                          break;
1022                  case 0x40:
1023 <                        reg = (eip[1] >> 3) & 7;
1024 <                        transfer_type = TYPE_LOAD;
1023 >                        reg = (eip[op_len] >> 3) & 7;
1024 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1025                          break;
1026                  case 0x00:
1027 <                        reg = (eip[1] >> 3) & 7;
1028 <                        transfer_type = TYPE_LOAD;
1027 >                        reg = (eip[op_len] >> 3) & 7;
1028 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1029                          break;
1030                  }
1031 <                len += 2 + ix86_step_over_modrm(eip + 1);
1031 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1032                  break;
1033 +        case 0x00: // ADD r/m8, r8
1034 +                transfer_size = SIZE_BYTE;
1035 +        case 0x01: // ADD r/m32, r32
1036 +                instruction_type = i_ADD;
1037 +                goto do_transfer_store;
1038          case 0x88: // MOV r/m8, r8
1039                  transfer_size = SIZE_BYTE;
1040          case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1041 <                switch (eip[1] & 0xc0) {
1041 >          do_transfer_store:
1042 >                switch (eip[op_len] & 0xc0) {
1043                  case 0x80:
1044 <                        reg = (eip[1] >> 3) & 7;
1045 <                        transfer_type = TYPE_STORE;
1044 >                        reg = (eip[op_len] >> 3) & 7;
1045 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1046                          break;
1047                  case 0x40:
1048 <                        reg = (eip[1] >> 3) & 7;
1049 <                        transfer_type = TYPE_STORE;
1048 >                        reg = (eip[op_len] >> 3) & 7;
1049 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1050                          break;
1051                  case 0x00:
1052 <                        reg = (eip[1] >> 3) & 7;
1053 <                        transfer_type = TYPE_STORE;
1052 >                        reg = (eip[op_len] >> 3) & 7;
1053 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1054                          break;
1055                  }
1056 <                len += 2 + ix86_step_over_modrm(eip + 1);
1056 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1057                  break;
1058          }
1059 +        if (target_size == SIZE_UNKNOWN)
1060 +                target_size = transfer_size;
1061  
1062 <        if (transfer_type == TYPE_UNKNOWN) {
1062 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1063                  // Unknown machine code, let it crash. Then patch the decoder
1064                  return false;
1065          }
1066  
1067 <        if (transfer_type == TYPE_LOAD && reg != -1) {
1068 <                static const int x86_reg_map[8] = {
1067 > #if defined(__x86_64__)
1068 >        if (rex.R)
1069 >                reg += 8;
1070 > #endif
1071 >
1072 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1073 >                static const int x86_reg_map[] = {
1074                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1075 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1075 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1076 > #if defined(__x86_64__)
1077 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1078 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1079 > #endif
1080                  };
1081                  
1082 <                if (reg < 0 || reg >= 8)
1082 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1083                          return false;
1084  
1085 +                // Set 0 to the relevant register part
1086 +                // NOTE: this is only valid for MOV alike instructions
1087                  int rloc = x86_reg_map[reg];
1088 <                switch (transfer_size) {
1088 >                switch (target_size) {
1089                  case SIZE_BYTE:
1090 <                        regs[rloc] = (regs[rloc] & ~0xff);
1090 >                        if (has_rex || reg < 4)
1091 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1092 >                        else {
1093 >                                rloc = x86_reg_map[reg - 4];
1094 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1095 >                        }
1096                          break;
1097                  case SIZE_WORD:
1098 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1098 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1099                          break;
1100                  case SIZE_LONG:
1101 +                case SIZE_QUAD: // zero-extension
1102                          regs[rloc] = 0;
1103                          break;
1104                  }
1105          }
1106  
1107   #if DEBUG
1108 <        printf("%08x: %s %s access", regs[X86_REG_EIP],
1109 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1110 <                   transfer_type == TYPE_LOAD ? "read" : "write");
1108 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1109 >                   transfer_size == SIZE_BYTE ? "byte" :
1110 >                   transfer_size == SIZE_WORD ? "word" :
1111 >                   transfer_size == SIZE_LONG ? "long" :
1112 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1113 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1114          
1115          if (reg != -1) {
1116 <                static const char * x86_reg_str_map[8] = {
1117 <                        "eax", "ecx", "edx", "ebx",
1118 <                        "esp", "ebp", "esi", "edi"
1116 >                static const char * x86_byte_reg_str_map[] = {
1117 >                        "al",   "cl",   "dl",   "bl",
1118 >                        "spl",  "bpl",  "sil",  "dil",
1119 >                        "r8b",  "r9b",  "r10b", "r11b",
1120 >                        "r12b", "r13b", "r14b", "r15b",
1121 >                        "ah",   "ch",   "dh",   "bh",
1122 >                };
1123 >                static const char * x86_word_reg_str_map[] = {
1124 >                        "ax",   "cx",   "dx",   "bx",
1125 >                        "sp",   "bp",   "si",   "di",
1126 >                        "r8w",  "r9w",  "r10w", "r11w",
1127 >                        "r12w", "r13w", "r14w", "r15w",
1128 >                };
1129 >                static const char *x86_long_reg_str_map[] = {
1130 >                        "eax",  "ecx",  "edx",  "ebx",
1131 >                        "esp",  "ebp",  "esi",  "edi",
1132 >                        "r8d",  "r9d",  "r10d", "r11d",
1133 >                        "r12d", "r13d", "r14d", "r15d",
1134                  };
1135 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1135 >                static const char *x86_quad_reg_str_map[] = {
1136 >                        "rax", "rcx", "rdx", "rbx",
1137 >                        "rsp", "rbp", "rsi", "rdi",
1138 >                        "r8",  "r9",  "r10", "r11",
1139 >                        "r12", "r13", "r14", "r15",
1140 >                };
1141 >                const char * reg_str = NULL;
1142 >                switch (target_size) {
1143 >                case SIZE_BYTE:
1144 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1145 >                        break;
1146 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1147 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1148 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1149 >                }
1150 >                if (reg_str)
1151 >                        printf(" %s register %%%s",
1152 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1153 >                                   reg_str);
1154          }
1155          printf(", %d bytes instruction\n", len);
1156   #endif
# Line 533 | Line 1161 | static bool ix86_skip_instruction(unsign
1161   #endif
1162  
1163   // Decode and skip PPC instruction
1164 < #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1165 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1164 > #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1165 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1166   {
1167          instruction_t instr;
1168          powerpc_decode_instruction(&instr, *nip_p, regs);
1169          
1170 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1170 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1171                  // Unknown machine code, let it crash. Then patch the decoder
1172                  return false;
1173          }
1174  
1175   #if DEBUG
1176          printf("%08x: %s %s access", *nip_p,
1177 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1178 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1177 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1178 >                   instr.transfer_size == SIZE_WORD ? "word" :
1179 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1180 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1181          
1182          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1183                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1184 <        if (instr.transfer_type == TYPE_LOAD)
1184 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1185                  printf(" r%d (rd = 0)\n", instr.rd);
1186   #endif
1187          
1188          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1189                  regs[instr.ra] = instr.addr;
1190 <        if (instr.transfer_type == TYPE_LOAD)
1190 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1191                  regs[instr.rd] = 0;
1192          
1193          *nip_p += 4;
1194          return true;
1195   }
1196   #endif
1197 +
1198 + // Decode and skip MIPS instruction
1199 + #if (defined(mips) || defined(__mips))
1200 + static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1201 + {
1202 +  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1203 +
1204 +  if (epc == 0)
1205 +        return false;
1206 +
1207 + #if DEBUG
1208 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1209 + #endif
1210 +
1211 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1212 +  transfer_size_t transfer_size = SIZE_LONG;
1213 +  int direction = 0;
1214 +
1215 +  const unsigned int opcode = epc[0];
1216 +  switch (opcode >> 26) {
1217 +  case 32: // Load Byte
1218 +  case 36: // Load Byte Unsigned
1219 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1220 +        transfer_size = SIZE_BYTE;
1221 +        break;
1222 +  case 33: // Load Halfword
1223 +  case 37: // Load Halfword Unsigned
1224 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1225 +        transfer_size = SIZE_WORD;
1226 +        break;
1227 +  case 35: // Load Word
1228 +  case 39: // Load Word Unsigned
1229 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1230 +        transfer_size = SIZE_LONG;
1231 +        break;
1232 +  case 34: // Load Word Left
1233 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1234 +        transfer_size = SIZE_LONG;
1235 +        direction = -1;
1236 +        break;
1237 +  case 38: // Load Word Right
1238 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1239 +        transfer_size = SIZE_LONG;
1240 +        direction = 1;
1241 +        break;
1242 +  case 55: // Load Doubleword
1243 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1244 +        transfer_size = SIZE_QUAD;
1245 +        break;
1246 +  case 26: // Load Doubleword Left
1247 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1248 +        transfer_size = SIZE_QUAD;
1249 +        direction = -1;
1250 +        break;
1251 +  case 27: // Load Doubleword Right
1252 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1253 +        transfer_size = SIZE_QUAD;
1254 +        direction = 1;
1255 +        break;
1256 +  case 40: // Store Byte
1257 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1258 +        transfer_size = SIZE_BYTE;
1259 +        break;
1260 +  case 41: // Store Halfword
1261 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1262 +        transfer_size = SIZE_WORD;
1263 +        break;
1264 +  case 43: // Store Word
1265 +  case 42: // Store Word Left
1266 +  case 46: // Store Word Right
1267 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1268 +        transfer_size = SIZE_LONG;
1269 +        break;
1270 +  case 63: // Store Doubleword
1271 +  case 44: // Store Doubleword Left
1272 +  case 45: // Store Doubleword Right
1273 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1274 +        transfer_size = SIZE_QUAD;
1275 +        break;
1276 +  /* Misc instructions unlikely to be used within CPU emulators */
1277 +  case 48: // Load Linked Word
1278 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1279 +        transfer_size = SIZE_LONG;
1280 +        break;
1281 +  case 52: // Load Linked Doubleword
1282 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1283 +        transfer_size = SIZE_QUAD;
1284 +        break;
1285 +  case 56: // Store Conditional Word
1286 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1287 +        transfer_size = SIZE_LONG;
1288 +        break;
1289 +  case 60: // Store Conditional Doubleword
1290 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1291 +        transfer_size = SIZE_QUAD;
1292 +        break;
1293 +  }
1294 +
1295 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1296 +        // Unknown machine code, let it crash. Then patch the decoder
1297 +        return false;
1298 +  }
1299 +
1300 +  // Zero target register in case of a load operation
1301 +  const int reg = (opcode >> 16) & 0x1f;
1302 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1303 +        if (direction == 0)
1304 +          regs[reg] = 0;
1305 +        else {
1306 +          // FIXME: untested code
1307 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1308 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1309 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1310 +          unsigned long value;
1311 +          if (direction > 0) {
1312 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1313 +                value = regs[reg] & rmask;
1314 +          }
1315 +          else {
1316 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1317 +                value = regs[reg] & lmask;
1318 +          }
1319 +          // restore most significant bits
1320 +          if (transfer_size == SIZE_LONG)
1321 +                value = (signed long)(signed int)value;
1322 +          regs[reg] = value;
1323 +        }
1324 +  }
1325 +
1326 + #if DEBUG
1327 + #if (defined(_ABIN32) || defined(_ABI64))
1328 +  static const char * mips_gpr_names[32] = {
1329 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1330 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1331 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1332 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1333 +  };
1334 + #else
1335 +  static const char * mips_gpr_names[32] = {
1336 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1337 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1338 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1339 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1340 +  };
1341 + #endif
1342 +  printf("%s %s register %s\n",
1343 +                 transfer_size == SIZE_BYTE ? "byte" :
1344 +                 transfer_size == SIZE_WORD ? "word" :
1345 +                 transfer_size == SIZE_LONG ? "long" :
1346 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1347 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1348 +                 mips_gpr_names[reg]);
1349 + #endif
1350 +
1351 +  *pc_p += 4;
1352 +  return true;
1353 + }
1354 + #endif
1355 +
1356 + // Decode and skip SPARC instruction
1357 + #if (defined(sparc) || defined(__sparc__))
1358 + enum {
1359 + #if (defined(__sun__))
1360 +  SPARC_REG_G1 = REG_G1,
1361 +  SPARC_REG_O0 = REG_O0,
1362 +  SPARC_REG_PC = REG_PC,
1363 +  SPARC_REG_nPC = REG_nPC
1364 + #endif
1365 + };
1366 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1367 + {
1368 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1369 +
1370 +  if (pc == 0)
1371 +        return false;
1372 +
1373 + #if DEBUG
1374 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1375   #endif
1376  
1377 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1378 +  transfer_size_t transfer_size = SIZE_LONG;
1379 +  bool register_pair = false;
1380 +
1381 +  const unsigned int opcode = pc[0];
1382 +  if ((opcode >> 30) != 3)
1383 +        return false;
1384 +  switch ((opcode >> 19) & 0x3f) {
1385 +  case 9: // Load Signed Byte
1386 +  case 1: // Load Unsigned Byte
1387 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1388 +        transfer_size = SIZE_BYTE;
1389 +        break;
1390 +  case 10:// Load Signed Halfword
1391 +  case 2: // Load Unsigned Word
1392 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1393 +        transfer_size = SIZE_WORD;
1394 +        break;
1395 +  case 8: // Load Word
1396 +  case 0: // Load Unsigned Word
1397 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1398 +        transfer_size = SIZE_LONG;
1399 +        break;
1400 +  case 11:// Load Extended Word
1401 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1402 +        transfer_size = SIZE_QUAD;
1403 +        break;
1404 +  case 3: // Load Doubleword
1405 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1406 +        transfer_size = SIZE_LONG;
1407 +        register_pair = true;
1408 +        break;
1409 +  case 5: // Store Byte
1410 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1411 +        transfer_size = SIZE_BYTE;
1412 +        break;
1413 +  case 6: // Store Halfword
1414 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1415 +        transfer_size = SIZE_WORD;
1416 +        break;
1417 +  case 4: // Store Word
1418 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1419 +        transfer_size = SIZE_LONG;
1420 +        break;
1421 +  case 14:// Store Extended Word
1422 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1423 +        transfer_size = SIZE_QUAD;
1424 +        break;
1425 +  case 7: // Store Doubleword
1426 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1427 +        transfer_size = SIZE_LONG;
1428 +        register_pair = true;
1429 +        break;
1430 +  }
1431 +
1432 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1433 +        // Unknown machine code, let it crash. Then patch the decoder
1434 +        return false;
1435 +  }
1436 +
1437 +  const int reg = (opcode >> 25) & 0x1f;
1438 +
1439 + #if DEBUG
1440 +  static const char * reg_names[] = {
1441 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1442 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1443 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1444 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1445 +  };
1446 +  printf("%s %s register %s\n",
1447 +                 transfer_size == SIZE_BYTE ? "byte" :
1448 +                 transfer_size == SIZE_WORD ? "word" :
1449 +                 transfer_size == SIZE_LONG ? "long" :
1450 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1451 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1452 +                 reg_names[reg]);
1453 + #endif
1454 +
1455 +  // Zero target register in case of a load operation
1456 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1457 +        // FIXME: code to handle local & input registers is not tested
1458 +        if (reg >= 1 && reg < 8) {
1459 +          // global registers
1460 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1461 +        }
1462 +        else if (reg >= 8 && reg < 16) {
1463 +          // output registers
1464 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1465 +        }
1466 +        else if (reg >= 16 && reg < 24) {
1467 +          // local registers (in register windows)
1468 +          if (gwins)
1469 +                gwins->wbuf->rw_local[reg - 16] = 0;
1470 +          else
1471 +                rwin->rw_local[reg - 16] = 0;
1472 +        }
1473 +        else {
1474 +          // input registers (in register windows)
1475 +          if (gwins)
1476 +                gwins->wbuf->rw_in[reg - 24] = 0;
1477 +          else
1478 +                rwin->rw_in[reg - 24] = 0;
1479 +        }
1480 +  }
1481 +
1482 +  regs[SPARC_REG_PC] += 4;
1483 +  regs[SPARC_REG_nPC] += 4;
1484 +  return true;
1485 + }
1486 + #endif
1487 + #endif
1488 +
1489 + // Decode and skip ARM instruction
1490 + #if (defined(arm) || defined(__arm__))
1491 + enum {
1492 + #if (defined(__linux__))
1493 +  ARM_REG_PC = 15,
1494 +  ARM_REG_CPSR = 16
1495 + #endif
1496 + };
1497 + static bool arm_skip_instruction(unsigned long * regs)
1498 + {
1499 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1500 +
1501 +  if (pc == 0)
1502 +        return false;
1503 +
1504 + #if DEBUG
1505 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1506 + #endif
1507 +
1508 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1509 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1510 +  enum { op_sdt = 1, op_sdth = 2 };
1511 +  int op = 0;
1512 +
1513 +  // Handle load/store instructions only
1514 +  const unsigned int opcode = pc[0];
1515 +  switch ((opcode >> 25) & 7) {
1516 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1517 +        op = op_sdth;
1518 +        // Determine transfer size (S/H bits)
1519 +        switch ((opcode >> 5) & 3) {
1520 +        case 0: // SWP instruction
1521 +          break;
1522 +        case 1: // Unsigned halfwords
1523 +        case 3: // Signed halfwords
1524 +          transfer_size = SIZE_WORD;
1525 +          break;
1526 +        case 2: // Signed byte
1527 +          transfer_size = SIZE_BYTE;
1528 +          break;
1529 +        }
1530 +        break;
1531 +  case 2:
1532 +  case 3: // Single Data Transfer (LDR, STR)
1533 +        op = op_sdt;
1534 +        // Determine transfer size (B bit)
1535 +        if (((opcode >> 22) & 1) == 1)
1536 +          transfer_size = SIZE_BYTE;
1537 +        else
1538 +          transfer_size = SIZE_LONG;
1539 +        break;
1540 +  default:
1541 +        // FIXME: support load/store mutliple?
1542 +        return false;
1543 +  }
1544 +
1545 +  // Check for invalid transfer size (SWP instruction?)
1546 +  if (transfer_size == SIZE_UNKNOWN)
1547 +        return false;
1548 +
1549 +  // Determine transfer type (L bit)
1550 +  if (((opcode >> 20) & 1) == 1)
1551 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1552 +  else
1553 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1554 +
1555 +  // Compute offset
1556 +  int offset;
1557 +  if (((opcode >> 25) & 1) == 0) {
1558 +        if (op == op_sdt)
1559 +          offset = opcode & 0xfff;
1560 +        else if (op == op_sdth) {
1561 +          int rm = opcode & 0xf;
1562 +          if (((opcode >> 22) & 1) == 0) {
1563 +                // register offset
1564 +                offset = regs[rm];
1565 +          }
1566 +          else {
1567 +                // immediate offset
1568 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1569 +          }
1570 +        }
1571 +  }
1572 +  else {
1573 +        const int rm = opcode & 0xf;
1574 +        const int sh = (opcode >> 7) & 0x1f;
1575 +        if (((opcode >> 4) & 1) == 1) {
1576 +          // we expect only legal load/store instructions
1577 +          printf("FATAL: invalid shift operand\n");
1578 +          return false;
1579 +        }
1580 +        const unsigned int v = regs[rm];
1581 +        switch ((opcode >> 5) & 3) {
1582 +        case 0: // logical shift left
1583 +          offset = sh ? v << sh : v;
1584 +          break;
1585 +        case 1: // logical shift right
1586 +          offset = sh ? v >> sh : 0;
1587 +          break;
1588 +        case 2: // arithmetic shift right
1589 +          if (sh)
1590 +                offset = ((signed int)v) >> sh;
1591 +          else
1592 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1593 +          break;
1594 +        case 3: // rotate right
1595 +          if (sh)
1596 +                offset = (v >> sh) | (v << (32 - sh));
1597 +          else
1598 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1599 +          break;
1600 +        }
1601 +  }
1602 +  if (((opcode >> 23) & 1) == 0)
1603 +        offset = -offset;
1604 +
1605 +  int rd = (opcode >> 12) & 0xf;
1606 +  int rn = (opcode >> 16) & 0xf;
1607 + #if DEBUG
1608 +  static const char * reg_names[] = {
1609 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1610 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1611 +  };
1612 +  printf("%s %s register %s\n",
1613 +                 transfer_size == SIZE_BYTE ? "byte" :
1614 +                 transfer_size == SIZE_WORD ? "word" :
1615 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1616 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1617 +                 reg_names[rd]);
1618 + #endif
1619 +
1620 +  unsigned int base = regs[rn];
1621 +  if (((opcode >> 24) & 1) == 1)
1622 +        base += offset;
1623 +
1624 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1625 +        regs[rd] = 0;
1626 +
1627 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1628 +        regs[rn] += offset;
1629 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1630 +        regs[rn] = base;
1631 +
1632 +  regs[ARM_REG_PC] += 4;
1633 +  return true;
1634 + }
1635 + #endif
1636 +
1637 +
1638   // Fallbacks
1639 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
1640 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
1641 + #endif
1642 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
1643 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
1644 + #endif
1645   #ifndef SIGSEGV_FAULT_INSTRUCTION
1646 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1646 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
1647 > #endif
1648 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1649 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1650 > #endif
1651 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1652 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
1653   #endif
1654  
1655   // SIGSEGV recovery supported ?
# Line 581 | Line 1662 | static bool powerpc_skip_instruction(uns
1662   *  SIGSEGV global handler
1663   */
1664  
1665 + struct sigsegv_info_t {
1666 +        sigsegv_address_t addr;
1667 +        sigsegv_address_t pc;
1668 + #ifdef HAVE_MACH_EXCEPTIONS
1669 +        mach_port_t thread;
1670 +        bool has_exc_state;
1671 +        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
1672 +        mach_msg_type_number_t exc_state_count;
1673 +        bool has_thr_state;
1674 +        SIGSEGV_THREAD_STATE_TYPE thr_state;
1675 +        mach_msg_type_number_t thr_state_count;
1676 + #endif
1677 + };
1678 +
1679 + #ifdef HAVE_MACH_EXCEPTIONS
1680 + static void mach_get_exception_state(sigsegv_info_t *SIP)
1681 + {
1682 +        SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
1683 +        kern_return_t krc = thread_get_state(SIP->thread,
1684 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
1685 +                                                                                 (natural_t *)&SIP->exc_state,
1686 +                                                                                 &SIP->exc_state_count);
1687 +        MACH_CHECK_ERROR(thread_get_state, krc);
1688 +        SIP->has_exc_state = true;
1689 + }
1690 +
1691 + static void mach_get_thread_state(sigsegv_info_t *SIP)
1692 + {
1693 +        SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
1694 +        kern_return_t krc = thread_get_state(SIP->thread,
1695 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
1696 +                                                                                 (natural_t *)&SIP->thr_state,
1697 +                                                                                 &SIP->thr_state_count);
1698 +        MACH_CHECK_ERROR(thread_get_state, krc);
1699 +        SIP->has_thr_state = true;
1700 + }
1701 +
1702 + static void mach_set_thread_state(sigsegv_info_t *SIP)
1703 + {
1704 +        kern_return_t krc = thread_set_state(SIP->thread,
1705 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
1706 +                                                                                 (natural_t *)&SIP->thr_state,
1707 +                                                                                 SIP->thr_state_count);
1708 +        MACH_CHECK_ERROR(thread_set_state, krc);
1709 + }
1710 + #endif
1711 +
1712 + // Return the address of the invalid memory reference
1713 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
1714 + {
1715 + #ifdef HAVE_MACH_EXCEPTIONS
1716 +        static int use_fast_path = -1;
1717 +        if (use_fast_path != 1 && !SIP->has_exc_state) {
1718 +                mach_get_exception_state(SIP);
1719 +
1720 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1721 +                if (use_fast_path < 0)
1722 +                        use_fast_path = addr == SIP->addr;
1723 +                SIP->addr = addr;
1724 +        }
1725 + #endif
1726 +        return SIP->addr;
1727 + }
1728 +
1729 + // Return the address of the instruction that caused the fault, or
1730 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
1731 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
1732 + {
1733 + #ifdef HAVE_MACH_EXCEPTIONS
1734 +        if (!SIP->has_thr_state) {
1735 +                mach_get_thread_state(SIP);
1736 +
1737 +                SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1738 +        }
1739 + #endif
1740 +        return SIP->pc;
1741 + }
1742 +
1743 + // This function handles the badaccess to memory.
1744 + // It is called from the signal handler or the exception handler.
1745 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1746 + {
1747 +        sigsegv_info_t SI;
1748 +        SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
1749 +        SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
1750 + #ifdef HAVE_MACH_EXCEPTIONS
1751 +        SI.thread = thread;
1752 +        SI.has_exc_state = false;
1753 +        SI.has_thr_state = false;
1754 + #endif
1755 +        sigsegv_info_t * const SIP = &SI;
1756 +
1757 +        // Call user's handler and reinstall the global handler, if required
1758 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
1759 +        case SIGSEGV_RETURN_SUCCESS:
1760 +                return true;
1761 +
1762 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1763 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1764 +                // Call the instruction skipper with the register file
1765 +                // available
1766 + #ifdef HAVE_MACH_EXCEPTIONS
1767 +                if (!SIP->has_thr_state)
1768 +                        mach_get_thread_state(SIP);
1769 + #endif
1770 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1771 + #ifdef HAVE_MACH_EXCEPTIONS
1772 +                        // Unlike UNIX signals where the thread state
1773 +                        // is modified off of the stack, in Mach we
1774 +                        // need to actually call thread_set_state to
1775 +                        // have the register values updated.
1776 +                        mach_set_thread_state(SIP);
1777 + #endif
1778 +                        return true;
1779 +                }
1780 +                break;
1781 + #endif
1782 +        case SIGSEGV_RETURN_FAILURE:
1783 +                // We can't do anything with the fault_address, dump state?
1784 +                if (sigsegv_state_dumper != 0)
1785 +                        sigsegv_state_dumper(SIP);
1786 +                break;
1787 +        }
1788 +
1789 +        return false;
1790 + }
1791 +
1792 +
1793 + /*
1794 + * There are two mechanisms for handling a bad memory access,
1795 + * Mach exceptions and UNIX signals. The implementation specific
1796 + * code appears below. Its reponsibility is to call handle_badaccess
1797 + * which is the routine that handles the fault in an implementation
1798 + * agnostic manner. The implementation specific code below is then
1799 + * reponsible for checking whether handle_badaccess was able
1800 + * to handle the memory access error and perform any implementation
1801 + * specific tasks necessary afterwards.
1802 + */
1803 +
1804 + #ifdef HAVE_MACH_EXCEPTIONS
1805 + /*
1806 + * We need to forward all exceptions that we do not handle.
1807 + * This is important, there are many exceptions that may be
1808 + * handled by other exception handlers. For example debuggers
1809 + * use exceptions and the exception hander is in another
1810 + * process in such a case. (Timothy J. Wood states in his
1811 + * message to the list that he based this code on that from
1812 + * gdb for Darwin.)
1813 + */
1814 + static inline kern_return_t
1815 + forward_exception(mach_port_t thread_port,
1816 +                                  mach_port_t task_port,
1817 +                                  exception_type_t exception_type,
1818 +                                  exception_data_t exception_data,
1819 +                                  mach_msg_type_number_t data_count,
1820 +                                  ExceptionPorts *oldExceptionPorts)
1821 + {
1822 +        kern_return_t kret;
1823 +        unsigned int portIndex;
1824 +        mach_port_t port;
1825 +        exception_behavior_t behavior;
1826 +        thread_state_flavor_t flavor;
1827 +        thread_state_data_t thread_state;
1828 +        mach_msg_type_number_t thread_state_count;
1829 +
1830 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1831 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1832 +                        // This handler wants the exception
1833 +                        break;
1834 +                }
1835 +        }
1836 +
1837 +        if (portIndex >= oldExceptionPorts->maskCount) {
1838 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1839 +                return KERN_FAILURE;
1840 +        }
1841 +
1842 +        port = oldExceptionPorts->handlers[portIndex];
1843 +        behavior = oldExceptionPorts->behaviors[portIndex];
1844 +        flavor = oldExceptionPorts->flavors[portIndex];
1845 +
1846 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1847 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1848 +                return KERN_FAILURE;
1849 +        }
1850 +
1851 +        /*
1852 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1853 +         */
1854 +
1855 +        if (behavior != EXCEPTION_DEFAULT) {
1856 +                thread_state_count = THREAD_STATE_MAX;
1857 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1858 +                                                                 &thread_state_count);
1859 +                MACH_CHECK_ERROR (thread_get_state, kret);
1860 +        }
1861 +
1862 +        switch (behavior) {
1863 +        case EXCEPTION_DEFAULT:
1864 +          // fprintf(stderr, "forwarding to exception_raise\n");
1865 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1866 +                                                         exception_data, data_count);
1867 +          MACH_CHECK_ERROR (exception_raise, kret);
1868 +          break;
1869 +        case EXCEPTION_STATE:
1870 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1871 +          kret = exception_raise_state(port, exception_type, exception_data,
1872 +                                                                   data_count, &flavor,
1873 +                                                                   (natural_t *)&thread_state, thread_state_count,
1874 +                                                                   (natural_t *)&thread_state, &thread_state_count);
1875 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1876 +          break;
1877 +        case EXCEPTION_STATE_IDENTITY:
1878 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1879 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1880 +                                                                                        exception_type, exception_data,
1881 +                                                                                        data_count, &flavor,
1882 +                                                                                        (natural_t *)&thread_state, thread_state_count,
1883 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
1884 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1885 +          break;
1886 +        default:
1887 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1888 +          kret = KERN_FAILURE;
1889 +          break;
1890 +        }
1891 +
1892 +        if (behavior != EXCEPTION_DEFAULT) {
1893 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1894 +                                                                 thread_state_count);
1895 +                MACH_CHECK_ERROR (thread_set_state, kret);
1896 +        }
1897 +
1898 +        return kret;
1899 + }
1900 +
1901 + /*
1902 + * This is the code that actually handles the exception.
1903 + * It is called by exc_server. For Darwin 5 Apple changed
1904 + * this a bit from how this family of functions worked in
1905 + * Mach. If you are familiar with that it is a little
1906 + * different. The main variation that concerns us here is
1907 + * that code is an array of exception specific codes and
1908 + * codeCount is a count of the number of codes in the code
1909 + * array. In typical Mach all exceptions have a code
1910 + * and sub-code. It happens to be the case that for a
1911 + * EXC_BAD_ACCESS exception the first entry is the type of
1912 + * bad access that occurred and the second entry is the
1913 + * faulting address so these entries correspond exactly to
1914 + * how the code and sub-code are used on Mach.
1915 + *
1916 + * This is a MIG interface. No code in Basilisk II should
1917 + * call this directley. This has to have external C
1918 + * linkage because that is what exc_server expects.
1919 + */
1920 + kern_return_t
1921 + catch_exception_raise(mach_port_t exception_port,
1922 +                                          mach_port_t thread,
1923 +                                          mach_port_t task,
1924 +                                          exception_type_t exception,
1925 +                                          exception_data_t code,
1926 +                                          mach_msg_type_number_t code_count)
1927 + {
1928 +        kern_return_t krc;
1929 +
1930 +        if (exception == EXC_BAD_ACCESS) {
1931 +                switch (code[0]) {
1932 +                case KERN_PROTECTION_FAILURE:
1933 +                case KERN_INVALID_ADDRESS:
1934 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1935 +                                return KERN_SUCCESS;
1936 +                        break;
1937 +                }
1938 +        }
1939 +
1940 +        // In Mach we do not need to remove the exception handler.
1941 +        // If we forward the exception, eventually some exception handler
1942 +        // will take care of this exception.
1943 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
1944 +
1945 +        return krc;
1946 + }
1947 + #endif
1948 +
1949   #ifdef HAVE_SIGSEGV_RECOVERY
1950 + // Handle bad memory accesses with signal handler
1951   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1952   {
1953 <        sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1954 <        sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
589 <        bool fault_recovered = false;
590 <        
591 <        // Call user's handler and reinstall the global handler, if required
592 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1953 >        // Call handler and reinstall the global handler, if required
1954 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1955   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1956                  sigsegv_do_install_handler(sig);
1957   #endif
1958 <                fault_recovered = true;
597 <        }
598 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
599 <        else if (sigsegv_ignore_fault) {
600 <                // Call the instruction skipper with the register file available
601 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
602 <                        fault_recovered = true;
1958 >                return;
1959          }
604 #endif
1960  
1961 <        if (!fault_recovered) {
607 <                // FAIL: reinstall default handler for "safe" crash
1961 >        // Failure: reinstall default handler for "safe" crash
1962   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1963 <                SIGSEGV_ALL_SIGNALS
1963 >        SIGSEGV_ALL_SIGNALS
1964   #undef FAULT_HANDLER
611                
612                // We can't do anything with the fault_address, dump state?
613                if (sigsegv_state_dumper != 0)
614                        sigsegv_state_dumper(fault_address, fault_instruction);
615        }
1965   }
1966   #endif
1967  
# Line 626 | Line 1975 | static bool sigsegv_do_install_handler(i
1975   {
1976          // Setup SIGSEGV handler to process writes to frame buffer
1977   #ifdef HAVE_SIGACTION
1978 <        struct sigaction vosf_sa;
1979 <        sigemptyset(&vosf_sa.sa_mask);
1980 <        vosf_sa.sa_sigaction = sigsegv_handler;
1981 <        vosf_sa.sa_flags = SA_SIGINFO;
1982 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1978 >        struct sigaction sigsegv_sa;
1979 >        sigemptyset(&sigsegv_sa.sa_mask);
1980 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1981 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1982 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1983   #else
1984          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1985   #endif
# Line 642 | Line 1991 | static bool sigsegv_do_install_handler(i
1991   {
1992          // Setup SIGSEGV handler to process writes to frame buffer
1993   #ifdef HAVE_SIGACTION
1994 <        struct sigaction vosf_sa;
1995 <        sigemptyset(&vosf_sa.sa_mask);
1996 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1994 >        struct sigaction sigsegv_sa;
1995 >        sigemptyset(&sigsegv_sa.sa_mask);
1996 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1997 >        sigsegv_sa.sa_flags = 0;
1998   #if !EMULATED_68K && defined(__NetBSD__)
1999 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2000 <        vosf_sa.sa_flags = SA_ONSTACK;
651 < #else
652 <        vosf_sa.sa_flags = 0;
1999 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2000 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2001   #endif
2002 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2002 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2003   #else
2004          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2005   #endif
2006   }
2007   #endif
2008  
2009 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2009 > #if defined(HAVE_MACH_EXCEPTIONS)
2010 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2011   {
2012 < #ifdef HAVE_SIGSEGV_RECOVERY
2012 >        /*
2013 >         * Except for the exception port functions, this should be
2014 >         * pretty much stock Mach. If later you choose to support
2015 >         * other Mach's besides Darwin, just check for __MACH__
2016 >         * here and __APPLE__ where the actual differences are.
2017 >         */
2018 > #if defined(__APPLE__) && defined(__MACH__)
2019 >        if (sigsegv_fault_handler != NULL) {
2020 >                sigsegv_fault_handler = handler;
2021 >                return true;
2022 >        }
2023 >
2024 >        kern_return_t krc;
2025 >
2026 >        // create the the exception port
2027 >        krc = mach_port_allocate(mach_task_self(),
2028 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2029 >        if (krc != KERN_SUCCESS) {
2030 >                mach_error("mach_port_allocate", krc);
2031 >                return false;
2032 >        }
2033 >
2034 >        // add a port send right
2035 >        krc = mach_port_insert_right(mach_task_self(),
2036 >                              _exceptionPort, _exceptionPort,
2037 >                              MACH_MSG_TYPE_MAKE_SEND);
2038 >        if (krc != KERN_SUCCESS) {
2039 >                mach_error("mach_port_insert_right", krc);
2040 >                return false;
2041 >        }
2042 >
2043 >        // get the old exception ports
2044 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2045 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2046 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2047 >        if (krc != KERN_SUCCESS) {
2048 >                mach_error("thread_get_exception_ports", krc);
2049 >                return false;
2050 >        }
2051 >
2052 >        // set the new exception port
2053 >        //
2054 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2055 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2056 >        // message, but it turns out that in the common case this is not
2057 >        // neccessary. If we need it we can later ask for it from the
2058 >        // suspended thread.
2059 >        //
2060 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2061 >        // counter in the thread state.  The comments in the header file
2062 >        // seem to imply that you can count on the GPR's on an exception
2063 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2064 >        // you have to ask for all of the GPR's anyway just to get the
2065 >        // program counter. In any case because of update effective
2066 >        // address from immediate and update address from effective
2067 >        // addresses of ra and rb modes (as good an name as any for these
2068 >        // addressing modes) used in PPC instructions, you will need the
2069 >        // GPR state anyway.
2070 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2071 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2072 >        if (krc != KERN_SUCCESS) {
2073 >                mach_error("thread_set_exception_ports", krc);
2074 >                return false;
2075 >        }
2076 >
2077 >        // create the exception handler thread
2078 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2079 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2080 >                return false;
2081 >        }
2082 >
2083 >        // do not care about the exception thread any longer, let is run standalone
2084 >        (void)pthread_detach(exc_thread);
2085 >
2086          sigsegv_fault_handler = handler;
2087 +        return true;
2088 + #else
2089 +        return false;
2090 + #endif
2091 + }
2092 + #endif
2093 +
2094 + #ifdef HAVE_WIN32_EXCEPTIONS
2095 + static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2096 + {
2097 +        if (sigsegv_fault_handler != NULL
2098 +                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2099 +                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2100 +                && handle_badaccess(ExceptionInfo))
2101 +                return EXCEPTION_CONTINUE_EXECUTION;
2102 +
2103 +        return EXCEPTION_CONTINUE_SEARCH;
2104 + }
2105 +
2106 + #if defined __CYGWIN__ && defined __i386__
2107 + /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2108 +   installs a global exception handler.  We have to dig deep in order to install
2109 +   our main_exception_filter.  */
2110 +
2111 + /* Data structures for the current thread's exception handler chain.
2112 +   On the x86 Windows uses register fs, offset 0 to point to the current
2113 +   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2114 +
2115 + /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2116 +
2117 + struct exception_list {
2118 +    struct exception_list *prev;
2119 +    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2120 + };
2121 + typedef struct exception_list exception_list;
2122 +
2123 + /* Magic taken from winsup/cygwin/exceptions.cc.  */
2124 +
2125 + __asm__ (".equ __except_list,0");
2126 +
2127 + extern exception_list *_except_list __asm__ ("%fs:__except_list");
2128 +
2129 + /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2130 + static exception_list *
2131 + debug_get_except_list ()
2132 + {
2133 +  return _except_list;
2134 + }
2135 +
2136 + /* Cygwin's original exception handler.  */
2137 + static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2138 +
2139 + /* Our exception handler.  */
2140 + static int
2141 + libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2142 + {
2143 +  EXCEPTION_POINTERS ExceptionInfo;
2144 +  ExceptionInfo.ExceptionRecord = exception;
2145 +  ExceptionInfo.ContextRecord = context;
2146 +  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2147 +    return cygwin_exception_handler (exception, frame, context, dispatch);
2148 +  else
2149 +    return 0;
2150 + }
2151 +
2152 + static void
2153 + do_install_main_exception_filter ()
2154 + {
2155 +  /* We cannot insert any handler into the chain, because such handlers
2156 +     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2157 +     global exception handler.  */
2158 +  cygwin_exception_handler = _except_list->handler;
2159 +  _except_list->handler = libsigsegv_exception_handler;
2160 + }
2161 +
2162 + #else
2163 +
2164 + static void
2165 + do_install_main_exception_filter ()
2166 + {
2167 +  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2168 + }
2169 + #endif
2170 +
2171 + static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2172 + {
2173 +        static bool main_exception_filter_installed = false;
2174 +        if (!main_exception_filter_installed) {
2175 +                do_install_main_exception_filter();
2176 +                main_exception_filter_installed = true;
2177 +        }
2178 +        sigsegv_fault_handler = handler;
2179 +        return true;
2180 + }
2181 + #endif
2182 +
2183 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2184 + {
2185 + #if defined(HAVE_SIGSEGV_RECOVERY)
2186          bool success = true;
2187   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2188          SIGSEGV_ALL_SIGNALS
2189   #undef FAULT_HANDLER
2190 +        if (success)
2191 +            sigsegv_fault_handler = handler;
2192          return success;
2193 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2194 +        return sigsegv_do_install_handler(handler);
2195   #else
2196          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2197          return false;
# Line 680 | Line 2205 | bool sigsegv_install_handler(sigsegv_fau
2205  
2206   void sigsegv_deinstall_handler(void)
2207   {
2208 +  // We do nothing for Mach exceptions, the thread would need to be
2209 +  // suspended if not already so, and we might mess with other
2210 +  // exception handlers that came after we registered ours. There is
2211 +  // no need to remove the exception handler, in fact this function is
2212 +  // not called anywhere in Basilisk II.
2213   #ifdef HAVE_SIGSEGV_RECOVERY
2214          sigsegv_fault_handler = 0;
2215   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2216          SIGSEGV_ALL_SIGNALS
2217   #undef FAULT_HANDLER
2218   #endif
2219 < }
2220 <
2221 <
692 < /*
693 < *  SIGSEGV ignore state modifier
694 < */
695 <
696 < void sigsegv_set_ignore_state(bool ignore_fault)
697 < {
698 <        sigsegv_ignore_fault = ignore_fault;
2219 > #ifdef HAVE_WIN32_EXCEPTIONS
2220 >        sigsegv_fault_handler = NULL;
2221 > #endif
2222   }
2223  
2224  
# Line 717 | Line 2240 | void sigsegv_set_dump_state(sigsegv_stat
2240   #include <stdio.h>
2241   #include <stdlib.h>
2242   #include <fcntl.h>
2243 + #ifdef HAVE_SYS_MMAN_H
2244   #include <sys/mman.h>
2245 + #endif
2246   #include "vm_alloc.h"
2247  
2248 + const int REF_INDEX = 123;
2249 + const int REF_VALUE = 45;
2250 +
2251   static int page_size;
2252   static volatile char * page = 0;
2253   static volatile int handler_called = 0;
2254  
2255 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2255 > /* Barriers */
2256 > #ifdef __GNUC__
2257 > #define BARRIER() asm volatile ("" : : : "memory")
2258 > #else
2259 > #define BARRIER() /* nothing */
2260 > #endif
2261 >
2262 > #ifdef __GNUC__
2263 > // Code range where we expect the fault to come from
2264 > static void *b_region, *e_region;
2265 > #endif
2266 >
2267 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
2268   {
2269 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2270 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2271 + #if DEBUG
2272 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2273 +        printf("expected fault at %p\n", page + REF_INDEX);
2274 + #ifdef __GNUC__
2275 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2276 + #endif
2277 + #endif
2278          handler_called++;
2279 <        if ((fault_address - 123) != page)
2280 <                exit(1);
2279 >        if ((fault_address - REF_INDEX) != page)
2280 >                exit(10);
2281 > #ifdef __GNUC__
2282 >        // Make sure reported fault instruction address falls into
2283 >        // expected code range
2284 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
2285 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2286 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2287 >                exit(11);
2288 > #endif
2289          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2290 <                exit(1);
2291 <        return true;
2290 >                exit(12);
2291 >        return SIGSEGV_RETURN_SUCCESS;
2292   }
2293  
2294   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2295 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2295 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
2296   {
2297 <        return false;
2297 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2298 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2299 > #if DEBUG
2300 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2301 > #endif
2302 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2303 > #ifdef __GNUC__
2304 >                // Make sure reported fault instruction address falls into
2305 >                // expected code range
2306 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
2307 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2308 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2309 >                        return SIGSEGV_RETURN_FAILURE;
2310 > #endif
2311 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2312 >        }
2313 >
2314 >        return SIGSEGV_RETURN_FAILURE;
2315 > }
2316 >
2317 > // More sophisticated tests for instruction skipper
2318 > static bool arch_insn_skipper_tests()
2319 > {
2320 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2321 >        static const unsigned char code[] = {
2322 >                0x8a, 0x00,                    // mov    (%eax),%al
2323 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2324 >                0x88, 0x20,                    // mov    %ah,(%eax)
2325 >                0x88, 0x08,                    // mov    %cl,(%eax)
2326 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2327 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2328 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2329 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2330 >                0x8b, 0x00,                    // mov    (%eax),%eax
2331 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2332 >                0x89, 0x00,                    // mov    %eax,(%eax)
2333 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2334 > #if defined(__x86_64__)
2335 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2336 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2337 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2338 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2339 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2340 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2341 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2342 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2343 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2344 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2345 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2346 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2347 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2348 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2349 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2350 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2351 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2352 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2353 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2354 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2355 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2356 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2357 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2358 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2359 > #endif
2360 >                0                              // end
2361 >        };
2362 >        const int N_REGS = 20;
2363 >        unsigned long regs[N_REGS];
2364 >        for (int i = 0; i < N_REGS; i++)
2365 >                regs[i] = i;
2366 >        const unsigned long start_code = (unsigned long)&code;
2367 >        regs[X86_REG_EIP] = start_code;
2368 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2369 >                   && ix86_skip_instruction(regs))
2370 >                ; /* simply iterate */
2371 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2372 > #endif
2373 >        return true;
2374   }
2375   #endif
2376  
# Line 746 | Line 2379 | int main(void)
2379          if (vm_init() < 0)
2380                  return 1;
2381  
2382 <        page_size = getpagesize();
2382 >        page_size = vm_get_page_size();
2383          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2384 <                return 1;
2384 >                return 2;
2385          
2386 +        memset((void *)page, 0, page_size);
2387          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2388 <                return 1;
2388 >                return 3;
2389          
2390          if (!sigsegv_install_handler(sigsegv_test_handler))
2391 <                return 1;
758 <        
759 <        page[123] = 45;
760 <        page[123] = 45;
2391 >                return 4;
2392          
2393 + #ifdef __GNUC__
2394 +        b_region = &&L_b_region1;
2395 +        e_region = &&L_e_region1;
2396 + #endif
2397 + L_b_region1:
2398 +        page[REF_INDEX] = REF_VALUE;
2399 +        if (page[REF_INDEX] != REF_VALUE)
2400 +          exit(20);
2401 +        page[REF_INDEX] = REF_VALUE;
2402 +        BARRIER();
2403 + L_e_region1:
2404 +
2405          if (handler_called != 1)
2406 <                return 1;
2406 >                return 5;
2407  
2408   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2409          if (!sigsegv_install_handler(sigsegv_insn_handler))
2410 <                return 1;
2410 >                return 6;
2411          
2412 <        if (vm_protect((char *)page, page_size, VM_PAGE_WRITE) < 0)
2413 <                return 1;
2412 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2413 >                return 7;
2414          
2415          for (int i = 0; i < page_size; i++)
2416                  page[i] = (i + 1) % page_size;
2417          
2418          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2419 <                return 1;
2419 >                return 8;
2420          
778        sigsegv_set_ignore_state(true);
779
2421   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2422 <                const unsigned int TAG = 0x12345678;                    \
2422 >                const unsigned long TAG = 0x12345678 |                  \
2423 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2424                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2425 <                volatile unsigned int effect = data + TAG;              \
2425 >                volatile unsigned long effect = data + TAG;             \
2426                  if (effect != TAG)                                                              \
2427 <                        return 1;                                                                       \
2427 >                        return 9;                                                                       \
2428          } while (0)
2429          
2430 + #ifdef __GNUC__
2431 +        b_region = &&L_b_region2;
2432 +        e_region = &&L_e_region2;
2433 + #endif
2434 + L_b_region2:
2435          TEST_SKIP_INSTRUCTION(unsigned char);
2436          TEST_SKIP_INSTRUCTION(unsigned short);
2437          TEST_SKIP_INSTRUCTION(unsigned int);
2438 +        TEST_SKIP_INSTRUCTION(unsigned long);
2439 +        TEST_SKIP_INSTRUCTION(signed char);
2440 +        TEST_SKIP_INSTRUCTION(signed short);
2441 +        TEST_SKIP_INSTRUCTION(signed int);
2442 +        TEST_SKIP_INSTRUCTION(signed long);
2443 +        BARRIER();
2444 + L_e_region2:
2445 +
2446 +        if (!arch_insn_skipper_tests())
2447 +                return 20;
2448   #endif
2449  
2450          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines