ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.17 by gbeauche, 2002-05-20T17:49:04Z vs.
Revision 1.64 by gbeauche, 2006-07-19T21:31:10Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 59 | Line 68 | static bool sigsegv_do_install_handler(i
68  
69   // Transfer type
70   enum transfer_type_t {
71 <        TYPE_UNKNOWN,
72 <        TYPE_LOAD,
73 <        TYPE_STORE
71 >        SIGSEGV_TRANSFER_UNKNOWN        = 0,
72 >        SIGSEGV_TRANSFER_LOAD           = 1,
73 >        SIGSEGV_TRANSFER_STORE          = 2,
74   };
75  
76   // Transfer size
77   enum transfer_size_t {
78          SIZE_UNKNOWN,
79          SIZE_BYTE,
80 <        SIZE_WORD,
81 <        SIZE_LONG
80 >        SIZE_WORD, // 2 bytes
81 >        SIZE_LONG, // 4 bytes
82 >        SIZE_QUAD, // 8 bytes
83   };
84  
85   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
# Line 91 | Line 101 | struct instruction_t {
101          char                            ra, rd;
102   };
103  
104 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
104 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
105   {
106          // Get opcode and divide into fields
107 <        unsigned int opcode = *((unsigned int *)nip);
107 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
108          unsigned int primop = opcode >> 26;
109          unsigned int exop = (opcode >> 1) & 0x3ff;
110          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 113 | static void powerpc_decode_instruction(i
113          signed int imm = (signed short)(opcode & 0xffff);
114          
115          // Analyze opcode
116 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
116 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
117          transfer_size_t transfer_size = SIZE_UNKNOWN;
118          addressing_mode_t addr_mode = MODE_UNKNOWN;
119          switch (primop) {
120          case 31:
121                  switch (exop) {
122                  case 23:        // lwzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
124                  case 55:        // lwzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
126                  case 87:        // lbzx
127 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
128                  case 119:       // lbzux
129 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
130                  case 151:       // stwx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
132                  case 183:       // stwux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
134                  case 215:       // stbx
135 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
136                  case 247:       // stbux
137 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
138                  case 279:       // lhzx
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 311:       // lhzux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 343:       // lhax
143 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 375:       // lhaux
145 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  case 407:       // sthx
147 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
147 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
148                  case 439:       // sthux
149 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
149 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
150                  }
151                  break;
152          
153          case 32:        // lwz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
155          case 33:        // lwzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
157          case 34:        // lbz
158 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
159          case 35:        // lbzu
160 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
161          case 36:        // stw
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
163          case 37:        // stwu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
165          case 38:        // stb
166 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
167          case 39:        // stbu
168 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
169          case 40:        // lhz
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 41:        // lhzu
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 42:        // lha
174 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 43:        // lhau
176 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177          case 44:        // sth
178 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
178 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
179          case 45:        // sthu
180 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
180 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
181 >        case 58:        // ld, ldu, lwa
182 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
183 >                transfer_size = SIZE_QUAD;
184 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
185 >                imm &= ~3;
186 >                break;
187 >        case 62:        // std, stdu, stq
188 >                transfer_type = SIGSEGV_TRANSFER_STORE;
189 >                transfer_size = SIZE_QUAD;
190 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
191 >                imm &= ~3;
192 >                break;
193          }
194          
195          // Calculate effective address
# Line 208 | Line 230 | static void powerpc_decode_instruction(i
230  
231   #if HAVE_SIGINFO_T
232   // Generic extended signal handler
233 < #if defined(__NetBSD__) || defined(__FreeBSD__)
233 > #if defined(__FreeBSD__)
234   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
235   #else
236   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
237   #endif
238   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
239 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
240 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
241   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
242 + #if (defined(sgi) || defined(__sgi))
243 + #include <ucontext.h>
244 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
245 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
246 + #if (defined(mips) || defined(__mips))
247 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
248 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
249 + #endif
250 + #endif
251 + #if defined(__sun__)
252 + #if (defined(sparc) || defined(__sparc__))
253 + #include <sys/stack.h>
254 + #include <sys/regset.h>
255 + #include <sys/ucontext.h>
256 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
257 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
258 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
259 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
260 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
261 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
262 + #endif
263 + #if defined(__i386__)
264 + #include <sys/regset.h>
265 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
266 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
267 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
268 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
269 + #endif
270 + #endif
271 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
272   #if (defined(i386) || defined(__i386__))
273   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
274 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi))
274 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
275 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
276 > #endif
277 > #endif
278 > #if defined(__NetBSD__)
279 > #if (defined(i386) || defined(__i386__))
280 > #include <sys/ucontext.h>
281 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
282 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
283 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
284   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
285   #endif
286 + #if (defined(powerpc) || defined(__powerpc__))
287 + #include <sys/ucontext.h>
288 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
289 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
290 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
291 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
292 + #endif
293 + #endif
294   #if defined(__linux__)
295   #if (defined(i386) || defined(__i386__))
296   #include <sys/ucontext.h>
297   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
298   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
299 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
299 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
300 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
301 > #endif
302 > #if (defined(x86_64) || defined(__x86_64__))
303 > #include <sys/ucontext.h>
304 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
305 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
306 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
307   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
308   #endif
309   #if (defined(ia64) || defined(__ia64__))
# Line 235 | Line 313 | static void powerpc_decode_instruction(i
313   #include <sys/ucontext.h>
314   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
315   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
316 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
316 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
317   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
318   #endif
319 + #if (defined(hppa) || defined(__hppa__))
320 + #undef  SIGSEGV_FAULT_ADDRESS
321 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
322 + #endif
323 + #if (defined(arm) || defined(__arm__))
324 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
325 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
326 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
327 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
328 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
329 + #endif
330   #endif
331   #endif
332  
# Line 248 | Line 337 | static void powerpc_decode_instruction(i
337   #if (defined(i386) || defined(__i386__))
338   #include <asm/sigcontext.h>
339   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
340 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
341 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
342 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
340 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
341 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
342 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
343 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
344 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
345   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
346   #endif
347   #if (defined(sparc) || defined(__sparc__))
348   #include <asm/sigcontext.h>
349   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
350 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
351   #define SIGSEGV_FAULT_ADDRESS                   addr
352   #endif
353   #if (defined(powerpc) || defined(__powerpc__))
354   #include <asm/sigcontext.h>
355   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
356 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
357   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
358   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
359 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
359 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
360   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
361   #endif
362   #if (defined(alpha) || defined(__alpha__))
363   #include <asm/sigcontext.h>
364   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
365 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
366   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
367   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
368 <
369 < // From Boehm's GC 6.0alpha8
370 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
371 < {
372 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
373 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
374 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
375 <        return (sigsegv_address_t)fault_address;
376 < }
368 > #endif
369 > #if (defined(arm) || defined(__arm__))
370 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
371 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
372 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
373 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
374 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
375 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
376 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
377   #endif
378   #endif
379  
380   // Irix 5 or 6 on MIPS
381 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
381 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
382   #include <ucontext.h>
383   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
384 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
384 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
385 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
386 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
387   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
388   #endif
389  
390   // HP-UX
391   #if (defined(hpux) || defined(__hpux__))
392   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
393 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
394   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
395   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
396   #endif
# Line 302 | Line 399 | static sigsegv_address_t get_fault_addre
399   #if defined(__osf__)
400   #include <ucontext.h>
401   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
402 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
403   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
404   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
405   #endif
# Line 309 | Line 407 | static sigsegv_address_t get_fault_addre
407   // AIX
408   #if defined(_AIX)
409   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
410 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
411   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
412   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
413   #endif
414  
415 < // NetBSD or FreeBSD
416 < #if defined(__NetBSD__) || defined(__FreeBSD__)
415 > // NetBSD
416 > #if defined(__NetBSD__)
417   #if (defined(m68k) || defined(__m68k__))
418   #include <m68k/frame.h>
419   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
420 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
421   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
422   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
423  
# Line 341 | Line 441 | static sigsegv_address_t get_fault_addre
441          }
442          return (sigsegv_address_t)fault_addr;
443   }
444 < #else
445 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
446 < #define SIGSEGV_FAULT_ADDRESS                   addr
444 > #endif
445 > #if (defined(alpha) || defined(__alpha__))
446 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
447 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
448 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
449   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
450   #endif
451 + #if (defined(i386) || defined(__i386__))
452 + #error "FIXME: need to decode instruction and compute EA"
453 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
454 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
455 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
456 + #endif
457 + #endif
458 + #if defined(__FreeBSD__)
459 + #if (defined(i386) || defined(__i386__))
460 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
461 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
462 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
463 + #define SIGSEGV_FAULT_ADDRESS                   addr
464 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
465 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
466 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
467 + #endif
468 + #if (defined(alpha) || defined(__alpha__))
469 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
470 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
471 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
472 + #define SIGSEGV_FAULT_ADDRESS                   addr
473 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
474 + #endif
475   #endif
476  
477 < // MacOS X
477 > // Extract fault address out of a sigcontext
478 > #if (defined(alpha) || defined(__alpha__))
479 > // From Boehm's GC 6.0alpha8
480 > static sigsegv_address_t get_fault_address(struct sigcontext *scp)
481 > {
482 >        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
483 >        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
484 >        fault_address += (signed long)(signed short)(instruction & 0xffff);
485 >        return (sigsegv_address_t)fault_address;
486 > }
487 > #endif
488 >
489 >
490 > // MacOS X, not sure which version this works in. Under 10.1
491 > // vm_protect does not appear to work from a signal handler. Under
492 > // 10.2 signal handlers get siginfo type arguments but the si_addr
493 > // field is the address of the faulting instruction and not the
494 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
495 > // case with Mach exception handlers there is a way to do what this
496 > // was meant to do.
497 > #ifndef HAVE_MACH_EXCEPTIONS
498   #if defined(__APPLE__) && defined(__MACH__)
499   #if (defined(ppc) || defined(__ppc__))
500   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
501 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
502   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
503   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
504   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 371 | Line 518 | static sigsegv_address_t get_fault_addre
518   #endif
519   #endif
520   #endif
521 + #endif
522 +
523 + #if HAVE_WIN32_EXCEPTIONS
524 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
525 + #include <windows.h>
526 + #include <winerror.h>
527 +
528 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
529 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
530 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
531 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
532 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
533 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
534 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
535 + #endif
536 +
537 + #if HAVE_MACH_EXCEPTIONS
538 +
539 + // This can easily be extended to other Mach systems, but really who
540 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
541 + // Mach 2.5/3.0?
542 + #if defined(__APPLE__) && defined(__MACH__)
543 +
544 + #include <sys/types.h>
545 + #include <stdlib.h>
546 + #include <stdio.h>
547 + #include <pthread.h>
548 +
549 + /*
550 + * If you are familiar with MIG then you will understand the frustration
551 + * that was necessary to get these embedded into C++ code by hand.
552 + */
553 + extern "C" {
554 + #include <mach/mach.h>
555 + #include <mach/mach_error.h>
556 +
557 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
558 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
559 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
560 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
561 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
562 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
563 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
564 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
565 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
566 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
567 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
568 + }
569 +
570 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
571 + #define HANDLER_COUNT 64
572 +
573 + // structure to tuck away existing exception handlers
574 + typedef struct _ExceptionPorts {
575 +        mach_msg_type_number_t maskCount;
576 +        exception_mask_t masks[HANDLER_COUNT];
577 +        exception_handler_t handlers[HANDLER_COUNT];
578 +        exception_behavior_t behaviors[HANDLER_COUNT];
579 +        thread_state_flavor_t flavors[HANDLER_COUNT];
580 + } ExceptionPorts;
581 +
582 + // exception handler thread
583 + static pthread_t exc_thread;
584 +
585 + // place where old exception handler info is stored
586 + static ExceptionPorts ports;
587 +
588 + // our exception port
589 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
590 +
591 + #define MACH_CHECK_ERROR(name,ret) \
592 + if (ret != KERN_SUCCESS) { \
593 +        mach_error(#name, ret); \
594 +        exit (1); \
595 + }
596 +
597 + #ifdef __ppc__
598 + #define SIGSEGV_THREAD_STATE_TYPE               ppc_thread_state_t
599 + #define SIGSEGV_THREAD_STATE_FLAVOR             PPC_THREAD_STATE
600 + #define SIGSEGV_THREAD_STATE_COUNT              PPC_THREAD_STATE_COUNT
601 + #define SIGSEGV_FAULT_INSTRUCTION               state->srr0
602 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
603 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&state->srr0, (unsigned long *)&state->r0
604 + #endif
605 + #ifdef __i386__
606 + #ifdef i386_SAVED_STATE
607 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_saved_state
608 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_SAVED_STATE
609 + #define SIGSEGV_THREAD_STATE_COUNT              i386_SAVED_STATE_COUNT
610 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */
611 + #else
612 + #define SIGSEGV_THREAD_STATE_TYPE               struct i386_thread_state
613 + #define SIGSEGV_THREAD_STATE_FLAVOR             i386_THREAD_STATE
614 + #define SIGSEGV_THREAD_STATE_COUNT              i386_THREAD_STATE_COUNT
615 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */
616 + #endif
617 + #define SIGSEGV_FAULT_INSTRUCTION               state->eip
618 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
619 + #endif
620 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
621 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE || code[0] == KERN_INVALID_ADDRESS) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
622 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state
623 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
624 +
625 + // Since there can only be one exception thread running at any time
626 + // this is not a problem.
627 + #define MSG_SIZE 512
628 + static char msgbuf[MSG_SIZE];
629 + static char replybuf[MSG_SIZE];
630 +
631 + /*
632 + * This is the entry point for the exception handler thread. The job
633 + * of this thread is to wait for exception messages on the exception
634 + * port that was setup beforehand and to pass them on to exc_server.
635 + * exc_server is a MIG generated function that is a part of Mach.
636 + * Its job is to decide what to do with the exception message. In our
637 + * case exc_server calls catch_exception_raise on our behalf. After
638 + * exc_server returns, it is our responsibility to send the reply.
639 + */
640 + static void *
641 + handleExceptions(void *priv)
642 + {
643 +        mach_msg_header_t *msg, *reply;
644 +        kern_return_t krc;
645 +
646 +        msg = (mach_msg_header_t *)msgbuf;
647 +        reply = (mach_msg_header_t *)replybuf;
648 +
649 +        for (;;) {
650 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
651 +                                _exceptionPort, 0, MACH_PORT_NULL);
652 +                MACH_CHECK_ERROR(mach_msg, krc);
653 +
654 +                if (!exc_server(msg, reply)) {
655 +                        fprintf(stderr, "exc_server hated the message\n");
656 +                        exit(1);
657 +                }
658 +
659 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
660 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
661 +                if (krc != KERN_SUCCESS) {
662 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
663 +                                krc, mach_error_string(krc));
664 +                        exit(1);
665 +                }
666 +        }
667 + }
668 + #endif
669 + #endif
670  
671  
672   /*
# Line 379 | Line 675 | static sigsegv_address_t get_fault_addre
675  
676   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
677   // Decode and skip X86 instruction
678 < #if (defined(i386) || defined(__i386__))
678 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
679   #if defined(__linux__)
680   enum {
681 + #if (defined(i386) || defined(__i386__))
682          X86_REG_EIP = 14,
683          X86_REG_EAX = 11,
684          X86_REG_ECX = 10,
# Line 391 | Line 688 | enum {
688          X86_REG_EBP = 6,
689          X86_REG_ESI = 5,
690          X86_REG_EDI = 4
691 + #endif
692 + #if defined(__x86_64__)
693 +        X86_REG_R8  = 0,
694 +        X86_REG_R9  = 1,
695 +        X86_REG_R10 = 2,
696 +        X86_REG_R11 = 3,
697 +        X86_REG_R12 = 4,
698 +        X86_REG_R13 = 5,
699 +        X86_REG_R14 = 6,
700 +        X86_REG_R15 = 7,
701 +        X86_REG_EDI = 8,
702 +        X86_REG_ESI = 9,
703 +        X86_REG_EBP = 10,
704 +        X86_REG_EBX = 11,
705 +        X86_REG_EDX = 12,
706 +        X86_REG_EAX = 13,
707 +        X86_REG_ECX = 14,
708 +        X86_REG_ESP = 15,
709 +        X86_REG_EIP = 16
710 + #endif
711   };
712   #endif
713 < #if defined(__NetBSD__) || defined(__FreeBSD__)
713 > #if defined(__NetBSD__)
714   enum {
715 + #if (defined(i386) || defined(__i386__))
716 +        X86_REG_EIP = _REG_EIP,
717 +        X86_REG_EAX = _REG_EAX,
718 +        X86_REG_ECX = _REG_ECX,
719 +        X86_REG_EDX = _REG_EDX,
720 +        X86_REG_EBX = _REG_EBX,
721 +        X86_REG_ESP = _REG_ESP,
722 +        X86_REG_EBP = _REG_EBP,
723 +        X86_REG_ESI = _REG_ESI,
724 +        X86_REG_EDI = _REG_EDI
725 + #endif
726 + };
727 + #endif
728 + #if defined(__FreeBSD__)
729 + enum {
730 + #if (defined(i386) || defined(__i386__))
731          X86_REG_EIP = 10,
732          X86_REG_EAX = 7,
733          X86_REG_ECX = 6,
# Line 404 | Line 737 | enum {
737          X86_REG_EBP = 2,
738          X86_REG_ESI = 1,
739          X86_REG_EDI = 0
740 + #endif
741 + };
742 + #endif
743 + #if defined(__OpenBSD__)
744 + enum {
745 + #if defined(__i386__)
746 +        // EDI is the first register we consider
747 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
748 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
749 +        X86_REG_EIP = DREG(eip), // 7
750 +        X86_REG_EAX = DREG(eax), // 6
751 +        X86_REG_ECX = DREG(ecx), // 5
752 +        X86_REG_EDX = DREG(edx), // 4
753 +        X86_REG_EBX = DREG(ebx), // 3
754 +        X86_REG_ESP = DREG(esp), // 10
755 +        X86_REG_EBP = DREG(ebp), // 2
756 +        X86_REG_ESI = DREG(esi), // 1
757 +        X86_REG_EDI = DREG(edi)  // 0
758 + #undef DREG
759 + #undef OREG
760 + #endif
761 + };
762 + #endif
763 + #if defined(__sun__)
764 + // Same as for Linux, need to check for x86-64
765 + enum {
766 + #if defined(__i386__)
767 +        X86_REG_EIP = EIP,
768 +        X86_REG_EAX = EAX,
769 +        X86_REG_ECX = ECX,
770 +        X86_REG_EDX = EDX,
771 +        X86_REG_EBX = EBX,
772 +        X86_REG_ESP = ESP,
773 +        X86_REG_EBP = EBP,
774 +        X86_REG_ESI = ESI,
775 +        X86_REG_EDI = EDI
776 + #endif
777 + };
778 + #endif
779 + #if defined(__APPLE__) && defined(__MACH__)
780 + enum {
781 + #ifdef i386_SAVED_STATE
782 +        // same as FreeBSD (in Open Darwin 8.0.1)
783 +        X86_REG_EIP = 10,
784 +        X86_REG_EAX = 7,
785 +        X86_REG_ECX = 6,
786 +        X86_REG_EDX = 5,
787 +        X86_REG_EBX = 4,
788 +        X86_REG_ESP = 13,
789 +        X86_REG_EBP = 2,
790 +        X86_REG_ESI = 1,
791 +        X86_REG_EDI = 0
792 + #else
793 +        // new layout (MacOS X 10.4.4 for x86)
794 +        X86_REG_EIP = 10,
795 +        X86_REG_EAX = 0,
796 +        X86_REG_ECX = 2,
797 +        X86_REG_EDX = 4,
798 +        X86_REG_EBX = 1,
799 +        X86_REG_ESP = 7,
800 +        X86_REG_EBP = 6,
801 +        X86_REG_ESI = 5,
802 +        X86_REG_EDI = 4
803 + #endif
804 + };
805 + #endif
806 + #if defined(_WIN32)
807 + enum {
808 + #if (defined(i386) || defined(__i386__))
809 +        X86_REG_EIP = 7,
810 +        X86_REG_EAX = 5,
811 +        X86_REG_ECX = 4,
812 +        X86_REG_EDX = 3,
813 +        X86_REG_EBX = 2,
814 +        X86_REG_ESP = 10,
815 +        X86_REG_EBP = 6,
816 +        X86_REG_ESI = 1,
817 +        X86_REG_EDI = 0
818 + #endif
819   };
820   #endif
821   // FIXME: this is partly redundant with the instruction decoding phase
# Line 440 | Line 852 | static inline int ix86_step_over_modrm(u
852          return offset;
853   }
854  
855 < static bool ix86_skip_instruction(unsigned int * regs)
855 > static bool ix86_skip_instruction(unsigned long * regs)
856   {
857          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
858  
859          if (eip == 0)
860                  return false;
861 + #ifdef _WIN32
862 +        if (IsBadCodePtr((FARPROC)eip))
863 +                return false;
864 + #endif
865          
866 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
866 >        enum instruction_type_t {
867 >                i_MOV,
868 >                i_ADD
869 >        };
870 >
871 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
872          transfer_size_t transfer_size = SIZE_LONG;
873 +        instruction_type_t instruction_type = i_MOV;
874          
875          int reg = -1;
876          int len = 0;
877 <        
877 >
878 > #if DEBUG
879 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
880 >                   eip, eip[0], eip[1], eip[2], eip[3]);
881 > #endif
882 >
883          // Operand size prefix
884          if (*eip == 0x66) {
885                  eip++;
# Line 460 | Line 887 | static bool ix86_skip_instruction(unsign
887                  transfer_size = SIZE_WORD;
888          }
889  
890 +        // REX prefix
891 + #if defined(__x86_64__)
892 +        struct rex_t {
893 +                unsigned char W;
894 +                unsigned char R;
895 +                unsigned char X;
896 +                unsigned char B;
897 +        };
898 +        rex_t rex = { 0, 0, 0, 0 };
899 +        bool has_rex = false;
900 +        if ((*eip & 0xf0) == 0x40) {
901 +                has_rex = true;
902 +                const unsigned char b = *eip;
903 +                rex.W = b & (1 << 3);
904 +                rex.R = b & (1 << 2);
905 +                rex.X = b & (1 << 1);
906 +                rex.B = b & (1 << 0);
907 + #if DEBUG
908 +                printf("REX: %c,%c,%c,%c\n",
909 +                           rex.W ? 'W' : '_',
910 +                           rex.R ? 'R' : '_',
911 +                           rex.X ? 'X' : '_',
912 +                           rex.B ? 'B' : '_');
913 + #endif
914 +                eip++;
915 +                len++;
916 +                if (rex.W)
917 +                        transfer_size = SIZE_QUAD;
918 +        }
919 + #else
920 +        const bool has_rex = false;
921 + #endif
922 +
923          // Decode instruction
924 +        int op_len = 1;
925 +        int target_size = SIZE_UNKNOWN;
926          switch (eip[0]) {
927          case 0x0f:
928 <            if (eip[1] == 0xb7) { // MOVZX r32, r/m16
929 <                switch (eip[2] & 0xc0) {
930 <                case 0x80:
931 <                    reg = (eip[2] >> 3) & 7;
932 <                    transfer_type = TYPE_LOAD;
933 <                    break;
934 <                case 0x40:
935 <                    reg = (eip[2] >> 3) & 7;
936 <                    transfer_type = TYPE_LOAD;
937 <                    break;
938 <                case 0x00:
939 <                    reg = (eip[2] >> 3) & 7;
940 <                    transfer_type = TYPE_LOAD;
479 <                    break;
928 >                target_size = transfer_size;
929 >            switch (eip[1]) {
930 >                case 0xbe: // MOVSX r32, r/m8
931 >            case 0xb6: // MOVZX r32, r/m8
932 >                        transfer_size = SIZE_BYTE;
933 >                        goto do_mov_extend;
934 >                case 0xbf: // MOVSX r32, r/m16
935 >            case 0xb7: // MOVZX r32, r/m16
936 >                        transfer_size = SIZE_WORD;
937 >                        goto do_mov_extend;
938 >                  do_mov_extend:
939 >                        op_len = 2;
940 >                        goto do_transfer_load;
941                  }
942 <                len += 3 + ix86_step_over_modrm(eip + 2);
943 <            }
944 <          break;
942 >                break;
943 > #if defined(__x86_64__)
944 >        case 0x63: // MOVSXD r64, r/m32
945 >                if (has_rex && rex.W) {
946 >                        transfer_size = SIZE_LONG;
947 >                        target_size = SIZE_QUAD;
948 >                }
949 >                else if (transfer_size != SIZE_WORD) {
950 >                        transfer_size = SIZE_LONG;
951 >                        target_size = SIZE_QUAD;
952 >                }
953 >                goto do_transfer_load;
954 > #endif
955 >        case 0x02: // ADD r8, r/m8
956 >                transfer_size = SIZE_BYTE;
957 >        case 0x03: // ADD r32, r/m32
958 >                instruction_type = i_ADD;
959 >                goto do_transfer_load;
960          case 0x8a: // MOV r8, r/m8
961                  transfer_size = SIZE_BYTE;
962          case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
963 <                switch (eip[1] & 0xc0) {
963 >          do_transfer_load:
964 >                switch (eip[op_len] & 0xc0) {
965                  case 0x80:
966 <                        reg = (eip[1] >> 3) & 7;
967 <                        transfer_type = TYPE_LOAD;
966 >                        reg = (eip[op_len] >> 3) & 7;
967 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
968                          break;
969                  case 0x40:
970 <                        reg = (eip[1] >> 3) & 7;
971 <                        transfer_type = TYPE_LOAD;
970 >                        reg = (eip[op_len] >> 3) & 7;
971 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
972                          break;
973                  case 0x00:
974 <                        reg = (eip[1] >> 3) & 7;
975 <                        transfer_type = TYPE_LOAD;
974 >                        reg = (eip[op_len] >> 3) & 7;
975 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
976                          break;
977                  }
978 <                len += 2 + ix86_step_over_modrm(eip + 1);
978 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
979                  break;
980 +        case 0x00: // ADD r/m8, r8
981 +                transfer_size = SIZE_BYTE;
982 +        case 0x01: // ADD r/m32, r32
983 +                instruction_type = i_ADD;
984 +                goto do_transfer_store;
985          case 0x88: // MOV r/m8, r8
986                  transfer_size = SIZE_BYTE;
987          case 0x89: // MOV r/m32, r32 (or 16-bit operation)
988 <                switch (eip[1] & 0xc0) {
988 >          do_transfer_store:
989 >                switch (eip[op_len] & 0xc0) {
990                  case 0x80:
991 <                        reg = (eip[1] >> 3) & 7;
992 <                        transfer_type = TYPE_STORE;
991 >                        reg = (eip[op_len] >> 3) & 7;
992 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
993                          break;
994                  case 0x40:
995 <                        reg = (eip[1] >> 3) & 7;
996 <                        transfer_type = TYPE_STORE;
995 >                        reg = (eip[op_len] >> 3) & 7;
996 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
997                          break;
998                  case 0x00:
999 <                        reg = (eip[1] >> 3) & 7;
1000 <                        transfer_type = TYPE_STORE;
999 >                        reg = (eip[op_len] >> 3) & 7;
1000 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
1001                          break;
1002                  }
1003 <                len += 2 + ix86_step_over_modrm(eip + 1);
1003 >                len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
1004                  break;
1005          }
1006 +        if (target_size == SIZE_UNKNOWN)
1007 +                target_size = transfer_size;
1008  
1009 <        if (transfer_type == TYPE_UNKNOWN) {
1009 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1010                  // Unknown machine code, let it crash. Then patch the decoder
1011                  return false;
1012          }
1013  
1014 <        if (transfer_type == TYPE_LOAD && reg != -1) {
1015 <                static const int x86_reg_map[8] = {
1014 > #if defined(__x86_64__)
1015 >        if (rex.R)
1016 >                reg += 8;
1017 > #endif
1018 >
1019 >        if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
1020 >                static const int x86_reg_map[] = {
1021                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
1022 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
1022 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
1023 > #if defined(__x86_64__)
1024 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
1025 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
1026 > #endif
1027                  };
1028                  
1029 <                if (reg < 0 || reg >= 8)
1029 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
1030                          return false;
1031  
1032 +                // Set 0 to the relevant register part
1033 +                // NOTE: this is only valid for MOV alike instructions
1034                  int rloc = x86_reg_map[reg];
1035 <                switch (transfer_size) {
1035 >                switch (target_size) {
1036                  case SIZE_BYTE:
1037 <                        regs[rloc] = (regs[rloc] & ~0xff);
1037 >                        if (has_rex || reg < 4)
1038 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
1039 >                        else {
1040 >                                rloc = x86_reg_map[reg - 4];
1041 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
1042 >                        }
1043                          break;
1044                  case SIZE_WORD:
1045 <                        regs[rloc] = (regs[rloc] & ~0xffff);
1045 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
1046                          break;
1047                  case SIZE_LONG:
1048 +                case SIZE_QUAD: // zero-extension
1049                          regs[rloc] = 0;
1050                          break;
1051                  }
1052          }
1053  
1054   #if DEBUG
1055 <        printf("%08x: %s %s access", regs[X86_REG_EIP],
1056 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1057 <                   transfer_type == TYPE_LOAD ? "read" : "write");
1055 >        printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
1056 >                   transfer_size == SIZE_BYTE ? "byte" :
1057 >                   transfer_size == SIZE_WORD ? "word" :
1058 >                   transfer_size == SIZE_LONG ? "long" :
1059 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1060 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1061          
1062          if (reg != -1) {
1063 <                static const char * x86_reg_str_map[8] = {
1064 <                        "eax", "ecx", "edx", "ebx",
1065 <                        "esp", "ebp", "esi", "edi"
1063 >                static const char * x86_byte_reg_str_map[] = {
1064 >                        "al",   "cl",   "dl",   "bl",
1065 >                        "spl",  "bpl",  "sil",  "dil",
1066 >                        "r8b",  "r9b",  "r10b", "r11b",
1067 >                        "r12b", "r13b", "r14b", "r15b",
1068 >                        "ah",   "ch",   "dh",   "bh",
1069 >                };
1070 >                static const char * x86_word_reg_str_map[] = {
1071 >                        "ax",   "cx",   "dx",   "bx",
1072 >                        "sp",   "bp",   "si",   "di",
1073 >                        "r8w",  "r9w",  "r10w", "r11w",
1074 >                        "r12w", "r13w", "r14w", "r15w",
1075                  };
1076 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1076 >                static const char *x86_long_reg_str_map[] = {
1077 >                        "eax",  "ecx",  "edx",  "ebx",
1078 >                        "esp",  "ebp",  "esi",  "edi",
1079 >                        "r8d",  "r9d",  "r10d", "r11d",
1080 >                        "r12d", "r13d", "r14d", "r15d",
1081 >                };
1082 >                static const char *x86_quad_reg_str_map[] = {
1083 >                        "rax", "rcx", "rdx", "rbx",
1084 >                        "rsp", "rbp", "rsi", "rdi",
1085 >                        "r8",  "r9",  "r10", "r11",
1086 >                        "r12", "r13", "r14", "r15",
1087 >                };
1088 >                const char * reg_str = NULL;
1089 >                switch (target_size) {
1090 >                case SIZE_BYTE:
1091 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1092 >                        break;
1093 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1094 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1095 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1096 >                }
1097 >                if (reg_str)
1098 >                        printf(" %s register %%%s",
1099 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1100 >                                   reg_str);
1101          }
1102          printf(", %d bytes instruction\n", len);
1103   #endif
# Line 571 | Line 1109 | static bool ix86_skip_instruction(unsign
1109  
1110   // Decode and skip PPC instruction
1111   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1112 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1112 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1113   {
1114          instruction_t instr;
1115          powerpc_decode_instruction(&instr, *nip_p, regs);
1116          
1117 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1117 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1118                  // Unknown machine code, let it crash. Then patch the decoder
1119                  return false;
1120          }
1121  
1122   #if DEBUG
1123          printf("%08x: %s %s access", *nip_p,
1124 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1125 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1124 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1125 >                   instr.transfer_size == SIZE_WORD ? "word" :
1126 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1127 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1128          
1129          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1130                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1131 <        if (instr.transfer_type == TYPE_LOAD)
1131 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1132                  printf(" r%d (rd = 0)\n", instr.rd);
1133   #endif
1134          
1135          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1136                  regs[instr.ra] = instr.addr;
1137 <        if (instr.transfer_type == TYPE_LOAD)
1137 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1138                  regs[instr.rd] = 0;
1139          
1140          *nip_p += 4;
1141          return true;
1142   }
1143   #endif
1144 +
1145 + // Decode and skip MIPS instruction
1146 + #if (defined(mips) || defined(__mips))
1147 + enum {
1148 + #if (defined(sgi) || defined(__sgi))
1149 +  MIPS_REG_EPC = 35,
1150   #endif
1151 + };
1152 + static bool mips_skip_instruction(greg_t * regs)
1153 + {
1154 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1155 +
1156 +  if (epc == 0)
1157 +        return false;
1158 +
1159 + #if DEBUG
1160 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1161 + #endif
1162 +
1163 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1164 +  transfer_size_t transfer_size = SIZE_LONG;
1165 +  int direction = 0;
1166 +
1167 +  const unsigned int opcode = epc[0];
1168 +  switch (opcode >> 26) {
1169 +  case 32: // Load Byte
1170 +  case 36: // Load Byte Unsigned
1171 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1172 +        transfer_size = SIZE_BYTE;
1173 +        break;
1174 +  case 33: // Load Halfword
1175 +  case 37: // Load Halfword Unsigned
1176 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1177 +        transfer_size = SIZE_WORD;
1178 +        break;
1179 +  case 35: // Load Word
1180 +  case 39: // Load Word Unsigned
1181 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1182 +        transfer_size = SIZE_LONG;
1183 +        break;
1184 +  case 34: // Load Word Left
1185 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1186 +        transfer_size = SIZE_LONG;
1187 +        direction = -1;
1188 +        break;
1189 +  case 38: // Load Word Right
1190 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1191 +        transfer_size = SIZE_LONG;
1192 +        direction = 1;
1193 +        break;
1194 +  case 55: // Load Doubleword
1195 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1196 +        transfer_size = SIZE_QUAD;
1197 +        break;
1198 +  case 26: // Load Doubleword Left
1199 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1200 +        transfer_size = SIZE_QUAD;
1201 +        direction = -1;
1202 +        break;
1203 +  case 27: // Load Doubleword Right
1204 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1205 +        transfer_size = SIZE_QUAD;
1206 +        direction = 1;
1207 +        break;
1208 +  case 40: // Store Byte
1209 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1210 +        transfer_size = SIZE_BYTE;
1211 +        break;
1212 +  case 41: // Store Halfword
1213 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1214 +        transfer_size = SIZE_WORD;
1215 +        break;
1216 +  case 43: // Store Word
1217 +  case 42: // Store Word Left
1218 +  case 46: // Store Word Right
1219 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1220 +        transfer_size = SIZE_LONG;
1221 +        break;
1222 +  case 63: // Store Doubleword
1223 +  case 44: // Store Doubleword Left
1224 +  case 45: // Store Doubleword Right
1225 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1226 +        transfer_size = SIZE_QUAD;
1227 +        break;
1228 +  /* Misc instructions unlikely to be used within CPU emulators */
1229 +  case 48: // Load Linked Word
1230 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1231 +        transfer_size = SIZE_LONG;
1232 +        break;
1233 +  case 52: // Load Linked Doubleword
1234 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1235 +        transfer_size = SIZE_QUAD;
1236 +        break;
1237 +  case 56: // Store Conditional Word
1238 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1239 +        transfer_size = SIZE_LONG;
1240 +        break;
1241 +  case 60: // Store Conditional Doubleword
1242 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1243 +        transfer_size = SIZE_QUAD;
1244 +        break;
1245 +  }
1246 +
1247 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1248 +        // Unknown machine code, let it crash. Then patch the decoder
1249 +        return false;
1250 +  }
1251 +
1252 +  // Zero target register in case of a load operation
1253 +  const int reg = (opcode >> 16) & 0x1f;
1254 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1255 +        if (direction == 0)
1256 +          regs[reg] = 0;
1257 +        else {
1258 +          // FIXME: untested code
1259 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1260 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1261 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1262 +          unsigned long value;
1263 +          if (direction > 0) {
1264 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1265 +                value = regs[reg] & rmask;
1266 +          }
1267 +          else {
1268 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1269 +                value = regs[reg] & lmask;
1270 +          }
1271 +          // restore most significant bits
1272 +          if (transfer_size == SIZE_LONG)
1273 +                value = (signed long)(signed int)value;
1274 +          regs[reg] = value;
1275 +        }
1276 +  }
1277 +
1278 + #if DEBUG
1279 + #if (defined(_ABIN32) || defined(_ABI64))
1280 +  static const char * mips_gpr_names[32] = {
1281 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1282 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1283 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1284 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1285 +  };
1286 + #else
1287 +  static const char * mips_gpr_names[32] = {
1288 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1289 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1290 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1291 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1292 +  };
1293 + #endif
1294 +  printf("%s %s register %s\n",
1295 +                 transfer_size == SIZE_BYTE ? "byte" :
1296 +                 transfer_size == SIZE_WORD ? "word" :
1297 +                 transfer_size == SIZE_LONG ? "long" :
1298 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1299 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1300 +                 mips_gpr_names[reg]);
1301 + #endif
1302 +
1303 +  regs[MIPS_REG_EPC] += 4;
1304 +  return true;
1305 + }
1306 + #endif
1307 +
1308 + // Decode and skip SPARC instruction
1309 + #if (defined(sparc) || defined(__sparc__))
1310 + enum {
1311 + #if (defined(__sun__))
1312 +  SPARC_REG_G1 = REG_G1,
1313 +  SPARC_REG_O0 = REG_O0,
1314 +  SPARC_REG_PC = REG_PC,
1315 +  SPARC_REG_nPC = REG_nPC
1316 + #endif
1317 + };
1318 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1319 + {
1320 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1321 +
1322 +  if (pc == 0)
1323 +        return false;
1324 +
1325 + #if DEBUG
1326 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1327 + #endif
1328 +
1329 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1330 +  transfer_size_t transfer_size = SIZE_LONG;
1331 +  bool register_pair = false;
1332 +
1333 +  const unsigned int opcode = pc[0];
1334 +  if ((opcode >> 30) != 3)
1335 +        return false;
1336 +  switch ((opcode >> 19) & 0x3f) {
1337 +  case 9: // Load Signed Byte
1338 +  case 1: // Load Unsigned Byte
1339 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1340 +        transfer_size = SIZE_BYTE;
1341 +        break;
1342 +  case 10:// Load Signed Halfword
1343 +  case 2: // Load Unsigned Word
1344 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1345 +        transfer_size = SIZE_WORD;
1346 +        break;
1347 +  case 8: // Load Word
1348 +  case 0: // Load Unsigned Word
1349 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1350 +        transfer_size = SIZE_LONG;
1351 +        break;
1352 +  case 11:// Load Extended Word
1353 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1354 +        transfer_size = SIZE_QUAD;
1355 +        break;
1356 +  case 3: // Load Doubleword
1357 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1358 +        transfer_size = SIZE_LONG;
1359 +        register_pair = true;
1360 +        break;
1361 +  case 5: // Store Byte
1362 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1363 +        transfer_size = SIZE_BYTE;
1364 +        break;
1365 +  case 6: // Store Halfword
1366 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1367 +        transfer_size = SIZE_WORD;
1368 +        break;
1369 +  case 4: // Store Word
1370 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1371 +        transfer_size = SIZE_LONG;
1372 +        break;
1373 +  case 14:// Store Extended Word
1374 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1375 +        transfer_size = SIZE_QUAD;
1376 +        break;
1377 +  case 7: // Store Doubleword
1378 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1379 +        transfer_size = SIZE_LONG;
1380 +        register_pair = true;
1381 +        break;
1382 +  }
1383 +
1384 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1385 +        // Unknown machine code, let it crash. Then patch the decoder
1386 +        return false;
1387 +  }
1388 +
1389 +  const int reg = (opcode >> 25) & 0x1f;
1390 +
1391 + #if DEBUG
1392 +  static const char * reg_names[] = {
1393 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1394 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1395 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1396 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1397 +  };
1398 +  printf("%s %s register %s\n",
1399 +                 transfer_size == SIZE_BYTE ? "byte" :
1400 +                 transfer_size == SIZE_WORD ? "word" :
1401 +                 transfer_size == SIZE_LONG ? "long" :
1402 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1403 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1404 +                 reg_names[reg]);
1405 + #endif
1406 +
1407 +  // Zero target register in case of a load operation
1408 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1409 +        // FIXME: code to handle local & input registers is not tested
1410 +        if (reg >= 1 && reg < 8) {
1411 +          // global registers
1412 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1413 +        }
1414 +        else if (reg >= 8 && reg < 16) {
1415 +          // output registers
1416 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1417 +        }
1418 +        else if (reg >= 16 && reg < 24) {
1419 +          // local registers (in register windows)
1420 +          if (gwins)
1421 +                gwins->wbuf->rw_local[reg - 16] = 0;
1422 +          else
1423 +                rwin->rw_local[reg - 16] = 0;
1424 +        }
1425 +        else {
1426 +          // input registers (in register windows)
1427 +          if (gwins)
1428 +                gwins->wbuf->rw_in[reg - 24] = 0;
1429 +          else
1430 +                rwin->rw_in[reg - 24] = 0;
1431 +        }
1432 +  }
1433 +
1434 +  regs[SPARC_REG_PC] += 4;
1435 +  regs[SPARC_REG_nPC] += 4;
1436 +  return true;
1437 + }
1438 + #endif
1439 + #endif
1440 +
1441 + // Decode and skip ARM instruction
1442 + #if (defined(arm) || defined(__arm__))
1443 + enum {
1444 + #if (defined(__linux__))
1445 +  ARM_REG_PC = 15,
1446 +  ARM_REG_CPSR = 16
1447 + #endif
1448 + };
1449 + static bool arm_skip_instruction(unsigned long * regs)
1450 + {
1451 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1452 +
1453 +  if (pc == 0)
1454 +        return false;
1455 +
1456 + #if DEBUG
1457 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1458 + #endif
1459 +
1460 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1461 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1462 +  enum { op_sdt = 1, op_sdth = 2 };
1463 +  int op = 0;
1464 +
1465 +  // Handle load/store instructions only
1466 +  const unsigned int opcode = pc[0];
1467 +  switch ((opcode >> 25) & 7) {
1468 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1469 +        op = op_sdth;
1470 +        // Determine transfer size (S/H bits)
1471 +        switch ((opcode >> 5) & 3) {
1472 +        case 0: // SWP instruction
1473 +          break;
1474 +        case 1: // Unsigned halfwords
1475 +        case 3: // Signed halfwords
1476 +          transfer_size = SIZE_WORD;
1477 +          break;
1478 +        case 2: // Signed byte
1479 +          transfer_size = SIZE_BYTE;
1480 +          break;
1481 +        }
1482 +        break;
1483 +  case 2:
1484 +  case 3: // Single Data Transfer (LDR, STR)
1485 +        op = op_sdt;
1486 +        // Determine transfer size (B bit)
1487 +        if (((opcode >> 22) & 1) == 1)
1488 +          transfer_size = SIZE_BYTE;
1489 +        else
1490 +          transfer_size = SIZE_LONG;
1491 +        break;
1492 +  default:
1493 +        // FIXME: support load/store mutliple?
1494 +        return false;
1495 +  }
1496 +
1497 +  // Check for invalid transfer size (SWP instruction?)
1498 +  if (transfer_size == SIZE_UNKNOWN)
1499 +        return false;
1500 +
1501 +  // Determine transfer type (L bit)
1502 +  if (((opcode >> 20) & 1) == 1)
1503 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1504 +  else
1505 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1506 +
1507 +  // Compute offset
1508 +  int offset;
1509 +  if (((opcode >> 25) & 1) == 0) {
1510 +        if (op == op_sdt)
1511 +          offset = opcode & 0xfff;
1512 +        else if (op == op_sdth) {
1513 +          int rm = opcode & 0xf;
1514 +          if (((opcode >> 22) & 1) == 0) {
1515 +                // register offset
1516 +                offset = regs[rm];
1517 +          }
1518 +          else {
1519 +                // immediate offset
1520 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1521 +          }
1522 +        }
1523 +  }
1524 +  else {
1525 +        const int rm = opcode & 0xf;
1526 +        const int sh = (opcode >> 7) & 0x1f;
1527 +        if (((opcode >> 4) & 1) == 1) {
1528 +          // we expect only legal load/store instructions
1529 +          printf("FATAL: invalid shift operand\n");
1530 +          return false;
1531 +        }
1532 +        const unsigned int v = regs[rm];
1533 +        switch ((opcode >> 5) & 3) {
1534 +        case 0: // logical shift left
1535 +          offset = sh ? v << sh : v;
1536 +          break;
1537 +        case 1: // logical shift right
1538 +          offset = sh ? v >> sh : 0;
1539 +          break;
1540 +        case 2: // arithmetic shift right
1541 +          if (sh)
1542 +                offset = ((signed int)v) >> sh;
1543 +          else
1544 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1545 +          break;
1546 +        case 3: // rotate right
1547 +          if (sh)
1548 +                offset = (v >> sh) | (v << (32 - sh));
1549 +          else
1550 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1551 +          break;
1552 +        }
1553 +  }
1554 +  if (((opcode >> 23) & 1) == 0)
1555 +        offset = -offset;
1556 +
1557 +  int rd = (opcode >> 12) & 0xf;
1558 +  int rn = (opcode >> 16) & 0xf;
1559 + #if DEBUG
1560 +  static const char * reg_names[] = {
1561 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1562 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1563 +  };
1564 +  printf("%s %s register %s\n",
1565 +                 transfer_size == SIZE_BYTE ? "byte" :
1566 +                 transfer_size == SIZE_WORD ? "word" :
1567 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1568 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1569 +                 reg_names[rd]);
1570 + #endif
1571 +
1572 +  unsigned int base = regs[rn];
1573 +  if (((opcode >> 24) & 1) == 1)
1574 +        base += offset;
1575 +
1576 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1577 +        regs[rd] = 0;
1578 +
1579 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1580 +        regs[rn] += offset;
1581 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1582 +        regs[rn] = base;
1583 +
1584 +  regs[ARM_REG_PC] += 4;
1585 +  return true;
1586 + }
1587 + #endif
1588 +
1589  
1590   // Fallbacks
1591   #ifndef SIGSEGV_FAULT_INSTRUCTION
1592   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1593   #endif
1594 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1595 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1596 + #endif
1597 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1598 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1599 + #endif
1600  
1601   // SIGSEGV recovery supported ?
1602   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 618 | Line 1608 | static bool powerpc_skip_instruction(uns
1608   *  SIGSEGV global handler
1609   */
1610  
1611 < #ifdef HAVE_SIGSEGV_RECOVERY
1612 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1611 > // This function handles the badaccess to memory.
1612 > // It is called from the signal handler or the exception handler.
1613 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1614   {
1615 + #ifdef HAVE_MACH_EXCEPTIONS
1616 +        // We must match the initial count when writing back the CPU state registers
1617 +        kern_return_t krc;
1618 +        mach_msg_type_number_t count;
1619 +
1620 +        count = SIGSEGV_THREAD_STATE_COUNT;
1621 +        krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count);
1622 +        MACH_CHECK_ERROR (thread_get_state, krc);
1623 + #endif
1624 +
1625          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1626          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
626        bool fault_recovered = false;
1627          
1628          // Call user's handler and reinstall the global handler, if required
1629 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1630 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1631 <                sigsegv_do_install_handler(sig);
1629 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1630 >        case SIGSEGV_RETURN_SUCCESS:
1631 >                return true;
1632 >
1633 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1634 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1635 >                // Call the instruction skipper with the register file
1636 >                // available
1637 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1638 > #ifdef HAVE_MACH_EXCEPTIONS
1639 >                        // Unlike UNIX signals where the thread state
1640 >                        // is modified off of the stack, in Mach we
1641 >                        // need to actually call thread_set_state to
1642 >                        // have the register values updated.
1643 >                        krc = thread_set_state(thread,
1644 >                                                                   SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state,
1645 >                                                                   count);
1646 >                        MACH_CHECK_ERROR (thread_set_state, krc);
1647 > #endif
1648 >                        return true;
1649 >                }
1650 >                break;
1651   #endif
1652 <                fault_recovered = true;
1652 >        case SIGSEGV_RETURN_FAILURE:
1653 >                // We can't do anything with the fault_address, dump state?
1654 >                if (sigsegv_state_dumper != 0)
1655 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1656 >                break;
1657          }
1658 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1659 <        else if (sigsegv_ignore_fault) {
1660 <                // Call the instruction skipper with the register file available
1661 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1662 <                        fault_recovered = true;
1658 >
1659 >        return false;
1660 > }
1661 >
1662 >
1663 > /*
1664 > * There are two mechanisms for handling a bad memory access,
1665 > * Mach exceptions and UNIX signals. The implementation specific
1666 > * code appears below. Its reponsibility is to call handle_badaccess
1667 > * which is the routine that handles the fault in an implementation
1668 > * agnostic manner. The implementation specific code below is then
1669 > * reponsible for checking whether handle_badaccess was able
1670 > * to handle the memory access error and perform any implementation
1671 > * specific tasks necessary afterwards.
1672 > */
1673 >
1674 > #ifdef HAVE_MACH_EXCEPTIONS
1675 > /*
1676 > * We need to forward all exceptions that we do not handle.
1677 > * This is important, there are many exceptions that may be
1678 > * handled by other exception handlers. For example debuggers
1679 > * use exceptions and the exception hander is in another
1680 > * process in such a case. (Timothy J. Wood states in his
1681 > * message to the list that he based this code on that from
1682 > * gdb for Darwin.)
1683 > */
1684 > static inline kern_return_t
1685 > forward_exception(mach_port_t thread_port,
1686 >                                  mach_port_t task_port,
1687 >                                  exception_type_t exception_type,
1688 >                                  exception_data_t exception_data,
1689 >                                  mach_msg_type_number_t data_count,
1690 >                                  ExceptionPorts *oldExceptionPorts)
1691 > {
1692 >        kern_return_t kret;
1693 >        unsigned int portIndex;
1694 >        mach_port_t port;
1695 >        exception_behavior_t behavior;
1696 >        thread_state_flavor_t flavor;
1697 >        thread_state_data_t thread_state;
1698 >        mach_msg_type_number_t thread_state_count;
1699 >
1700 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1701 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1702 >                        // This handler wants the exception
1703 >                        break;
1704 >                }
1705 >        }
1706 >
1707 >        if (portIndex >= oldExceptionPorts->maskCount) {
1708 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1709 >                return KERN_FAILURE;
1710          }
1711 +
1712 +        port = oldExceptionPorts->handlers[portIndex];
1713 +        behavior = oldExceptionPorts->behaviors[portIndex];
1714 +        flavor = oldExceptionPorts->flavors[portIndex];
1715 +
1716 +        if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
1717 +                fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
1718 +                return KERN_FAILURE;
1719 +        }
1720 +
1721 +        /*
1722 +         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1723 +         */
1724 +
1725 +        if (behavior != EXCEPTION_DEFAULT) {
1726 +                thread_state_count = THREAD_STATE_MAX;
1727 +                kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
1728 +                                                                 &thread_state_count);
1729 +                MACH_CHECK_ERROR (thread_get_state, kret);
1730 +        }
1731 +
1732 +        switch (behavior) {
1733 +        case EXCEPTION_DEFAULT:
1734 +          // fprintf(stderr, "forwarding to exception_raise\n");
1735 +          kret = exception_raise(port, thread_port, task_port, exception_type,
1736 +                                                         exception_data, data_count);
1737 +          MACH_CHECK_ERROR (exception_raise, kret);
1738 +          break;
1739 +        case EXCEPTION_STATE:
1740 +          // fprintf(stderr, "forwarding to exception_raise_state\n");
1741 +          kret = exception_raise_state(port, exception_type, exception_data,
1742 +                                                                   data_count, &flavor,
1743 +                                                                   (natural_t *)&thread_state, thread_state_count,
1744 +                                                                   (natural_t *)&thread_state, &thread_state_count);
1745 +          MACH_CHECK_ERROR (exception_raise_state, kret);
1746 +          break;
1747 +        case EXCEPTION_STATE_IDENTITY:
1748 +          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1749 +          kret = exception_raise_state_identity(port, thread_port, task_port,
1750 +                                                                                        exception_type, exception_data,
1751 +                                                                                        data_count, &flavor,
1752 +                                                                                        (natural_t *)&thread_state, thread_state_count,
1753 +                                                                                        (natural_t *)&thread_state, &thread_state_count);
1754 +          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1755 +          break;
1756 +        default:
1757 +          fprintf(stderr, "forward_exception got unknown behavior\n");
1758 +          kret = KERN_FAILURE;
1759 +          break;
1760 +        }
1761 +
1762 +        if (behavior != EXCEPTION_DEFAULT) {
1763 +                kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
1764 +                                                                 thread_state_count);
1765 +                MACH_CHECK_ERROR (thread_set_state, kret);
1766 +        }
1767 +
1768 +        return kret;
1769 + }
1770 +
1771 + /*
1772 + * This is the code that actually handles the exception.
1773 + * It is called by exc_server. For Darwin 5 Apple changed
1774 + * this a bit from how this family of functions worked in
1775 + * Mach. If you are familiar with that it is a little
1776 + * different. The main variation that concerns us here is
1777 + * that code is an array of exception specific codes and
1778 + * codeCount is a count of the number of codes in the code
1779 + * array. In typical Mach all exceptions have a code
1780 + * and sub-code. It happens to be the case that for a
1781 + * EXC_BAD_ACCESS exception the first entry is the type of
1782 + * bad access that occurred and the second entry is the
1783 + * faulting address so these entries correspond exactly to
1784 + * how the code and sub-code are used on Mach.
1785 + *
1786 + * This is a MIG interface. No code in Basilisk II should
1787 + * call this directley. This has to have external C
1788 + * linkage because that is what exc_server expects.
1789 + */
1790 + kern_return_t
1791 + catch_exception_raise(mach_port_t exception_port,
1792 +                                          mach_port_t thread,
1793 +                                          mach_port_t task,
1794 +                                          exception_type_t exception,
1795 +                                          exception_data_t code,
1796 +                                          mach_msg_type_number_t codeCount)
1797 + {
1798 +        SIGSEGV_THREAD_STATE_TYPE state;
1799 +        kern_return_t krc;
1800 +
1801 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1802 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1803 +                        return KERN_SUCCESS;
1804 +        }
1805 +
1806 +        // In Mach we do not need to remove the exception handler.
1807 +        // If we forward the exception, eventually some exception handler
1808 +        // will take care of this exception.
1809 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1810 +
1811 +        return krc;
1812 + }
1813 + #endif
1814 +
1815 + #ifdef HAVE_SIGSEGV_RECOVERY
1816 + // Handle bad memory accesses with signal handler
1817 + static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1818 + {
1819 +        // Call handler and reinstall the global handler, if required
1820 +        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1821 + #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1822 +                sigsegv_do_install_handler(sig);
1823   #endif
1824 +                return;
1825 +        }
1826  
1827 <        if (!fault_recovered) {
644 <                // FAIL: reinstall default handler for "safe" crash
1827 >        // Failure: reinstall default handler for "safe" crash
1828   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1829 <                SIGSEGV_ALL_SIGNALS
1829 >        SIGSEGV_ALL_SIGNALS
1830   #undef FAULT_HANDLER
648                
649                // We can't do anything with the fault_address, dump state?
650                if (sigsegv_state_dumper != 0)
651                        sigsegv_state_dumper(fault_address, fault_instruction);
652        }
1831   }
1832   #endif
1833  
# Line 663 | Line 1841 | static bool sigsegv_do_install_handler(i
1841   {
1842          // Setup SIGSEGV handler to process writes to frame buffer
1843   #ifdef HAVE_SIGACTION
1844 <        struct sigaction vosf_sa;
1845 <        sigemptyset(&vosf_sa.sa_mask);
1846 <        vosf_sa.sa_sigaction = sigsegv_handler;
1847 <        vosf_sa.sa_flags = SA_SIGINFO;
1848 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1844 >        struct sigaction sigsegv_sa;
1845 >        sigemptyset(&sigsegv_sa.sa_mask);
1846 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1847 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1848 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1849   #else
1850          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1851   #endif
# Line 679 | Line 1857 | static bool sigsegv_do_install_handler(i
1857   {
1858          // Setup SIGSEGV handler to process writes to frame buffer
1859   #ifdef HAVE_SIGACTION
1860 <        struct sigaction vosf_sa;
1861 <        sigemptyset(&vosf_sa.sa_mask);
1862 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1860 >        struct sigaction sigsegv_sa;
1861 >        sigemptyset(&sigsegv_sa.sa_mask);
1862 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1863 >        sigsegv_sa.sa_flags = 0;
1864   #if !EMULATED_68K && defined(__NetBSD__)
1865 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1866 <        vosf_sa.sa_flags = SA_ONSTACK;
688 < #else
689 <        vosf_sa.sa_flags = 0;
1865 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1866 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1867   #endif
1868 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1868 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1869   #else
1870          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1871   #endif
1872   }
1873   #endif
1874  
1875 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1875 > #if defined(HAVE_MACH_EXCEPTIONS)
1876 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1877   {
1878 < #ifdef HAVE_SIGSEGV_RECOVERY
1878 >        /*
1879 >         * Except for the exception port functions, this should be
1880 >         * pretty much stock Mach. If later you choose to support
1881 >         * other Mach's besides Darwin, just check for __MACH__
1882 >         * here and __APPLE__ where the actual differences are.
1883 >         */
1884 > #if defined(__APPLE__) && defined(__MACH__)
1885 >        if (sigsegv_fault_handler != NULL) {
1886 >                sigsegv_fault_handler = handler;
1887 >                return true;
1888 >        }
1889 >
1890 >        kern_return_t krc;
1891 >
1892 >        // create the the exception port
1893 >        krc = mach_port_allocate(mach_task_self(),
1894 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1895 >        if (krc != KERN_SUCCESS) {
1896 >                mach_error("mach_port_allocate", krc);
1897 >                return false;
1898 >        }
1899 >
1900 >        // add a port send right
1901 >        krc = mach_port_insert_right(mach_task_self(),
1902 >                              _exceptionPort, _exceptionPort,
1903 >                              MACH_MSG_TYPE_MAKE_SEND);
1904 >        if (krc != KERN_SUCCESS) {
1905 >                mach_error("mach_port_insert_right", krc);
1906 >                return false;
1907 >        }
1908 >
1909 >        // get the old exception ports
1910 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1911 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1912 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1913 >        if (krc != KERN_SUCCESS) {
1914 >                mach_error("thread_get_exception_ports", krc);
1915 >                return false;
1916 >        }
1917 >
1918 >        // set the new exception port
1919 >        //
1920 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1921 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1922 >        // message, but it turns out that in the common case this is not
1923 >        // neccessary. If we need it we can later ask for it from the
1924 >        // suspended thread.
1925 >        //
1926 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1927 >        // counter in the thread state.  The comments in the header file
1928 >        // seem to imply that you can count on the GPR's on an exception
1929 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1930 >        // you have to ask for all of the GPR's anyway just to get the
1931 >        // program counter. In any case because of update effective
1932 >        // address from immediate and update address from effective
1933 >        // addresses of ra and rb modes (as good an name as any for these
1934 >        // addressing modes) used in PPC instructions, you will need the
1935 >        // GPR state anyway.
1936 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1937 >                                EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR);
1938 >        if (krc != KERN_SUCCESS) {
1939 >                mach_error("thread_set_exception_ports", krc);
1940 >                return false;
1941 >        }
1942 >
1943 >        // create the exception handler thread
1944 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1945 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1946 >                return false;
1947 >        }
1948 >
1949 >        // do not care about the exception thread any longer, let is run standalone
1950 >        (void)pthread_detach(exc_thread);
1951 >
1952 >        sigsegv_fault_handler = handler;
1953 >        return true;
1954 > #else
1955 >        return false;
1956 > #endif
1957 > }
1958 > #endif
1959 >
1960 > #ifdef HAVE_WIN32_EXCEPTIONS
1961 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1962 > {
1963 >        if (sigsegv_fault_handler != NULL
1964 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1965 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1966 >                && handle_badaccess(ExceptionInfo))
1967 >                return EXCEPTION_CONTINUE_EXECUTION;
1968 >
1969 >        return EXCEPTION_CONTINUE_SEARCH;
1970 > }
1971 >
1972 > #if defined __CYGWIN__ && defined __i386__
1973 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1974 >   installs a global exception handler.  We have to dig deep in order to install
1975 >   our main_exception_filter.  */
1976 >
1977 > /* Data structures for the current thread's exception handler chain.
1978 >   On the x86 Windows uses register fs, offset 0 to point to the current
1979 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1980 >
1981 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1982 >
1983 > struct exception_list {
1984 >    struct exception_list *prev;
1985 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1986 > };
1987 > typedef struct exception_list exception_list;
1988 >
1989 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1990 >
1991 > __asm__ (".equ __except_list,0");
1992 >
1993 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1994 >
1995 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1996 > static exception_list *
1997 > debug_get_except_list ()
1998 > {
1999 >  return _except_list;
2000 > }
2001 >
2002 > /* Cygwin's original exception handler.  */
2003 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
2004 >
2005 > /* Our exception handler.  */
2006 > static int
2007 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
2008 > {
2009 >  EXCEPTION_POINTERS ExceptionInfo;
2010 >  ExceptionInfo.ExceptionRecord = exception;
2011 >  ExceptionInfo.ContextRecord = context;
2012 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
2013 >    return cygwin_exception_handler (exception, frame, context, dispatch);
2014 >  else
2015 >    return 0;
2016 > }
2017 >
2018 > static void
2019 > do_install_main_exception_filter ()
2020 > {
2021 >  /* We cannot insert any handler into the chain, because such handlers
2022 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
2023 >     global exception handler.  */
2024 >  cygwin_exception_handler = _except_list->handler;
2025 >  _except_list->handler = libsigsegv_exception_handler;
2026 > }
2027 >
2028 > #else
2029 >
2030 > static void
2031 > do_install_main_exception_filter ()
2032 > {
2033 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
2034 > }
2035 > #endif
2036 >
2037 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
2038 > {
2039 >        static bool main_exception_filter_installed = false;
2040 >        if (!main_exception_filter_installed) {
2041 >                do_install_main_exception_filter();
2042 >                main_exception_filter_installed = true;
2043 >        }
2044          sigsegv_fault_handler = handler;
2045 +        return true;
2046 + }
2047 + #endif
2048 +
2049 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
2050 + {
2051 + #if defined(HAVE_SIGSEGV_RECOVERY)
2052          bool success = true;
2053   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
2054          SIGSEGV_ALL_SIGNALS
2055   #undef FAULT_HANDLER
2056 +        if (success)
2057 +            sigsegv_fault_handler = handler;
2058          return success;
2059 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
2060 +        return sigsegv_do_install_handler(handler);
2061   #else
2062          // FAIL: no siginfo_t nor sigcontext subterfuge is available
2063          return false;
# Line 717 | Line 2071 | bool sigsegv_install_handler(sigsegv_fau
2071  
2072   void sigsegv_deinstall_handler(void)
2073   {
2074 +  // We do nothing for Mach exceptions, the thread would need to be
2075 +  // suspended if not already so, and we might mess with other
2076 +  // exception handlers that came after we registered ours. There is
2077 +  // no need to remove the exception handler, in fact this function is
2078 +  // not called anywhere in Basilisk II.
2079   #ifdef HAVE_SIGSEGV_RECOVERY
2080          sigsegv_fault_handler = 0;
2081   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2082          SIGSEGV_ALL_SIGNALS
2083   #undef FAULT_HANDLER
2084   #endif
2085 < }
2086 <
2087 <
729 < /*
730 < *  SIGSEGV ignore state modifier
731 < */
732 <
733 < void sigsegv_set_ignore_state(bool ignore_fault)
734 < {
735 <        sigsegv_ignore_fault = ignore_fault;
2085 > #ifdef HAVE_WIN32_EXCEPTIONS
2086 >        sigsegv_fault_handler = NULL;
2087 > #endif
2088   }
2089  
2090  
# Line 754 | Line 2106 | void sigsegv_set_dump_state(sigsegv_stat
2106   #include <stdio.h>
2107   #include <stdlib.h>
2108   #include <fcntl.h>
2109 + #ifdef HAVE_SYS_MMAN_H
2110   #include <sys/mman.h>
2111 + #endif
2112   #include "vm_alloc.h"
2113  
2114 + const int REF_INDEX = 123;
2115 + const int REF_VALUE = 45;
2116 +
2117   static int page_size;
2118   static volatile char * page = 0;
2119   static volatile int handler_called = 0;
2120  
2121 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2121 > /* Barriers */
2122 > #ifdef __GNUC__
2123 > #define BARRIER() asm volatile ("" : : : "memory")
2124 > #else
2125 > #define BARRIER() /* nothing */
2126 > #endif
2127 >
2128 > #ifdef __GNUC__
2129 > // Code range where we expect the fault to come from
2130 > static void *b_region, *e_region;
2131 > #endif
2132 >
2133 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2134   {
2135 + #if DEBUG
2136 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2137 +        printf("expected fault at %p\n", page + REF_INDEX);
2138 + #ifdef __GNUC__
2139 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2140 + #endif
2141 + #endif
2142          handler_called++;
2143 <        if ((fault_address - 123) != page)
2144 <                exit(1);
2143 >        if ((fault_address - REF_INDEX) != page)
2144 >                exit(10);
2145 > #ifdef __GNUC__
2146 >        // Make sure reported fault instruction address falls into
2147 >        // expected code range
2148 >        if (instruction_address != SIGSEGV_INVALID_PC
2149 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2150 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2151 >                exit(11);
2152 > #endif
2153          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2154 <                exit(1);
2155 <        return true;
2154 >                exit(12);
2155 >        return SIGSEGV_RETURN_SUCCESS;
2156   }
2157  
2158   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2159 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2159 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2160   {
2161 <        return false;
2161 > #if DEBUG
2162 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2163 > #endif
2164 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2165 > #ifdef __GNUC__
2166 >                // Make sure reported fault instruction address falls into
2167 >                // expected code range
2168 >                if (instruction_address != SIGSEGV_INVALID_PC
2169 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2170 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2171 >                        return SIGSEGV_RETURN_FAILURE;
2172 > #endif
2173 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2174 >        }
2175 >
2176 >        return SIGSEGV_RETURN_FAILURE;
2177 > }
2178 >
2179 > // More sophisticated tests for instruction skipper
2180 > static bool arch_insn_skipper_tests()
2181 > {
2182 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2183 >        static const unsigned char code[] = {
2184 >                0x8a, 0x00,                    // mov    (%eax),%al
2185 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2186 >                0x88, 0x20,                    // mov    %ah,(%eax)
2187 >                0x88, 0x08,                    // mov    %cl,(%eax)
2188 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2189 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2190 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2191 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2192 >                0x8b, 0x00,                    // mov    (%eax),%eax
2193 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2194 >                0x89, 0x00,                    // mov    %eax,(%eax)
2195 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2196 > #if defined(__x86_64__)
2197 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2198 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2199 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2200 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2201 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2202 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2203 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2204 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2205 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2206 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2207 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2208 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2209 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2210 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2211 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2212 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2213 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2214 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2215 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2216 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2217 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2218 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2219 >                0x63, 0x47, 0x04,              // movslq 4(%rdi),%eax
2220 >                0x48, 0x63, 0x47, 0x04,        // movslq 4(%rdi),%rax
2221 > #endif
2222 >                0                              // end
2223 >        };
2224 >        const int N_REGS = 20;
2225 >        unsigned long regs[N_REGS];
2226 >        for (int i = 0; i < N_REGS; i++)
2227 >                regs[i] = i;
2228 >        const unsigned long start_code = (unsigned long)&code;
2229 >        regs[X86_REG_EIP] = start_code;
2230 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2231 >                   && ix86_skip_instruction(regs))
2232 >                ; /* simply iterate */
2233 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2234 > #endif
2235 >        return true;
2236   }
2237   #endif
2238  
# Line 783 | Line 2241 | int main(void)
2241          if (vm_init() < 0)
2242                  return 1;
2243  
2244 <        page_size = getpagesize();
2244 >        page_size = vm_get_page_size();
2245          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2246 <                return 1;
2246 >                return 2;
2247          
2248 +        memset((void *)page, 0, page_size);
2249          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2250 <                return 1;
2250 >                return 3;
2251          
2252          if (!sigsegv_install_handler(sigsegv_test_handler))
2253 <                return 1;
795 <        
796 <        page[123] = 45;
797 <        page[123] = 45;
2253 >                return 4;
2254          
2255 + #ifdef __GNUC__
2256 +        b_region = &&L_b_region1;
2257 +        e_region = &&L_e_region1;
2258 + #endif
2259 + L_b_region1:
2260 +        page[REF_INDEX] = REF_VALUE;
2261 +        if (page[REF_INDEX] != REF_VALUE)
2262 +          exit(20);
2263 +        page[REF_INDEX] = REF_VALUE;
2264 +        BARRIER();
2265 + L_e_region1:
2266 +
2267          if (handler_called != 1)
2268 <                return 1;
2268 >                return 5;
2269  
2270   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2271          if (!sigsegv_install_handler(sigsegv_insn_handler))
2272 <                return 1;
2272 >                return 6;
2273          
2274          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2275 <                return 1;
2275 >                return 7;
2276          
2277          for (int i = 0; i < page_size; i++)
2278                  page[i] = (i + 1) % page_size;
2279          
2280          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2281 <                return 1;
2281 >                return 8;
2282          
815        sigsegv_set_ignore_state(true);
816
2283   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2284 <                const unsigned int TAG = 0x12345678;                    \
2284 >                const unsigned long TAG = 0x12345678 |                  \
2285 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2286                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2287 <                volatile unsigned int effect = data + TAG;              \
2287 >                volatile unsigned long effect = data + TAG;             \
2288                  if (effect != TAG)                                                              \
2289 <                        return 1;                                                                       \
2289 >                        return 9;                                                                       \
2290          } while (0)
2291          
2292 + #ifdef __GNUC__
2293 +        b_region = &&L_b_region2;
2294 +        e_region = &&L_e_region2;
2295 + #endif
2296 + L_b_region2:
2297          TEST_SKIP_INSTRUCTION(unsigned char);
2298          TEST_SKIP_INSTRUCTION(unsigned short);
2299          TEST_SKIP_INSTRUCTION(unsigned int);
2300 +        TEST_SKIP_INSTRUCTION(unsigned long);
2301 +        TEST_SKIP_INSTRUCTION(signed char);
2302 +        TEST_SKIP_INSTRUCTION(signed short);
2303 +        TEST_SKIP_INSTRUCTION(signed int);
2304 +        TEST_SKIP_INSTRUCTION(signed long);
2305 +        BARRIER();
2306 + L_e_region2:
2307 +
2308 +        if (!arch_insn_skipper_tests())
2309 +                return 20;
2310   #endif
2311  
2312          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines