ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.9 by gbeauche, 2002-03-16T21:36:12Z vs.
Revision 1.71 by gbeauche, 2008-01-01T09:40:33Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2008 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 41 | Line 53
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
55   // User's SIGSEGV handler
56 < static sigsegv_handler_t sigsegv_user_handler = 0;
56 > static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57 >
58 > // Function called to dump state if we can't handle the fault
59 > static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
60  
61   // Actual SIGSEGV handler installer
62   static bool sigsegv_do_install_handler(int sig);
63  
64  
65   /*
66 + *  Instruction decoding aids
67 + */
68 +
69 + // Transfer type
70 + enum transfer_type_t {
71 +        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 +        SIGSEGV_TRANSFER_LOAD           = 1,
73 +        SIGSEGV_TRANSFER_STORE          = 2,
74 + };
75 +
76 + // Transfer size
77 + enum transfer_size_t {
78 +        SIZE_UNKNOWN,
79 +        SIZE_BYTE,
80 +        SIZE_WORD, // 2 bytes
81 +        SIZE_LONG, // 4 bytes
82 +        SIZE_QUAD, // 8 bytes
83 + };
84 +
85 + #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
86 + // Addressing mode
87 + enum addressing_mode_t {
88 +        MODE_UNKNOWN,
89 +        MODE_NORM,
90 +        MODE_U,
91 +        MODE_X,
92 +        MODE_UX
93 + };
94 +
95 + // Decoded instruction
96 + struct instruction_t {
97 +        transfer_type_t         transfer_type;
98 +        transfer_size_t         transfer_size;
99 +        addressing_mode_t       addr_mode;
100 +        unsigned int            addr;
101 +        char                            ra, rd;
102 + };
103 +
104 + static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105 + {
106 +        // Get opcode and divide into fields
107 +        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108 +        unsigned int primop = opcode >> 26;
109 +        unsigned int exop = (opcode >> 1) & 0x3ff;
110 +        unsigned int ra = (opcode >> 16) & 0x1f;
111 +        unsigned int rb = (opcode >> 11) & 0x1f;
112 +        unsigned int rd = (opcode >> 21) & 0x1f;
113 +        signed int imm = (signed short)(opcode & 0xffff);
114 +        
115 +        // Analyze opcode
116 +        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117 +        transfer_size_t transfer_size = SIZE_UNKNOWN;
118 +        addressing_mode_t addr_mode = MODE_UNKNOWN;
119 +        switch (primop) {
120 +        case 31:
121 +                switch (exop) {
122 +                case 23:        // lwzx
123 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124 +                case 55:        // lwzux
125 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126 +                case 87:        // lbzx
127 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128 +                case 119:       // lbzux
129 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130 +                case 151:       // stwx
131 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132 +                case 183:       // stwux
133 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134 +                case 215:       // stbx
135 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136 +                case 247:       // stbux
137 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138 +                case 279:       // lhzx
139 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140 +                case 311:       // lhzux
141 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142 +                case 343:       // lhax
143 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144 +                case 375:       // lhaux
145 +                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146 +                case 407:       // sthx
147 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148 +                case 439:       // sthux
149 +                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150 +                }
151 +                break;
152 +        
153 +        case 32:        // lwz
154 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155 +        case 33:        // lwzu
156 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157 +        case 34:        // lbz
158 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159 +        case 35:        // lbzu
160 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161 +        case 36:        // stw
162 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163 +        case 37:        // stwu
164 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165 +        case 38:        // stb
166 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167 +        case 39:        // stbu
168 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169 +        case 40:        // lhz
170 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171 +        case 41:        // lhzu
172 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173 +        case 42:        // lha
174 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175 +        case 43:        // lhau
176 +                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 +        case 44:        // sth
178 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179 +        case 45:        // sthu
180 +                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 +        case 58:        // ld, ldu, lwa
182 +                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 +                transfer_size = SIZE_QUAD;
184 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 +                imm &= ~3;
186 +                break;
187 +        case 62:        // std, stdu, stq
188 +                transfer_type = SIGSEGV_TRANSFER_STORE;
189 +                transfer_size = SIZE_QUAD;
190 +                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 +                imm &= ~3;
192 +                break;
193 +        }
194 +        
195 +        // Calculate effective address
196 +        unsigned int addr = 0;
197 +        switch (addr_mode) {
198 +        case MODE_X:
199 +        case MODE_UX:
200 +                if (ra == 0)
201 +                        addr = gpr[rb];
202 +                else
203 +                        addr = gpr[ra] + gpr[rb];
204 +                break;
205 +        case MODE_NORM:
206 +        case MODE_U:
207 +                if (ra == 0)
208 +                        addr = (signed int)(signed short)imm;
209 +                else
210 +                        addr = gpr[ra] + (signed int)(signed short)imm;
211 +                break;
212 +        default:
213 +                break;
214 +        }
215 +        
216 +        // Commit decoded instruction
217 +        instruction->addr = addr;
218 +        instruction->addr_mode = addr_mode;
219 +        instruction->transfer_type = transfer_type;
220 +        instruction->transfer_size = transfer_size;
221 +        instruction->ra = ra;
222 +        instruction->rd = rd;
223 + }
224 + #endif
225 +
226 +
227 + /*
228   *  OS-dependant SIGSEGV signals support section
229   */
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0]
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272 + #if (defined(i386) || defined(__i386__))
273 + #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 + #endif
277 + #endif
278 + #if defined(__NetBSD__)
279 + #if (defined(i386) || defined(__i386__))
280 + #include <sys/ucontext.h>
281 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285 + #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.gregs[14]) /* should use REG_EIP instead */
297 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
310   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */
311   #endif
312   #if (defined(powerpc) || defined(__powerpc__))
313   #include <sys/ucontext.h>
314 < #define SIGSEGV_FAULT_INSTRUCTION               (((ucontext_t *)scp)->uc_mcontext.regs->nip)
314 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318 > #endif
319 > #if (defined(hppa) || defined(__hppa__))
320 > #undef  SIGSEGV_FAULT_ADDRESS
321 > #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 > #endif
323 > #if (defined(arm) || defined(__arm__))
324 > #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 > #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 > #endif
330 > #if (defined(mips) || defined(__mips__))
331 > #include <sys/ucontext.h>
332 > #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
333 > #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.pc)
334 > #define SIGSEGV_REGISTER_FILE                   &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0]
335 > #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
336   #endif
337   #endif
338   #endif
# Line 82 | Line 344 | static bool sigsegv_do_install_handler(i
344   #if (defined(i386) || defined(__i386__))
345   #include <asm/sigcontext.h>
346   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
347 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
348 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
347 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
348 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
349 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
350 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
351 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
352 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
353   #endif
354   #if (defined(sparc) || defined(__sparc__))
355   #include <asm/sigcontext.h>
356   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
357 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
358   #define SIGSEGV_FAULT_ADDRESS                   addr
359   #endif
360   #if (defined(powerpc) || defined(__powerpc__))
361   #include <asm/sigcontext.h>
362   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
363 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
364   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
365   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
366 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
367 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
368   #endif
369   #if (defined(alpha) || defined(__alpha__))
370   #include <asm/sigcontext.h>
371   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
372 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
373   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
374   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
375 <
376 < // From Boehm's GC 6.0alpha8
377 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
378 < {
379 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
380 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
381 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
382 <        return (sigsegv_address_t)fault_address;
383 < }
375 > #endif
376 > #if (defined(arm) || defined(__arm__))
377 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
378 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
379 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
380 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
381 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
382 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
383 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
384   #endif
385   #endif
386  
387   // Irix 5 or 6 on MIPS
388 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
388 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
389 > #include <ucontext.h>
390   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
391 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
391 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
392 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
393 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
394   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
395   #endif
396  
397 + // HP-UX
398 + #if (defined(hpux) || defined(__hpux__))
399 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
400 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
401 + #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
402 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
403 + #endif
404 +
405   // OSF/1 on Alpha
406   #if defined(__osf__)
407 + #include <ucontext.h>
408   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
409 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
410   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
411   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
412   #endif
# Line 130 | Line 414 | static sigsegv_address_t get_fault_addre
414   // AIX
415   #if defined(_AIX)
416   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
417 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
418   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
419   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
420   #endif
421  
422 < // NetBSD or FreeBSD
423 < #if defined(__NetBSD__) || defined(__FreeBSD__)
422 > // NetBSD
423 > #if defined(__NetBSD__)
424   #if (defined(m68k) || defined(__m68k__))
425   #include <m68k/frame.h>
426   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
427 < #define SIGSEGV_FAULT_ADDRESS                   ({                                                                                                                              \
428 <        struct sigstate {                                                                                                                                                                       \
144 <                int ss_flags;                                                                                                                                                                   \
145 <                struct frame ss_frame;                                                                                                                                                  \
146 <        };                                                                                                                                                                                                      \
147 <        struct sigstate *state = (struct sigstate *)scp->sc_ap;                                                                                         \
148 <        char *fault_addr;                                                                                                                                                                       \
149 <        switch (state->ss_frame.f_format) {                                                                                                                                     \
150 <        case 7:         /* 68040 access error */                                                                                                                                \
151 <                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */    \
152 <                fault_addr = state->ss_frame.f_fmt7.f_fa;                                                                                                               \
153 <                break;                                                                                                                                                                                  \
154 <        default:                                                                                                                                                                                        \
155 <                fault_addr = (char *)code;                                                                                                                                              \
156 <                break;                                                                                                                                                                                  \
157 <        }                                                                                                                                                                                                       \
158 <        fault_addr;                                                                                                                                                                                     \
159 < })
427 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
428 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
429   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
430 < #else
431 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
432 < #define SIGSEGV_FAULT_ADDRESS                   addr
430 >
431 > // Use decoding scheme from BasiliskII/m68k native
432 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
433 > {
434 >        struct sigstate {
435 >                int ss_flags;
436 >                struct frame ss_frame;
437 >        };
438 >        struct sigstate *state = (struct sigstate *)scp->sc_ap;
439 >        char *fault_addr;
440 >        switch (state->ss_frame.f_format) {
441 >        case 7:         /* 68040 access error */
442 >                /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */
443 >                fault_addr = state->ss_frame.f_fmt7.f_fa;
444 >                break;
445 >        default:
446 >                fault_addr = (char *)code;
447 >                break;
448 >        }
449 >        return (sigsegv_address_t)fault_addr;
450 > }
451 > #endif
452 > #if (defined(alpha) || defined(__alpha__))
453 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
456 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 > #endif
458 > #if (defined(i386) || defined(__i386__))
459 > #error "FIXME: need to decode instruction and compute EA"
460 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
461 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
462 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
463 > #endif
464 > #endif
465 > #if defined(__FreeBSD__)
466 > #if (defined(i386) || defined(__i386__))
467   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
468 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
469 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
470 + #define SIGSEGV_FAULT_ADDRESS                   addr
471 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
472 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
473 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
474 + #endif
475 + #if (defined(alpha) || defined(__alpha__))
476 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
477 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
478 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
479 + #define SIGSEGV_FAULT_ADDRESS                   addr
480 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
481   #endif
482   #endif
483  
484 < // MacOS X
484 > // Extract fault address out of a sigcontext
485 > #if (defined(alpha) || defined(__alpha__))
486 > // From Boehm's GC 6.0alpha8
487 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
488 > {
489 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
490 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
491 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
492 >        return (sigsegv_address_t)fault_address;
493 > }
494 > #endif
495 >
496 >
497 > // MacOS X, not sure which version this works in. Under 10.1
498 > // vm_protect does not appear to work from a signal handler. Under
499 > // 10.2 signal handlers get siginfo type arguments but the si_addr
500 > // field is the address of the faulting instruction and not the
501 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
502 > // case with Mach exception handlers there is a way to do what this
503 > // was meant to do.
504 > #ifndef HAVE_MACH_EXCEPTIONS
505   #if defined(__APPLE__) && defined(__MACH__)
506   #if (defined(ppc) || defined(__ppc__))
507   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
508 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
509   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
510   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
511   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
512 + #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2]
513 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
514  
515 < // From Boehm's GC 6.0alpha8
177 < #define EXTRACT_OP1(iw)     (((iw) & 0xFC000000) >> 26)
178 < #define EXTRACT_OP2(iw)     (((iw) & 0x000007FE) >> 1)
179 < #define EXTRACT_REGA(iw)    (((iw) & 0x001F0000) >> 16)
180 < #define EXTRACT_REGB(iw)    (((iw) & 0x03E00000) >> 21)
181 < #define EXTRACT_REGC(iw)    (((iw) & 0x0000F800) >> 11)
182 < #define EXTRACT_DISP(iw)    ((short *) &(iw))[1]
183 <
515 > // Use decoding scheme from SheepShaver
516   static sigsegv_address_t get_fault_address(struct sigcontext *scp)
517   {
518 <        unsigned int   instr = *((unsigned int *) scp->sc_ir);
519 <        unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
520 <        int            disp = 0, tmp;
521 <        unsigned int   baseA = 0, baseB = 0;
522 <        unsigned int   addr, alignmask = 0xFFFFFFFF;
523 <
524 <        switch(EXTRACT_OP1(instr)) {
525 <        case 38:   /* stb */
526 <        case 39:   /* stbu */
527 <        case 54:   /* stfd */
528 <        case 55:   /* stfdu */
529 <        case 52:   /* stfs */
530 <        case 53:   /* stfsu */
531 <        case 44:   /* sth */
532 <        case 45:   /* sthu */
533 <        case 47:   /* stmw */
534 <        case 36:   /* stw */
535 <        case 37:   /* stwu */
536 <                tmp = EXTRACT_REGA(instr);
537 <                if(tmp > 0)
538 <                        baseA = regs[tmp];
539 <                disp = EXTRACT_DISP(instr);
518 >        unsigned int   nip = (unsigned int) scp->sc_ir;
519 >        unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2];
520 >        instruction_t  instr;
521 >
522 >        powerpc_decode_instruction(&instr, nip, gpr);
523 >        return (sigsegv_address_t)instr.addr;
524 > }
525 > #endif
526 > #endif
527 > #endif
528 > #endif
529 >
530 > #if HAVE_WIN32_EXCEPTIONS
531 > #define WIN32_LEAN_AND_MEAN /* avoid including junk */
532 > #include <windows.h>
533 > #include <winerror.h>
534 >
535 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
536 > #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
537 > #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
538 > #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
539 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
540 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
541 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
542 > #endif
543 >
544 > #if HAVE_MACH_EXCEPTIONS
545 >
546 > // This can easily be extended to other Mach systems, but really who
547 > // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
548 > // Mach 2.5/3.0?
549 > #if defined(__APPLE__) && defined(__MACH__)
550 >
551 > #include <sys/types.h>
552 > #include <stdlib.h>
553 > #include <stdio.h>
554 > #include <pthread.h>
555 >
556 > /*
557 > * If you are familiar with MIG then you will understand the frustration
558 > * that was necessary to get these embedded into C++ code by hand.
559 > */
560 > extern "C" {
561 > #include <mach/mach.h>
562 > #include <mach/mach_error.h>
563 >
564 > extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
565 > extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
566 >        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
567 > extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
568 >        exception_type_t, exception_data_t, mach_msg_type_number_t);
569 > extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
570 >        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
571 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
572 > extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
573 >        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
574 >        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
575 > }
576 >
577 > // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
578 > #define HANDLER_COUNT 64
579 >
580 > // structure to tuck away existing exception handlers
581 > typedef struct _ExceptionPorts {
582 >        mach_msg_type_number_t maskCount;
583 >        exception_mask_t masks[HANDLER_COUNT];
584 >        exception_handler_t handlers[HANDLER_COUNT];
585 >        exception_behavior_t behaviors[HANDLER_COUNT];
586 >        thread_state_flavor_t flavors[HANDLER_COUNT];
587 > } ExceptionPorts;
588 >
589 > // exception handler thread
590 > static pthread_t exc_thread;
591 >
592 > // place where old exception handler info is stored
593 > static ExceptionPorts ports;
594 >
595 > // our exception port
596 > static mach_port_t _exceptionPort = MACH_PORT_NULL;
597 >
598 > #define MACH_CHECK_ERROR(name,ret) \
599 > if (ret != KERN_SUCCESS) { \
600 >        mach_error(#name, ret); \
601 >        exit (1); \
602 > }
603 >
604 > #ifdef __ppc__
605 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state_t
606 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE
607 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE_COUNT
608 > #define SIGSEGV_FAULT_ADDRESS                   sip->exc_state.dar
609 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
610 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
611 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
612 > #define SIGSEGV_FAULT_INSTRUCTION               sip->thr_state.srr0
613 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
614 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&sip->thr_state.srr0, (unsigned long *)&sip->thr_state.r0
615 > #endif
616 > #ifdef __ppc64__
617 > #define SIGSEGV_EXCEPTION_STATE_TYPE    ppc_exception_state64_t
618 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  PPC_EXCEPTION_STATE64
619 > #define SIGSEGV_EXCEPTION_STATE_COUNT   PPC_EXCEPTION_STATE64_COUNT
620 > #define SIGSEGV_FAULT_ADDRESS                   sip->exc_state.dar
621 > #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state64_t
622 > #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE64
623 > #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE64_COUNT
624 > #define SIGSEGV_FAULT_INSTRUCTION               sip->thr_state.srr0
625 > #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
626 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&sip->thr_state.srr0, (unsigned long *)&sip->thr_state.r0
627 > #endif
628 > #ifdef __i386__
629 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct i386_exception_state
630 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  i386_EXCEPTION_STATE
631 > #define SIGSEGV_EXCEPTION_STATE_COUNT   i386_EXCEPTION_STATE_COUNT
632 > #define SIGSEGV_FAULT_ADDRESS                   sip->exc_state.faultvaddr
633 > #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
634 > #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
635 > #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
636 > #define SIGSEGV_FAULT_INSTRUCTION               sip->thr_state.eip
637 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
638 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&sip->thr_state.eax) /* EAX is the first GPR we consider */
639 > #endif
640 > #ifdef __x86_64__
641 > #define SIGSEGV_EXCEPTION_STATE_TYPE    struct x86_exception_state64
642 > #define SIGSEGV_EXCEPTION_STATE_FLAVOR  x86_EXCEPTION_STATE64
643 > #define SIGSEGV_EXCEPTION_STATE_COUNT   x86_EXCEPTION_STATE64_COUNT
644 > #define SIGSEGV_FAULT_ADDRESS                   sip->exc_state.faultvaddr
645 > #define SIGSEGV_THREAD_STATE_TYPE               struct x86_thread_state64
646 > #define SIGSEGV_THREAD_STATE_FLAVOR             x86_THREAD_STATE64
647 > #define SIGSEGV_THREAD_STATE_COUNT              x86_THREAD_STATE64_COUNT
648 > #define SIGSEGV_FAULT_INSTRUCTION               sip->thr_state.rip
649 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
650 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&sip->thr_state.rax) /* RAX is the first GPR we consider */
651 > #endif
652 > #define SIGSEGV_FAULT_ADDRESS_FAST              code[1]
653 > #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_INVALID_ADDRESS
654 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code
655 > #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code
656 >
657 > // Since there can only be one exception thread running at any time
658 > // this is not a problem.
659 > #define MSG_SIZE 512
660 > static char msgbuf[MSG_SIZE];
661 > static char replybuf[MSG_SIZE];
662 >
663 > /*
664 > * This is the entry point for the exception handler thread. The job
665 > * of this thread is to wait for exception messages on the exception
666 > * port that was setup beforehand and to pass them on to exc_server.
667 > * exc_server is a MIG generated function that is a part of Mach.
668 > * Its job is to decide what to do with the exception message. In our
669 > * case exc_server calls catch_exception_raise on our behalf. After
670 > * exc_server returns, it is our responsibility to send the reply.
671 > */
672 > static void *
673 > handleExceptions(void *priv)
674 > {
675 >        mach_msg_header_t *msg, *reply;
676 >        kern_return_t krc;
677 >
678 >        msg = (mach_msg_header_t *)msgbuf;
679 >        reply = (mach_msg_header_t *)replybuf;
680 >
681 >        for (;;) {
682 >                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
683 >                                _exceptionPort, 0, MACH_PORT_NULL);
684 >                MACH_CHECK_ERROR(mach_msg, krc);
685 >
686 >                if (!exc_server(msg, reply)) {
687 >                        fprintf(stderr, "exc_server hated the message\n");
688 >                        exit(1);
689 >                }
690 >
691 >                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
692 >                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
693 >                if (krc != KERN_SUCCESS) {
694 >                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
695 >                                krc, mach_error_string(krc));
696 >                        exit(1);
697 >                }
698 >        }
699 > }
700 > #endif
701 > #endif
702 >
703 >
704 > /*
705 > *  Instruction skipping
706 > */
707 >
708 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
709 > // Decode and skip X86 instruction
710 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
711 > #if defined(__linux__)
712 > enum {
713 > #if (defined(i386) || defined(__i386__))
714 >        X86_REG_EIP = 14,
715 >        X86_REG_EAX = 11,
716 >        X86_REG_ECX = 10,
717 >        X86_REG_EDX = 9,
718 >        X86_REG_EBX = 8,
719 >        X86_REG_ESP = 7,
720 >        X86_REG_EBP = 6,
721 >        X86_REG_ESI = 5,
722 >        X86_REG_EDI = 4
723 > #endif
724 > #if defined(__x86_64__)
725 >        X86_REG_R8  = 0,
726 >        X86_REG_R9  = 1,
727 >        X86_REG_R10 = 2,
728 >        X86_REG_R11 = 3,
729 >        X86_REG_R12 = 4,
730 >        X86_REG_R13 = 5,
731 >        X86_REG_R14 = 6,
732 >        X86_REG_R15 = 7,
733 >        X86_REG_EDI = 8,
734 >        X86_REG_ESI = 9,
735 >        X86_REG_EBP = 10,
736 >        X86_REG_EBX = 11,
737 >        X86_REG_EDX = 12,
738 >        X86_REG_EAX = 13,
739 >        X86_REG_ECX = 14,
740 >        X86_REG_ESP = 15,
741 >        X86_REG_EIP = 16
742 > #endif
743 > };
744 > #endif
745 > #if defined(__NetBSD__)
746 > enum {
747 > #if (defined(i386) || defined(__i386__))
748 >        X86_REG_EIP = _REG_EIP,
749 >        X86_REG_EAX = _REG_EAX,
750 >        X86_REG_ECX = _REG_ECX,
751 >        X86_REG_EDX = _REG_EDX,
752 >        X86_REG_EBX = _REG_EBX,
753 >        X86_REG_ESP = _REG_ESP,
754 >        X86_REG_EBP = _REG_EBP,
755 >        X86_REG_ESI = _REG_ESI,
756 >        X86_REG_EDI = _REG_EDI
757 > #endif
758 > };
759 > #endif
760 > #if defined(__FreeBSD__)
761 > enum {
762 > #if (defined(i386) || defined(__i386__))
763 >        X86_REG_EIP = 10,
764 >        X86_REG_EAX = 7,
765 >        X86_REG_ECX = 6,
766 >        X86_REG_EDX = 5,
767 >        X86_REG_EBX = 4,
768 >        X86_REG_ESP = 13,
769 >        X86_REG_EBP = 2,
770 >        X86_REG_ESI = 1,
771 >        X86_REG_EDI = 0
772 > #endif
773 > };
774 > #endif
775 > #if defined(__OpenBSD__)
776 > enum {
777 > #if defined(__i386__)
778 >        // EDI is the first register we consider
779 > #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
780 > #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
781 >        X86_REG_EIP = DREG(eip), // 7
782 >        X86_REG_EAX = DREG(eax), // 6
783 >        X86_REG_ECX = DREG(ecx), // 5
784 >        X86_REG_EDX = DREG(edx), // 4
785 >        X86_REG_EBX = DREG(ebx), // 3
786 >        X86_REG_ESP = DREG(esp), // 10
787 >        X86_REG_EBP = DREG(ebp), // 2
788 >        X86_REG_ESI = DREG(esi), // 1
789 >        X86_REG_EDI = DREG(edi)  // 0
790 > #undef DREG
791 > #undef OREG
792 > #endif
793 > };
794 > #endif
795 > #if defined(__sun__)
796 > // Same as for Linux, need to check for x86-64
797 > enum {
798 > #if defined(__i386__)
799 >        X86_REG_EIP = EIP,
800 >        X86_REG_EAX = EAX,
801 >        X86_REG_ECX = ECX,
802 >        X86_REG_EDX = EDX,
803 >        X86_REG_EBX = EBX,
804 >        X86_REG_ESP = ESP,
805 >        X86_REG_EBP = EBP,
806 >        X86_REG_ESI = ESI,
807 >        X86_REG_EDI = EDI
808 > #endif
809 > };
810 > #endif
811 > #if defined(__APPLE__) && defined(__MACH__)
812 > enum {
813 > #if (defined(i386) || defined(__i386__))
814 > #ifdef i386_SAVED_STATE
815 >        // same as FreeBSD (in Open Darwin 8.0.1)
816 >        X86_REG_EIP = 10,
817 >        X86_REG_EAX = 7,
818 >        X86_REG_ECX = 6,
819 >        X86_REG_EDX = 5,
820 >        X86_REG_EBX = 4,
821 >        X86_REG_ESP = 13,
822 >        X86_REG_EBP = 2,
823 >        X86_REG_ESI = 1,
824 >        X86_REG_EDI = 0
825 > #else
826 >        // new layout (MacOS X 10.4.4 for x86)
827 >        X86_REG_EIP = 10,
828 >        X86_REG_EAX = 0,
829 >        X86_REG_ECX = 2,
830 >        X86_REG_EDX = 3,
831 >        X86_REG_EBX = 1,
832 >        X86_REG_ESP = 7,
833 >        X86_REG_EBP = 6,
834 >        X86_REG_ESI = 5,
835 >        X86_REG_EDI = 4
836 > #endif
837 > #endif
838 > #if defined(__x86_64__)
839 >        X86_REG_R8  = 8,
840 >        X86_REG_R9  = 9,
841 >        X86_REG_R10 = 10,
842 >        X86_REG_R11 = 11,
843 >        X86_REG_R12 = 12,
844 >        X86_REG_R13 = 13,
845 >        X86_REG_R14 = 14,
846 >        X86_REG_R15 = 15,
847 >        X86_REG_EDI = 4,
848 >        X86_REG_ESI = 5,
849 >        X86_REG_EBP = 6,
850 >        X86_REG_EBX = 1,
851 >        X86_REG_EDX = 3,
852 >        X86_REG_EAX = 0,
853 >        X86_REG_ECX = 2,
854 >        X86_REG_ESP = 7,
855 >        X86_REG_EIP = 16
856 > #endif
857 > };
858 > #endif
859 > #if defined(_WIN32)
860 > enum {
861 > #if (defined(i386) || defined(__i386__))
862 >        X86_REG_EIP = 7,
863 >        X86_REG_EAX = 5,
864 >        X86_REG_ECX = 4,
865 >        X86_REG_EDX = 3,
866 >        X86_REG_EBX = 2,
867 >        X86_REG_ESP = 10,
868 >        X86_REG_EBP = 6,
869 >        X86_REG_ESI = 1,
870 >        X86_REG_EDI = 0
871 > #endif
872 > };
873 > #endif
874 > // FIXME: this is partly redundant with the instruction decoding phase
875 > // to discover transfer type and register number
876 > static inline int ix86_step_over_modrm(unsigned char * p)
877 > {
878 >        int mod = (p[0] >> 6) & 3;
879 >        int rm = p[0] & 7;
880 >        int offset = 0;
881 >
882 >        // ModR/M Byte
883 >        switch (mod) {
884 >        case 0: // [reg]
885 >                if (rm == 5) return 4; // disp32
886                  break;
887 <        case 31:
888 <                switch(EXTRACT_OP2(instr)) {
889 <                case 86:    /* dcbf */
890 <                case 54:    /* dcbst */
891 <                case 1014:  /* dcbz */
892 <                case 247:   /* stbux */
893 <                case 215:   /* stbx */
894 <                case 759:   /* stfdux */
895 <                case 727:   /* stfdx */
896 <                case 983:   /* stfiwx */
897 <                case 695:   /* stfsux */
898 <                case 663:   /* stfsx */
899 <                case 918:   /* sthbrx */
900 <                case 439:   /* sthux */
901 <                case 407:   /* sthx */
902 <                case 661:   /* stswx */
903 <                case 662:   /* stwbrx */
904 <                case 150:   /* stwcx. */
905 <                case 183:   /* stwux */
906 <                case 151:   /* stwx */
907 <                case 135:   /* stvebx */
908 <                case 167:   /* stvehx */
909 <                case 199:   /* stvewx */
910 <                case 231:   /* stvx */
911 <                case 487:   /* stvxl */
912 <                        tmp = EXTRACT_REGA(instr);
913 <                        if(tmp > 0)
914 <                                baseA = regs[tmp];
915 <                        baseB = regs[EXTRACT_REGC(instr)];
916 <                        /* determine Altivec alignment mask */
917 <                        switch(EXTRACT_OP2(instr)) {
918 <                        case 167:   /* stvehx */
919 <                                alignmask = 0xFFFFFFFE;
920 <                                break;
921 <                        case 199:   /* stvewx */
922 <                                alignmask = 0xFFFFFFFC;
923 <                                break;
924 <                        case 231:   /* stvx */
925 <                                alignmask = 0xFFFFFFF0;
926 <                                break;
927 <                        case 487:  /* stvxl */
928 <                                alignmask = 0xFFFFFFF0;
929 <                                break;
930 <                        }
887 >        case 1: // disp8[reg]
888 >                offset = 1;
889 >                break;
890 >        case 2: // disp32[reg]
891 >                offset = 4;
892 >                break;
893 >        case 3: // register
894 >                return 0;
895 >        }
896 >        
897 >        // SIB Byte
898 >        if (rm == 4) {
899 >                if (mod == 0 && (p[1] & 7) == 5)
900 >                        offset = 5; // disp32[index]
901 >                else
902 >                        offset++;
903 >        }
904 >
905 >        return offset;
906 > }
907 >
908 > static bool ix86_skip_instruction(unsigned long * regs)
909 > {
910 >        unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
911 >
912 >        if (eip == 0)
913 >                return false;
914 > #ifdef _WIN32
915 >        if (IsBadCodePtr((FARPROC)eip))
916 >                return false;
917 > #endif
918 >        
919 >        enum instruction_type_t {
920 >                i_MOV,
921 >                i_ADD
922 >        };
923 >
924 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
925 >        transfer_size_t transfer_size = SIZE_LONG;
926 >        instruction_type_t instruction_type = i_MOV;
927 >        
928 >        int reg = -1;
929 >        int len = 0;
930 >
931 > #if DEBUG
932 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
933 >                   eip, eip[0], eip[1], eip[2], eip[3]);
934 > #endif
935 >
936 >        // Operand size prefix
937 >        if (*eip == 0x66) {
938 >                eip++;
939 >                len++;
940 >                transfer_size = SIZE_WORD;
941 >        }
942 >
943 >        // REX prefix
944 > #if defined(__x86_64__)
945 >        struct rex_t {
946 >                unsigned char W;
947 >                unsigned char R;
948 >                unsigned char X;
949 >                unsigned char B;
950 >        };
951 >        rex_t rex = { 0, 0, 0, 0 };
952 >        bool has_rex = false;
953 >        if ((*eip & 0xf0) == 0x40) {
954 >                has_rex = true;
955 >                const unsigned char b = *eip;
956 >                rex.W = b & (1 << 3);
957 >                rex.R = b & (1 << 2);
958 >                rex.X = b & (1 << 1);
959 >                rex.B = b & (1 << 0);
960 > #if DEBUG
961 >                printf("REX: %c,%c,%c,%c\n",
962 >                           rex.W ? 'W' : '_',
963 >                           rex.R ? 'R' : '_',
964 >                           rex.X ? 'X' : '_',
965 >                           rex.B ? 'B' : '_');
966 > #endif
967 >                eip++;
968 >                len++;
969 >                if (rex.W)
970 >                        transfer_size = SIZE_QUAD;
971 >        }
972 > #else
973 >        const bool has_rex = false;
974 > #endif
975 >
976 >        // Decode instruction
977 >        int op_len = 1;
978 >        int target_size = SIZE_UNKNOWN;
979 >        switch (eip[0]) {
980 >        case 0x0f:
981 >                target_size = transfer_size;
982 >            switch (eip[1]) {
983 >                case 0xbe: // MOVSX r32, r/m8
984 >            case 0xb6: // MOVZX r32, r/m8
985 >                        transfer_size = SIZE_BYTE;
986 >                        goto do_mov_extend;
987 >                case 0xbf: // MOVSX r32, r/m16
988 >            case 0xb7: // MOVZX r32, r/m16
989 >                        transfer_size = SIZE_WORD;
990 >                        goto do_mov_extend;
991 >                  do_mov_extend:
992 >                        op_len = 2;
993 >                        goto do_transfer_load;
994 >                }
995 >                break;
996 > #if defined(__x86_64__)
997 >        case 0x63: // MOVSXD r64, r/m32
998 >                if (has_rex && rex.W) {
999 >                        transfer_size = SIZE_LONG;
1000 >                        target_size = SIZE_QUAD;
1001 >                }
1002 >                else if (transfer_size != SIZE_WORD) {
1003 >                        transfer_size = SIZE_LONG;
1004 >                        target_size = SIZE_QUAD;
1005 >                }
1006 >                goto do_transfer_load;
1007 > #endif
1008 >        case 0x02: // ADD r8, r/m8
1009 >                transfer_size = SIZE_BYTE;
1010 >        case 0x03: // ADD r32, r/m32
1011 >                instruction_type = i_ADD;
1012 >                goto do_transfer_load;
1013 >        case 0x8a: // MOV r8, r/m8
1014 >                transfer_size = SIZE_BYTE;
1015 >        case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
1016 >          do_transfer_load:
1017 >                switch (eip[op_len] & 0xc0) {
1018 >                case 0x80:
1019 >                        reg = (eip[op_len] >> 3) & 7;
1020 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1021                          break;
1022 <                case 725:   /* stswi */
1023 <                        tmp = EXTRACT_REGA(instr);
1024 <                        if(tmp > 0)
257 <                                baseA = regs[tmp];
1022 >                case 0x40:
1023 >                        reg = (eip[op_len] >> 3) & 7;
1024 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1025                          break;
1026 <                default:   /* ignore instruction */
1027 <                        return 0;
1026 >                case 0x00:
1027 >                        reg = (eip[op_len] >> 3) & 7;
1028 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
1029                          break;
1030                  }
1031 +                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1032                  break;
1033 <        default:   /* ignore instruction */
1034 <                return 0;
1033 >        case 0x00: // ADD r/m8, r8
1034 >                transfer_size = SIZE_BYTE;
1035 >        case 0x01: // ADD r/m32, r32
1036 >                instruction_type = i_ADD;
1037 >                goto do_transfer_store;
1038 >        case 0x88: // MOV r/m8, r8
1039 >                transfer_size = SIZE_BYTE;
1040 >        case 0x89: // MOV r/m32, r32 (or 16-bit operation)
1041 >          do_transfer_store:
1042 >                switch (eip[op_len] & 0xc0) {
1043 >                case 0x80:
1044 >                        reg = (eip[op_len] >> 3) & 7;
1045 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1046 >                        break;
1047 >                case 0x40:
1048 >                        reg = (eip[op_len] >> 3) & 7;
1049 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1050 >                        break;
1051 >                case 0x00:
1052 >                        reg = (eip[op_len] >> 3) & 7;
1053 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1054 >                        break;
1055 >                }
1056 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1057                  break;
1058          }
1059 +        if (target_size == SIZE_UNKNOWN)
1060 +                target_size = transfer_size;
1061 +
1062 +        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1063 +                // Unknown machine code, let it crash. Then patch the decoder
1064 +                return false;
1065 +        }
1066 +
1067 + #if defined(__x86_64__)
1068 +        if (rex.R)
1069 +                reg += 8;
1070 + #endif
1071 +
1072 +        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1073 +                static const int x86_reg_map[] = {
1074 +                        X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1075 +                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1076 + #if defined(__x86_64__)
1077 +                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1078 +                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1079 + #endif
1080 +                };
1081 +                
1082 +                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1083 +                        return false;
1084 +
1085 +                // Set 0 to the relevant register part
1086 +                // NOTE: this is only valid for MOV alike instructions
1087 +                int rloc = x86_reg_map[reg];
1088 +                switch (target_size) {
1089 +                case SIZE_BYTE:
1090 +                        if (has_rex || reg < 4)
1091 +                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1092 +                        else {
1093 +                                rloc = x86_reg_map[reg - 4];
1094 +                                regs[rloc] = (regs[rloc] & ~0xff00L);
1095 +                        }
1096 +                        break;
1097 +                case SIZE_WORD:
1098 +                        regs[rloc] = (regs[rloc] & ~0xffffL);
1099 +                        break;
1100 +                case SIZE_LONG:
1101 +                case SIZE_QUAD: // zero-extension
1102 +                        regs[rloc] = 0;
1103 +                        break;
1104 +                }
1105 +        }
1106 +
1107 + #if DEBUG
1108 +        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1109 +                   transfer_size == SIZE_BYTE ? "byte" :
1110 +                   transfer_size == SIZE_WORD ? "word" :
1111 +                   transfer_size == SIZE_LONG ? "long" :
1112 +                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1113 +                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1114          
1115 <        addr = (baseA + baseB) + disp;
1116 <        addr &= alignmask;
1117 <        return (sigsegv_address_t)addr;
1115 >        if (reg != -1) {
1116 >                static const char * x86_byte_reg_str_map[] = {
1117 >                        "al",   "cl",   "dl",   "bl",
1118 >                        "spl",  "bpl",  "sil",  "dil",
1119 >                        "r8b",  "r9b",  "r10b", "r11b",
1120 >                        "r12b", "r13b", "r14b", "r15b",
1121 >                        "ah",   "ch",   "dh",   "bh",
1122 >                };
1123 >                static const char * x86_word_reg_str_map[] = {
1124 >                        "ax",   "cx",   "dx",   "bx",
1125 >                        "sp",   "bp",   "si",   "di",
1126 >                        "r8w",  "r9w",  "r10w", "r11w",
1127 >                        "r12w", "r13w", "r14w", "r15w",
1128 >                };
1129 >                static const char *x86_long_reg_str_map[] = {
1130 >                        "eax",  "ecx",  "edx",  "ebx",
1131 >                        "esp",  "ebp",  "esi",  "edi",
1132 >                        "r8d",  "r9d",  "r10d", "r11d",
1133 >                        "r12d", "r13d", "r14d", "r15d",
1134 >                };
1135 >                static const char *x86_quad_reg_str_map[] = {
1136 >                        "rax", "rcx", "rdx", "rbx",
1137 >                        "rsp", "rbp", "rsi", "rdi",
1138 >                        "r8",  "r9",  "r10", "r11",
1139 >                        "r12", "r13", "r14", "r15",
1140 >                };
1141 >                const char * reg_str = NULL;
1142 >                switch (target_size) {
1143 >                case SIZE_BYTE:
1144 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1145 >                        break;
1146 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1147 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1148 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1149 >                }
1150 >                if (reg_str)
1151 >                        printf(" %s register %%%s",
1152 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1153 >                                   reg_str);
1154 >        }
1155 >        printf(", %d bytes instruction\n", len);
1156 > #endif
1157 >        
1158 >        regs[X86_REG_EIP] += len;
1159 >        return true;
1160 > }
1161 > #endif
1162 >
1163 > // Decode and skip PPC instruction
1164 > #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__))
1165 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1166 > {
1167 >        instruction_t instr;
1168 >        powerpc_decode_instruction(&instr, *nip_p, regs);
1169 >        
1170 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1171 >                // Unknown machine code, let it crash. Then patch the decoder
1172 >                return false;
1173 >        }
1174 >
1175 > #if DEBUG
1176 >        printf("%08x: %s %s access", *nip_p,
1177 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1178 >                   instr.transfer_size == SIZE_WORD ? "word" :
1179 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1180 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1181 >        
1182 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1183 >                printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1184 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1185 >                printf(" r%d (rd = 0)\n", instr.rd);
1186 > #endif
1187 >        
1188 >        if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1189 >                regs[instr.ra] = instr.addr;
1190 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1191 >                regs[instr.rd] = 0;
1192 >        
1193 >        *nip_p += 4;
1194 >        return true;
1195 > }
1196 > #endif
1197 >
1198 > // Decode and skip MIPS instruction
1199 > #if (defined(mips) || defined(__mips))
1200 > static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs)
1201 > {
1202 >  unsigned int * epc = (unsigned int *)(unsigned long)*pc_p;
1203 >
1204 >  if (epc == 0)
1205 >        return false;
1206 >
1207 > #if DEBUG
1208 >  printf("IP: %p [%08x]\n", epc, epc[0]);
1209 > #endif
1210 >
1211 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1212 >  transfer_size_t transfer_size = SIZE_LONG;
1213 >  int direction = 0;
1214 >
1215 >  const unsigned int opcode = epc[0];
1216 >  switch (opcode >> 26) {
1217 >  case 32: // Load Byte
1218 >  case 36: // Load Byte Unsigned
1219 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1220 >        transfer_size = SIZE_BYTE;
1221 >        break;
1222 >  case 33: // Load Halfword
1223 >  case 37: // Load Halfword Unsigned
1224 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1225 >        transfer_size = SIZE_WORD;
1226 >        break;
1227 >  case 35: // Load Word
1228 >  case 39: // Load Word Unsigned
1229 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1230 >        transfer_size = SIZE_LONG;
1231 >        break;
1232 >  case 34: // Load Word Left
1233 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1234 >        transfer_size = SIZE_LONG;
1235 >        direction = -1;
1236 >        break;
1237 >  case 38: // Load Word Right
1238 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1239 >        transfer_size = SIZE_LONG;
1240 >        direction = 1;
1241 >        break;
1242 >  case 55: // Load Doubleword
1243 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1244 >        transfer_size = SIZE_QUAD;
1245 >        break;
1246 >  case 26: // Load Doubleword Left
1247 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1248 >        transfer_size = SIZE_QUAD;
1249 >        direction = -1;
1250 >        break;
1251 >  case 27: // Load Doubleword Right
1252 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1253 >        transfer_size = SIZE_QUAD;
1254 >        direction = 1;
1255 >        break;
1256 >  case 40: // Store Byte
1257 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1258 >        transfer_size = SIZE_BYTE;
1259 >        break;
1260 >  case 41: // Store Halfword
1261 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1262 >        transfer_size = SIZE_WORD;
1263 >        break;
1264 >  case 43: // Store Word
1265 >  case 42: // Store Word Left
1266 >  case 46: // Store Word Right
1267 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1268 >        transfer_size = SIZE_LONG;
1269 >        break;
1270 >  case 63: // Store Doubleword
1271 >  case 44: // Store Doubleword Left
1272 >  case 45: // Store Doubleword Right
1273 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1274 >        transfer_size = SIZE_QUAD;
1275 >        break;
1276 >  /* Misc instructions unlikely to be used within CPU emulators */
1277 >  case 48: // Load Linked Word
1278 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1279 >        transfer_size = SIZE_LONG;
1280 >        break;
1281 >  case 52: // Load Linked Doubleword
1282 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1283 >        transfer_size = SIZE_QUAD;
1284 >        break;
1285 >  case 56: // Store Conditional Word
1286 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1287 >        transfer_size = SIZE_LONG;
1288 >        break;
1289 >  case 60: // Store Conditional Doubleword
1290 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1291 >        transfer_size = SIZE_QUAD;
1292 >        break;
1293 >  }
1294 >
1295 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1296 >        // Unknown machine code, let it crash. Then patch the decoder
1297 >        return false;
1298 >  }
1299 >
1300 >  // Zero target register in case of a load operation
1301 >  const int reg = (opcode >> 16) & 0x1f;
1302 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1303 >        if (direction == 0)
1304 >          regs[reg] = 0;
1305 >        else {
1306 >          // FIXME: untested code
1307 >          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1308 >          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1309 >          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1310 >          unsigned long value;
1311 >          if (direction > 0) {
1312 >                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1313 >                value = regs[reg] & rmask;
1314 >          }
1315 >          else {
1316 >                const unsigned long lmask = (1L << (offset * 8)) - 1;
1317 >                value = regs[reg] & lmask;
1318 >          }
1319 >          // restore most significant bits
1320 >          if (transfer_size == SIZE_LONG)
1321 >                value = (signed long)(signed int)value;
1322 >          regs[reg] = value;
1323 >        }
1324 >  }
1325 >
1326 > #if DEBUG
1327 > #if (defined(_ABIN32) || defined(_ABI64))
1328 >  static const char * mips_gpr_names[32] = {
1329 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1330 >        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1331 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1332 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1333 >  };
1334 > #else
1335 >  static const char * mips_gpr_names[32] = {
1336 >        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1337 >        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1338 >        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1339 >        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1340 >  };
1341 > #endif
1342 >  printf("%s %s register %s\n",
1343 >                 transfer_size == SIZE_BYTE ? "byte" :
1344 >                 transfer_size == SIZE_WORD ? "word" :
1345 >                 transfer_size == SIZE_LONG ? "long" :
1346 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1347 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1348 >                 mips_gpr_names[reg]);
1349 > #endif
1350 >
1351 >  *pc_p += 4;
1352 >  return true;
1353 > }
1354 > #endif
1355 >
1356 > // Decode and skip SPARC instruction
1357 > #if (defined(sparc) || defined(__sparc__))
1358 > enum {
1359 > #if (defined(__sun__))
1360 >  SPARC_REG_G1 = REG_G1,
1361 >  SPARC_REG_O0 = REG_O0,
1362 >  SPARC_REG_PC = REG_PC,
1363 >  SPARC_REG_nPC = REG_nPC
1364 > #endif
1365 > };
1366 > static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1367 > {
1368 >  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1369 >
1370 >  if (pc == 0)
1371 >        return false;
1372 >
1373 > #if DEBUG
1374 >  printf("IP: %p [%08x]\n", pc, pc[0]);
1375 > #endif
1376 >
1377 >  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1378 >  transfer_size_t transfer_size = SIZE_LONG;
1379 >  bool register_pair = false;
1380 >
1381 >  const unsigned int opcode = pc[0];
1382 >  if ((opcode >> 30) != 3)
1383 >        return false;
1384 >  switch ((opcode >> 19) & 0x3f) {
1385 >  case 9: // Load Signed Byte
1386 >  case 1: // Load Unsigned Byte
1387 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1388 >        transfer_size = SIZE_BYTE;
1389 >        break;
1390 >  case 10:// Load Signed Halfword
1391 >  case 2: // Load Unsigned Word
1392 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1393 >        transfer_size = SIZE_WORD;
1394 >        break;
1395 >  case 8: // Load Word
1396 >  case 0: // Load Unsigned Word
1397 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1398 >        transfer_size = SIZE_LONG;
1399 >        break;
1400 >  case 11:// Load Extended Word
1401 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1402 >        transfer_size = SIZE_QUAD;
1403 >        break;
1404 >  case 3: // Load Doubleword
1405 >        transfer_type = SIGSEGV_TRANSFER_LOAD;
1406 >        transfer_size = SIZE_LONG;
1407 >        register_pair = true;
1408 >        break;
1409 >  case 5: // Store Byte
1410 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1411 >        transfer_size = SIZE_BYTE;
1412 >        break;
1413 >  case 6: // Store Halfword
1414 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1415 >        transfer_size = SIZE_WORD;
1416 >        break;
1417 >  case 4: // Store Word
1418 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1419 >        transfer_size = SIZE_LONG;
1420 >        break;
1421 >  case 14:// Store Extended Word
1422 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1423 >        transfer_size = SIZE_QUAD;
1424 >        break;
1425 >  case 7: // Store Doubleword
1426 >        transfer_type = SIGSEGV_TRANSFER_STORE;
1427 >        transfer_size = SIZE_LONG;
1428 >        register_pair = true;
1429 >        break;
1430 >  }
1431 >
1432 >  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1433 >        // Unknown machine code, let it crash. Then patch the decoder
1434 >        return false;
1435 >  }
1436 >
1437 >  const int reg = (opcode >> 25) & 0x1f;
1438 >
1439 > #if DEBUG
1440 >  static const char * reg_names[] = {
1441 >        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1442 >        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1443 >        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1444 >        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1445 >  };
1446 >  printf("%s %s register %s\n",
1447 >                 transfer_size == SIZE_BYTE ? "byte" :
1448 >                 transfer_size == SIZE_WORD ? "word" :
1449 >                 transfer_size == SIZE_LONG ? "long" :
1450 >                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1451 >                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1452 >                 reg_names[reg]);
1453 > #endif
1454 >
1455 >  // Zero target register in case of a load operation
1456 >  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1457 >        // FIXME: code to handle local & input registers is not tested
1458 >        if (reg >= 1 && reg < 8) {
1459 >          // global registers
1460 >          regs[reg - 1 + SPARC_REG_G1] = 0;
1461 >        }
1462 >        else if (reg >= 8 && reg < 16) {
1463 >          // output registers
1464 >          regs[reg - 8 + SPARC_REG_O0] = 0;
1465 >        }
1466 >        else if (reg >= 16 && reg < 24) {
1467 >          // local registers (in register windows)
1468 >          if (gwins)
1469 >                gwins->wbuf->rw_local[reg - 16] = 0;
1470 >          else
1471 >                rwin->rw_local[reg - 16] = 0;
1472 >        }
1473 >        else {
1474 >          // input registers (in register windows)
1475 >          if (gwins)
1476 >                gwins->wbuf->rw_in[reg - 24] = 0;
1477 >          else
1478 >                rwin->rw_in[reg - 24] = 0;
1479 >        }
1480 >  }
1481 >
1482 >  regs[SPARC_REG_PC] += 4;
1483 >  regs[SPARC_REG_nPC] += 4;
1484 >  return true;
1485   }
1486   #endif
1487   #endif
1488 +
1489 + // Decode and skip ARM instruction
1490 + #if (defined(arm) || defined(__arm__))
1491 + enum {
1492 + #if (defined(__linux__))
1493 +  ARM_REG_PC = 15,
1494 +  ARM_REG_CPSR = 16
1495 + #endif
1496 + };
1497 + static bool arm_skip_instruction(unsigned long * regs)
1498 + {
1499 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1500 +
1501 +  if (pc == 0)
1502 +        return false;
1503 +
1504 + #if DEBUG
1505 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1506   #endif
1507  
1508 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1509 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1510 +  enum { op_sdt = 1, op_sdth = 2 };
1511 +  int op = 0;
1512 +
1513 +  // Handle load/store instructions only
1514 +  const unsigned int opcode = pc[0];
1515 +  switch ((opcode >> 25) & 7) {
1516 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1517 +        op = op_sdth;
1518 +        // Determine transfer size (S/H bits)
1519 +        switch ((opcode >> 5) & 3) {
1520 +        case 0: // SWP instruction
1521 +          break;
1522 +        case 1: // Unsigned halfwords
1523 +        case 3: // Signed halfwords
1524 +          transfer_size = SIZE_WORD;
1525 +          break;
1526 +        case 2: // Signed byte
1527 +          transfer_size = SIZE_BYTE;
1528 +          break;
1529 +        }
1530 +        break;
1531 +  case 2:
1532 +  case 3: // Single Data Transfer (LDR, STR)
1533 +        op = op_sdt;
1534 +        // Determine transfer size (B bit)
1535 +        if (((opcode >> 22) & 1) == 1)
1536 +          transfer_size = SIZE_BYTE;
1537 +        else
1538 +          transfer_size = SIZE_LONG;
1539 +        break;
1540 +  default:
1541 +        // FIXME: support load/store mutliple?
1542 +        return false;
1543 +  }
1544 +
1545 +  // Check for invalid transfer size (SWP instruction?)
1546 +  if (transfer_size == SIZE_UNKNOWN)
1547 +        return false;
1548 +
1549 +  // Determine transfer type (L bit)
1550 +  if (((opcode >> 20) & 1) == 1)
1551 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1552 +  else
1553 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1554 +
1555 +  // Compute offset
1556 +  int offset;
1557 +  if (((opcode >> 25) & 1) == 0) {
1558 +        if (op == op_sdt)
1559 +          offset = opcode & 0xfff;
1560 +        else if (op == op_sdth) {
1561 +          int rm = opcode & 0xf;
1562 +          if (((opcode >> 22) & 1) == 0) {
1563 +                // register offset
1564 +                offset = regs[rm];
1565 +          }
1566 +          else {
1567 +                // immediate offset
1568 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1569 +          }
1570 +        }
1571 +  }
1572 +  else {
1573 +        const int rm = opcode & 0xf;
1574 +        const int sh = (opcode >> 7) & 0x1f;
1575 +        if (((opcode >> 4) & 1) == 1) {
1576 +          // we expect only legal load/store instructions
1577 +          printf("FATAL: invalid shift operand\n");
1578 +          return false;
1579 +        }
1580 +        const unsigned int v = regs[rm];
1581 +        switch ((opcode >> 5) & 3) {
1582 +        case 0: // logical shift left
1583 +          offset = sh ? v << sh : v;
1584 +          break;
1585 +        case 1: // logical shift right
1586 +          offset = sh ? v >> sh : 0;
1587 +          break;
1588 +        case 2: // arithmetic shift right
1589 +          if (sh)
1590 +                offset = ((signed int)v) >> sh;
1591 +          else
1592 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1593 +          break;
1594 +        case 3: // rotate right
1595 +          if (sh)
1596 +                offset = (v >> sh) | (v << (32 - sh));
1597 +          else
1598 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1599 +          break;
1600 +        }
1601 +  }
1602 +  if (((opcode >> 23) & 1) == 0)
1603 +        offset = -offset;
1604 +
1605 +  int rd = (opcode >> 12) & 0xf;
1606 +  int rn = (opcode >> 16) & 0xf;
1607 + #if DEBUG
1608 +  static const char * reg_names[] = {
1609 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1610 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1611 +  };
1612 +  printf("%s %s register %s\n",
1613 +                 transfer_size == SIZE_BYTE ? "byte" :
1614 +                 transfer_size == SIZE_WORD ? "word" :
1615 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1616 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1617 +                 reg_names[rd]);
1618 + #endif
1619 +
1620 +  unsigned int base = regs[rn];
1621 +  if (((opcode >> 24) & 1) == 1)
1622 +        base += offset;
1623 +
1624 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1625 +        regs[rd] = 0;
1626 +
1627 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1628 +        regs[rn] += offset;
1629 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1630 +        regs[rn] = base;
1631 +
1632 +  regs[ARM_REG_PC] += 4;
1633 +  return true;
1634 + }
1635 + #endif
1636 +
1637 +
1638   // Fallbacks
1639 + #ifndef SIGSEGV_FAULT_ADDRESS_FAST
1640 + #define SIGSEGV_FAULT_ADDRESS_FAST              SIGSEGV_FAULT_ADDRESS
1641 + #endif
1642 + #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
1643 + #define SIGSEGV_FAULT_INSTRUCTION_FAST  SIGSEGV_FAULT_INSTRUCTION
1644 + #endif
1645   #ifndef SIGSEGV_FAULT_INSTRUCTION
1646 < #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1646 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_ADDRESS
1647 > #endif
1648 > #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1649 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1650 > #endif
1651 > #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1652 > #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
1653   #endif
1654  
1655   // SIGSEGV recovery supported ?
# Line 289 | Line 1662 | static sigsegv_address_t get_fault_addre
1662   *  SIGSEGV global handler
1663   */
1664  
1665 + struct sigsegv_info_t {
1666 +        sigsegv_address_t addr;
1667 +        sigsegv_address_t pc;
1668 + #ifdef HAVE_MACH_EXCEPTIONS
1669 +        mach_port_t thread;
1670 +        bool has_exc_state;
1671 +        SIGSEGV_EXCEPTION_STATE_TYPE exc_state;
1672 +        mach_msg_type_number_t exc_state_count;
1673 +        bool has_thr_state;
1674 +        SIGSEGV_THREAD_STATE_TYPE thr_state;
1675 +        mach_msg_type_number_t thr_state_count;
1676 + #endif
1677 + };
1678 +
1679 + #ifdef HAVE_MACH_EXCEPTIONS
1680 + static void mach_get_exception_state(sigsegv_info_t *sip)
1681 + {
1682 +        sip->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT;
1683 +        kern_return_t krc = thread_get_state(sip->thread,
1684 +                                                                                 SIGSEGV_EXCEPTION_STATE_FLAVOR,
1685 +                                                                                 (natural_t *)&sip->exc_state,
1686 +                                                                                 &sip->exc_state_count);
1687 +        MACH_CHECK_ERROR(thread_get_state, krc);
1688 +        sip->has_exc_state = true;
1689 + }
1690 +
1691 + static void mach_get_thread_state(sigsegv_info_t *sip)
1692 + {
1693 +        sip->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
1694 +        kern_return_t krc = thread_get_state(sip->thread,
1695 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
1696 +                                                                                 (natural_t *)&sip->thr_state,
1697 +                                                                                 &sip->thr_state_count);
1698 +        MACH_CHECK_ERROR(thread_get_state, krc);
1699 +        sip->has_thr_state = true;
1700 + }
1701 +
1702 + static void mach_set_thread_state(sigsegv_info_t *sip)
1703 + {
1704 +        kern_return_t krc = thread_set_state(sip->thread,
1705 +                                                                                 SIGSEGV_THREAD_STATE_FLAVOR,
1706 +                                                                                 (natural_t *)&sip->thr_state,
1707 +                                                                                 sip->thr_state_count);
1708 +        MACH_CHECK_ERROR(thread_set_state, krc);
1709 + }
1710 + #endif
1711 +
1712 + // Return the address of the invalid memory reference
1713 + sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *sip)
1714 + {
1715 + #ifdef HAVE_MACH_EXCEPTIONS
1716 +        static int use_fast_path = -1;
1717 +        if (use_fast_path != 1 && !sip->has_exc_state) {
1718 +                mach_get_exception_state(sip);
1719 +
1720 +                sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1721 +                if (use_fast_path < 0)
1722 +                        use_fast_path = addr == sip->addr;
1723 +                sip->addr = addr;
1724 +        }
1725 + #endif
1726 +        return sip->addr;
1727 + }
1728 +
1729 + // Return the address of the instruction that caused the fault, or
1730 + // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
1731 + sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *sip)
1732 + {
1733 + #ifdef HAVE_MACH_EXCEPTIONS
1734 +        if (!sip->has_thr_state) {
1735 +                mach_get_thread_state(sip);
1736 +
1737 +                sip->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
1738 +        }
1739 + #endif
1740 +        return sip->pc;
1741 + }
1742 +
1743 + // This function handles the badaccess to memory.
1744 + // It is called from the signal handler or the exception handler.
1745 + static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1746 + {
1747 +        sigsegv_info_t si;
1748 +        si.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
1749 +        si.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
1750 + #ifdef HAVE_MACH_EXCEPTIONS
1751 +        si.thread = thread;
1752 +        si.has_exc_state = false;
1753 +        si.has_thr_state = false;
1754 + #endif
1755 +        sigsegv_info_t * const sip = &si;
1756 +
1757 +        // Call user's handler and reinstall the global handler, if required
1758 +        switch (SIGSEGV_FAULT_HANDLER_INVOKE(sip)) {
1759 +        case SIGSEGV_RETURN_SUCCESS:
1760 +                return true;
1761 +
1762 + #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1763 +        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1764 +                // Call the instruction skipper with the register file
1765 +                // available
1766 + #ifdef HAVE_MACH_EXCEPTIONS
1767 +                if (!sip->has_thr_state)
1768 +                        mach_get_thread_state(sip);
1769 + #endif
1770 +                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1771 + #ifdef HAVE_MACH_EXCEPTIONS
1772 +                        // Unlike UNIX signals where the thread state
1773 +                        // is modified off of the stack, in Mach we
1774 +                        // need to actually call thread_set_state to
1775 +                        // have the register values updated.
1776 +                        mach_set_thread_state(sip);
1777 + #endif
1778 +                        return true;
1779 +                }
1780 +                break;
1781 + #endif
1782 +        case SIGSEGV_RETURN_FAILURE:
1783 +                // We can't do anything with the fault_address, dump state?
1784 +                if (sigsegv_state_dumper != 0)
1785 +                        sigsegv_state_dumper(sip);
1786 +                break;
1787 +        }
1788 +
1789 +        return false;
1790 + }
1791 +
1792 +
1793 + /*
1794 + * There are two mechanisms for handling a bad memory access,
1795 + * Mach exceptions and UNIX signals. The implementation specific
1796 + * code appears below. Its reponsibility is to call handle_badaccess
1797 + * which is the routine that handles the fault in an implementation
1798 + * agnostic manner. The implementation specific code below is then
1799 + * reponsible for checking whether handle_badaccess was able
1800 + * to handle the memory access error and perform any implementation
1801 + * specific tasks necessary afterwards.
1802 + */
1803 +
1804 + #ifdef HAVE_MACH_EXCEPTIONS
1805 + /*
1806 + * We need to forward all exceptions that we do not handle.
1807 + * This is important, there are many exceptions that may be
1808 + * handled by other exception handlers. For example debuggers
1809 + * use exceptions and the exception hander is in another
1810 + * process in such a case. (Timothy J. Wood states in his
1811 + * message to the list that he based this code on that from
1812 + * gdb for Darwin.)
1813 + */
1814 + static inline kern_return_t
1815 + forward_exception(mach_port_t thread_port,
1816 +                                  mach_port_t task_port,
1817 +                                  exception_type_t exception_type,
1818 +                                  exception_data_t exception_data,
1819 +                                  mach_msg_type_number_t data_count,
1820 +                                  ExceptionPorts *oldExceptionPorts)
1821 + {
1822 +        kern_return_t kret;
1823 +        unsigned int portIndex;
1824 +        mach_port_t port;
1825 +        exception_behavior_t behavior;
1826 +        thread_state_flavor_t flavor;
1827 +        thread_state_data_t thread_state;
1828 +        mach_msg_type_number_t thread_state_count;
1829 +
1830 +        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1831 +                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1832 +                        // This handler wants the exception
1833 +                        break;
1834 +                }
1835 +        }
1836 +
1837 +        if (portIndex >= oldExceptionPorts->maskCount) {
1838 +                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1839 +                return KERN_FAILURE;
1840 +        }
1841 +
1842 +        port = oldExceptionPorts->handlers[portIndex];
1843 +        behavior = oldExceptionPorts->behaviors[portIndex];
1844 +        flavor = oldExceptionPorts->flavors[portIndex];
1845 +
1846 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1847 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1848 +                return KERN_FAILURE;
1849 +        }
1850 +
1851 +        /*
1852 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1853 +         */
1854 +
1855 +        if (behavior != EXCEPTION_DEFAULT) {
1856 +                thread_state_count = THREAD_STATE_MAX;
1857 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1858 +                                                                 &thread_state_count);
1859 +                MACH_CHECK_ERROR (thread_get_state, kret);
1860 +        }
1861 +
1862 +        switch (behavior) {
1863 +        case EXCEPTION_DEFAULT:
1864 +          // fprintf(stderr, "forwarding to exception_raise\n");
1865 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1866 +                                                         exception_data, data_count);
1867 +          MACH_CHECK_ERROR (exception_raise, kret);
1868 +          break;
1869 +        case EXCEPTION_STATE:
1870 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1871 +          kret = exception_raise_state(port, exception_type, exception_data,
1872 +                                                                   data_count, &flavor,
1873 +                                                                   (natural_t *)&thread_state, thread_state_count,
1874 +                                                                   (natural_t *)&thread_state, &thread_state_count);
1875 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1876 +          break;
1877 +        case EXCEPTION_STATE_IDENTITY:
1878 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1879 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1880 +                                                                                        exception_type, exception_data,
1881 +                                                                                        data_count, &flavor,
1882 +                                                                                        (natural_t *)&thread_state, thread_state_count,
1883 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
1884 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1885 +          break;
1886 +        default:
1887 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1888 +          kret = KERN_FAILURE;
1889 +          break;
1890 +        }
1891 +
1892 +        if (behavior != EXCEPTION_DEFAULT) {
1893 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1894 +                                                                 thread_state_count);
1895 +                MACH_CHECK_ERROR (thread_set_state, kret);
1896 +        }
1897 +
1898 +        return kret;
1899 + }
1900 +
1901 + /*
1902 + * This is the code that actually handles the exception.
1903 + * It is called by exc_server. For Darwin 5 Apple changed
1904 + * this a bit from how this family of functions worked in
1905 + * Mach. If you are familiar with that it is a little
1906 + * different. The main variation that concerns us here is
1907 + * that code is an array of exception specific codes and
1908 + * codeCount is a count of the number of codes in the code
1909 + * array. In typical Mach all exceptions have a code
1910 + * and sub-code. It happens to be the case that for a
1911 + * EXC_BAD_ACCESS exception the first entry is the type of
1912 + * bad access that occurred and the second entry is the
1913 + * faulting address so these entries correspond exactly to
1914 + * how the code and sub-code are used on Mach.
1915 + *
1916 + * This is a MIG interface. No code in Basilisk II should
1917 + * call this directley. This has to have external C
1918 + * linkage because that is what exc_server expects.
1919 + */
1920 + kern_return_t
1921 + catch_exception_raise(mach_port_t exception_port,
1922 +                                          mach_port_t thread,
1923 +                                          mach_port_t task,
1924 +                                          exception_type_t exception,
1925 +                                          exception_data_t code,
1926 +                                          mach_msg_type_number_t code_count)
1927 + {
1928 +        kern_return_t krc;
1929 +
1930 +        if (exception == EXC_BAD_ACCESS) {
1931 +                switch (code[0]) {
1932 +                case KERN_PROTECTION_FAILURE:
1933 +                case KERN_INVALID_ADDRESS:
1934 +                        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1935 +                                return KERN_SUCCESS;
1936 +                        break;
1937 +                }
1938 +        }
1939 +
1940 +        // In Mach we do not need to remove the exception handler.
1941 +        // If we forward the exception, eventually some exception handler
1942 +        // will take care of this exception.
1943 +        krc = forward_exception(thread, task, exception, code, code_count, &ports);
1944 +
1945 +        return krc;
1946 + }
1947 + #endif
1948 +
1949   #ifdef HAVE_SIGSEGV_RECOVERY
1950 + // Handle bad memory accesses with signal handler
1951   static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1952   {
1953 <        // Call user's handler and reinstall the global handler, if required
1954 <        if (sigsegv_user_handler((sigsegv_address_t)SIGSEGV_FAULT_ADDRESS, (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION)) {
1953 >        // Call handler and reinstall the global handler, if required
1954 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1955   #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1956                  sigsegv_do_install_handler(sig);
1957   #endif
1958 +                return;
1959          }
1960 <        else {
1961 <                // FAIL: reinstall default handler for "safe" crash
1960 >
1961 >        // Failure: reinstall default handler for "safe" crash
1962   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1963 <                SIGSEGV_ALL_SIGNALS
1963 >        SIGSEGV_ALL_SIGNALS
1964   #undef FAULT_HANDLER
306        }
1965   }
1966   #endif
1967  
# Line 317 | Line 1975 | static bool sigsegv_do_install_handler(i
1975   {
1976          // Setup SIGSEGV handler to process writes to frame buffer
1977   #ifdef HAVE_SIGACTION
1978 <        struct sigaction vosf_sa;
1979 <        sigemptyset(&vosf_sa.sa_mask);
1980 <        vosf_sa.sa_sigaction = sigsegv_handler;
1981 <        vosf_sa.sa_flags = SA_SIGINFO;
1982 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1978 >        struct sigaction sigsegv_sa;
1979 >        sigemptyset(&sigsegv_sa.sa_mask);
1980 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1981 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1982 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1983   #else
1984          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1985   #endif
# Line 333 | Line 1991 | static bool sigsegv_do_install_handler(i
1991   {
1992          // Setup SIGSEGV handler to process writes to frame buffer
1993   #ifdef HAVE_SIGACTION
1994 <        struct sigaction vosf_sa;
1995 <        sigemptyset(&vosf_sa.sa_mask);
1996 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1994 >        struct sigaction sigsegv_sa;
1995 >        sigemptyset(&sigsegv_sa.sa_mask);
1996 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1997 >        sigsegv_sa.sa_flags = 0;
1998   #if !EMULATED_68K && defined(__NetBSD__)
1999 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
2000 <        vosf_sa.sa_flags = SA_ONSTACK;
342 < #else
343 <        vosf_sa.sa_flags = 0;
1999 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
2000 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
2001   #endif
2002 <        return (sigaction(sig, &vosf_sa, 0) == 0);
2002 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
2003   #else
2004          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
2005   #endif
2006   }
2007   #endif
2008  
2009 < bool sigsegv_install_handler(sigsegv_handler_t handler)
2009 > #if defined(HAVE_MACH_EXCEPTIONS)
2010 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2011   {
2012 < #ifdef HAVE_SIGSEGV_RECOVERY
2013 <        sigsegv_user_handler = handler;
2012 >        /*
2013 >         * Except for the exception port functions, this should be
2014 >         * pretty much stock Mach. If later you choose to support
2015 >         * other Mach's besides Darwin, just check for __MACH__
2016 >         * here and __APPLE__ where the actual differences are.
2017 >         */
2018 > #if defined(__APPLE__) && defined(__MACH__)
2019 >        if (sigsegv_fault_handler != NULL) {
2020 >                sigsegv_fault_handler = handler;
2021 >                return true;
2022 >        }
2023 >
2024 >        kern_return_t krc;
2025 >
2026 >        // create the the exception port
2027 >        krc = mach_port_allocate(mach_task_self(),
2028 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
2029 >        if (krc != KERN_SUCCESS) {
2030 >                mach_error("mach_port_allocate", krc);
2031 >                return false;
2032 >        }
2033 >
2034 >        // add a port send right
2035 >        krc = mach_port_insert_right(mach_task_self(),
2036 >                              _exceptionPort, _exceptionPort,
2037 >                              MACH_MSG_TYPE_MAKE_SEND);
2038 >        if (krc != KERN_SUCCESS) {
2039 >                mach_error("mach_port_insert_right", krc);
2040 >                return false;
2041 >        }
2042 >
2043 >        // get the old exception ports
2044 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
2045 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
2046 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
2047 >        if (krc != KERN_SUCCESS) {
2048 >                mach_error("thread_get_exception_ports", krc);
2049 >                return false;
2050 >        }
2051 >
2052 >        // set the new exception port
2053 >        //
2054 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
2055 >        // EXCEPTION_DEFAULT to get the thread state in the initial
2056 >        // message, but it turns out that in the common case this is not
2057 >        // neccessary. If we need it we can later ask for it from the
2058 >        // suspended thread.
2059 >        //
2060 >        // Even with THREAD_STATE_NONE, Darwin provides the program
2061 >        // counter in the thread state.  The comments in the header file
2062 >        // seem to imply that you can count on the GPR's on an exception
2063 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
2064 >        // you have to ask for all of the GPR's anyway just to get the
2065 >        // program counter. In any case because of update effective
2066 >        // address from immediate and update address from effective
2067 >        // addresses of ra and rb modes (as good an name as any for these
2068 >        // addressing modes) used in PPC instructions, you will need the
2069 >        // GPR state anyway.
2070 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
2071 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
2072 >        if (krc != KERN_SUCCESS) {
2073 >                mach_error("thread_set_exception_ports", krc);
2074 >                return false;
2075 >        }
2076 >
2077 >        // create the exception handler thread
2078 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
2079 >                (void)fprintf(stderr, "creation of exception thread failed\n");
2080 >                return false;
2081 >        }
2082 >
2083 >        // do not care about the exception thread any longer, let is run standalone
2084 >        (void)pthread_detach(exc_thread);
2085 >
2086 >        sigsegv_fault_handler = handler;
2087 >        return true;
2088 > #else
2089 >        return false;
2090 > #endif
2091 > }
2092 > #endif
2093 >
2094 > #ifdef HAVE_WIN32_EXCEPTIONS
2095 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
2096 > {
2097 >        if (sigsegv_fault_handler != NULL
2098 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
2099 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
2100 >                && handle_badaccess(ExceptionInfo))
2101 >                return EXCEPTION_CONTINUE_EXECUTION;
2102 >
2103 >        return EXCEPTION_CONTINUE_SEARCH;
2104 > }
2105 >
2106 > #if defined __CYGWIN__ && defined __i386__
2107 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
2108 >   installs a global exception handler.  We have to dig deep in order to install
2109 >   our main_exception_filter.  */
2110 >
2111 > /* Data structures for the current thread's exception handler chain.
2112 >   On the x86 Windows uses register fs, offset 0 to point to the current
2113 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
2114 >
2115 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
2116 >
2117 > struct exception_list {
2118 >    struct exception_list *prev;
2119 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2120 > };
2121 > typedef struct exception_list exception_list;
2122 >
2123 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
2124 >
2125 > __asm__ (".equ __except_list,0");
2126 >
2127 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
2128 >
2129 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
2130 > static exception_list *
2131 > debug_get_except_list ()
2132 > {
2133 >  return _except_list;
2134 > }
2135 >
2136 > /* Cygwin's original exception handler.  */
2137 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2138 >
2139 > /* Our exception handler.  */
2140 > static int
2141 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2142 > {
2143 >  EXCEPTION_POINTERS ExceptionInfo;
2144 >  ExceptionInfo.ExceptionRecord = exception;
2145 >  ExceptionInfo.ContextRecord = context;
2146 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2147 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2148 >  else
2149 >    return 0;
2150 > }
2151 >
2152 > static void
2153 > do_install_main_exception_filter ()
2154 > {
2155 >  /* We cannot insert any handler into the chain, because such handlers
2156 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2157 >     global exception handler.  */
2158 >  cygwin_exception_handler = _except_list->handler;
2159 >  _except_list->handler = libsigsegv_exception_handler;
2160 > }
2161 >
2162 > #else
2163 >
2164 > static void
2165 > do_install_main_exception_filter ()
2166 > {
2167 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2168 > }
2169 > #endif
2170 >
2171 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2172 > {
2173 >        static bool main_exception_filter_installed = false;
2174 >        if (!main_exception_filter_installed) {
2175 >                do_install_main_exception_filter();
2176 >                main_exception_filter_installed = true;
2177 >        }
2178 >        sigsegv_fault_handler = handler;
2179 >        return true;
2180 > }
2181 > #endif
2182 >
2183 > bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2184 > {
2185 > #if defined(HAVE_SIGSEGV_RECOVERY)
2186          bool success = true;
2187   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2188          SIGSEGV_ALL_SIGNALS
2189   #undef FAULT_HANDLER
2190 +        if (success)
2191 +            sigsegv_fault_handler = handler;
2192          return success;
2193 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2194 +        return sigsegv_do_install_handler(handler);
2195   #else
2196          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2197          return false;
# Line 371 | Line 2205 | bool sigsegv_install_handler(sigsegv_han
2205  
2206   void sigsegv_deinstall_handler(void)
2207   {
2208 +  // We do nothing for Mach exceptions, the thread would need to be
2209 +  // suspended if not already so, and we might mess with other
2210 +  // exception handlers that came after we registered ours. There is
2211 +  // no need to remove the exception handler, in fact this function is
2212 +  // not called anywhere in Basilisk II.
2213   #ifdef HAVE_SIGSEGV_RECOVERY
2214 <        sigsegv_user_handler = 0;
2214 >        sigsegv_fault_handler = 0;
2215   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2216          SIGSEGV_ALL_SIGNALS
2217   #undef FAULT_HANDLER
2218   #endif
2219 + #ifdef HAVE_WIN32_EXCEPTIONS
2220 +        sigsegv_fault_handler = NULL;
2221 + #endif
2222   }
2223  
2224 +
2225 + /*
2226 + *  Set callback function when we cannot handle the fault
2227 + */
2228 +
2229 + void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
2230 + {
2231 +        sigsegv_state_dumper = handler;
2232 + }
2233 +
2234 +
2235   /*
2236   *  Test program used for configure/test
2237   */
# Line 387 | Line 2240 | void sigsegv_deinstall_handler(void)
2240   #include <stdio.h>
2241   #include <stdlib.h>
2242   #include <fcntl.h>
2243 + #ifdef HAVE_SYS_MMAN_H
2244   #include <sys/mman.h>
2245 + #endif
2246   #include "vm_alloc.h"
2247  
2248 + const int REF_INDEX = 123;
2249 + const int REF_VALUE = 45;
2250 +
2251   static int page_size;
2252   static volatile char * page = 0;
2253   static volatile int handler_called = 0;
2254  
2255 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2255 > /* Barriers */
2256 > #ifdef __GNUC__
2257 > #define BARRIER() asm volatile ("" : : : "memory")
2258 > #else
2259 > #define BARRIER() /* nothing */
2260 > #endif
2261 >
2262 > #ifdef __GNUC__
2263 > // Code range where we expect the fault to come from
2264 > static void *b_region, *e_region;
2265 > #endif
2266 >
2267 > static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
2268   {
2269 +        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2270 +        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2271 + #if DEBUG
2272 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2273 +        printf("expected fault at %p\n", page + REF_INDEX);
2274 + #ifdef __GNUC__
2275 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2276 + #endif
2277 + #endif
2278          handler_called++;
2279 <        if ((fault_address - 123) != page)
2280 <                exit(1);
2279 >        if ((fault_address - REF_INDEX) != page)
2280 >                exit(10);
2281 > #ifdef __GNUC__
2282 >        // Make sure reported fault instruction address falls into
2283 >        // expected code range
2284 >        if (instruction_address != SIGSEGV_INVALID_ADDRESS
2285 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2286 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2287 >                exit(11);
2288 > #endif
2289          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2290 <                exit(1);
2290 >                exit(12);
2291 >        return SIGSEGV_RETURN_SUCCESS;
2292 > }
2293 >
2294 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2295 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
2296 > {
2297 >        const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
2298 >        const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
2299 > #if DEBUG
2300 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2301 > #endif
2302 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2303 > #ifdef __GNUC__
2304 >                // Make sure reported fault instruction address falls into
2305 >                // expected code range
2306 >                if (instruction_address != SIGSEGV_INVALID_ADDRESS
2307 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2308 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2309 >                        return SIGSEGV_RETURN_FAILURE;
2310 > #endif
2311 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2312 >        }
2313 >
2314 >        return SIGSEGV_RETURN_FAILURE;
2315 > }
2316 >
2317 > // More sophisticated tests for instruction skipper
2318 > static bool arch_insn_skipper_tests()
2319 > {
2320 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2321 >        static const unsigned char code[] = {
2322 >                0x8a, 0x00,                    // mov    (%eax),%al
2323 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2324 >                0x88, 0x20,                    // mov    %ah,(%eax)
2325 >                0x88, 0x08,                    // mov    %cl,(%eax)
2326 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2327 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2328 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2329 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2330 >                0x8b, 0x00,                    // mov    (%eax),%eax
2331 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2332 >                0x89, 0x00,                    // mov    %eax,(%eax)
2333 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2334 > #if defined(__x86_64__)
2335 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2336 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2337 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2338 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2339 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2340 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2341 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2342 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2343 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2344 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2345 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2346 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2347 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2348 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2349 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2350 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2351 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2352 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2353 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2354 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2355 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2356 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2357 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2358 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2359 > #endif
2360 >                0                              // end
2361 >        };
2362 >        const int N_REGS = 20;
2363 >        unsigned long regs[N_REGS];
2364 >        for (int i = 0; i < N_REGS; i++)
2365 >                regs[i] = i;
2366 >        const unsigned long start_code = (unsigned long)&code;
2367 >        regs[X86_REG_EIP] = start_code;
2368 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2369 >                   && ix86_skip_instruction(regs))
2370 >                ; /* simply iterate */
2371 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2372 > #endif
2373          return true;
2374   }
2375 + #endif
2376  
2377   int main(void)
2378   {
2379          if (vm_init() < 0)
2380                  return 1;
2381  
2382 <        page_size = getpagesize();
2382 >        page_size = vm_get_page_size();
2383          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2384 <                return 1;
2384 >                return 2;
2385          
2386 +        memset((void *)page, 0, page_size);
2387          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2388 <                return 1;
2388 >                return 3;
2389          
2390          if (!sigsegv_install_handler(sigsegv_test_handler))
2391 <                return 1;
421 <        
422 <        page[123] = 45;
423 <        page[123] = 45;
2391 >                return 4;
2392          
2393 + #ifdef __GNUC__
2394 +        b_region = &&L_b_region1;
2395 +        e_region = &&L_e_region1;
2396 + #endif
2397 + L_b_region1:
2398 +        page[REF_INDEX] = REF_VALUE;
2399 +        if (page[REF_INDEX] != REF_VALUE)
2400 +          exit(20);
2401 +        page[REF_INDEX] = REF_VALUE;
2402 +        BARRIER();
2403 + L_e_region1:
2404 +
2405          if (handler_called != 1)
2406 <                return 1;
2406 >                return 5;
2407 >
2408 > #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2409 >        if (!sigsegv_install_handler(sigsegv_insn_handler))
2410 >                return 6;
2411 >        
2412 >        if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2413 >                return 7;
2414 >        
2415 >        for (int i = 0; i < page_size; i++)
2416 >                page[i] = (i + 1) % page_size;
2417 >        
2418 >        if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2419 >                return 8;
2420 >        
2421 > #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2422 >                const unsigned long TAG = 0x12345678 |                  \
2423 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2424 >                TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2425 >                volatile unsigned long effect = data + TAG;             \
2426 >                if (effect != TAG)                                                              \
2427 >                        return 9;                                                                       \
2428 >        } while (0)
2429 >        
2430 > #ifdef __GNUC__
2431 >        b_region = &&L_b_region2;
2432 >        e_region = &&L_e_region2;
2433 > #endif
2434 > L_b_region2:
2435 >        TEST_SKIP_INSTRUCTION(unsigned char);
2436 >        TEST_SKIP_INSTRUCTION(unsigned short);
2437 >        TEST_SKIP_INSTRUCTION(unsigned int);
2438 >        TEST_SKIP_INSTRUCTION(unsigned long);
2439 >        TEST_SKIP_INSTRUCTION(signed char);
2440 >        TEST_SKIP_INSTRUCTION(signed short);
2441 >        TEST_SKIP_INSTRUCTION(signed int);
2442 >        TEST_SKIP_INSTRUCTION(signed long);
2443 >        BARRIER();
2444 > L_e_region2:
2445 >
2446 >        if (!arch_insn_skipper_tests())
2447 >                return 20;
2448 > #endif
2449  
2450          vm_exit();
2451          return 0;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines