ViewVC Help
View File | Revision Log | Show Annotations | Revision Graph | Root Listing
root/cebix/BasiliskII/src/Unix/sigsegv.cpp
(Generate patch)

Comparing BasiliskII/src/Unix/sigsegv.cpp (file contents):
Revision 1.17 by gbeauche, 2002-05-20T17:49:04Z vs.
Revision 1.55 by gbeauche, 2005-03-23T22:00:06Z

# Line 4 | Line 4
4   *  Derived from Bruno Haible's work on his SIGSEGV library for clisp
5   *  <http://clisp.sourceforge.net/>
6   *
7 < *  Basilisk II (C) 1997-2002 Christian Bauer
7 > *  MacOS X support derived from the post by Timothy J. Wood to the
8 > *  omnigroup macosx-dev list:
9 > *    Mach Exception Handlers 101 (Was Re: ptrace, gdb)
10 > *    tjw@omnigroup.com Sun, 4 Jun 2000
11 > *    www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
12 > *
13 > *  Basilisk II (C) 1997-2005 Christian Bauer
14   *
15   *  This program is free software; you can redistribute it and/or modify
16   *  it under the terms of the GNU General Public License as published by
# Line 29 | Line 35
35   #include "config.h"
36   #endif
37  
38 + #include <list>
39 + #include <stdio.h>
40   #include <signal.h>
41   #include "sigsegv.h"
42  
43 + #ifndef NO_STD_NAMESPACE
44 + using std::list;
45 + #endif
46 +
47   // Return value type of a signal handler (standard type if not defined)
48   #ifndef RETSIGTYPE
49   #define RETSIGTYPE void
# Line 40 | Line 52
52   // Type of the system signal handler
53   typedef RETSIGTYPE (*signal_handler)(int);
54  
43 // Is the fault to be ignored?
44 static bool sigsegv_ignore_fault = false;
45
55   // User's SIGSEGV handler
56   static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
57  
# Line 57 | Line 66 | static bool sigsegv_do_install_handler(i
66   *  Instruction decoding aids
67   */
68  
60 // Transfer type
61 enum transfer_type_t {
62        TYPE_UNKNOWN,
63        TYPE_LOAD,
64        TYPE_STORE
65 };
66
69   // Transfer size
70   enum transfer_size_t {
71          SIZE_UNKNOWN,
72          SIZE_BYTE,
73 <        SIZE_WORD,
74 <        SIZE_LONG
73 >        SIZE_WORD, // 2 bytes
74 >        SIZE_LONG, // 4 bytes
75 >        SIZE_QUAD, // 8 bytes
76   };
77  
78 + // Transfer type
79 + typedef sigsegv_transfer_type_t transfer_type_t;
80 +
81   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
82   // Addressing mode
83   enum addressing_mode_t {
# Line 91 | Line 97 | struct instruction_t {
97          char                            ra, rd;
98   };
99  
100 < static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned int * gpr)
100 > static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr)
101   {
102          // Get opcode and divide into fields
103 <        unsigned int opcode = *((unsigned int *)nip);
103 >        unsigned int opcode = *((unsigned int *)(unsigned long)nip);
104          unsigned int primop = opcode >> 26;
105          unsigned int exop = (opcode >> 1) & 0x3ff;
106          unsigned int ra = (opcode >> 16) & 0x1f;
# Line 103 | Line 109 | static void powerpc_decode_instruction(i
109          signed int imm = (signed short)(opcode & 0xffff);
110          
111          // Analyze opcode
112 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
112 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
113          transfer_size_t transfer_size = SIZE_UNKNOWN;
114          addressing_mode_t addr_mode = MODE_UNKNOWN;
115          switch (primop) {
116          case 31:
117                  switch (exop) {
118                  case 23:        // lwzx
119 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
119 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
120                  case 55:        // lwzux
121 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
121 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
122                  case 87:        // lbzx
123 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
123 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
124                  case 119:       // lbzux
125 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
125 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
126                  case 151:       // stwx
127 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
127 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break;
128                  case 183:       // stwux
129 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
129 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break;
130                  case 215:       // stbx
131 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
131 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
132                  case 247:       // stbux
133 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
133 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
134                  case 279:       // lhzx
135 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
135 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
136                  case 311:       // lhzux
137 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
137 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
138                  case 343:       // lhax
139 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
139 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
140                  case 375:       // lhaux
141 <                        transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
141 >                        transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
142                  case 407:       // sthx
143 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
143 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
144                  case 439:       // sthux
145 <                        transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
145 >                        transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
146                  }
147                  break;
148          
149          case 32:        // lwz
150 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
150 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
151          case 33:        // lwzu
152 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
152 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
153          case 34:        // lbz
154 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
154 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
155          case 35:        // lbzu
156 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
156 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
157          case 36:        // stw
158 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
158 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break;
159          case 37:        // stwu
160 <                transfer_type = TYPE_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
160 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break;
161          case 38:        // stb
162 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
162 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
163          case 39:        // stbu
164 <                transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
164 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
165          case 40:        // lhz
166 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
166 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
167          case 41:        // lhzu
168 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
168 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
169          case 42:        // lha
170 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
170 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
171          case 43:        // lhau
172 <                transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
172 >                transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
173          case 44:        // sth
174 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
174 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
175          case 45:        // sthu
176 <                transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
176 >                transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
177 >        case 58:        // ld, ldu, lwa
178 >                transfer_type = SIGSEGV_TRANSFER_LOAD;
179 >                transfer_size = SIZE_QUAD;
180 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
181 >                imm &= ~3;
182 >                break;
183 >        case 62:        // std, stdu, stq
184 >                transfer_type = SIGSEGV_TRANSFER_STORE;
185 >                transfer_size = SIZE_QUAD;
186 >                addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM;
187 >                imm &= ~3;
188 >                break;
189          }
190          
191          // Calculate effective address
# Line 208 | Line 226 | static void powerpc_decode_instruction(i
226  
227   #if HAVE_SIGINFO_T
228   // Generic extended signal handler
229 < #if defined(__NetBSD__) || defined(__FreeBSD__)
229 > #if defined(__FreeBSD__)
230   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
231   #else
232   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
233   #endif
234   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, siginfo_t *sip, void *scp
235 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
236 + #define SIGSEGV_FAULT_HANDLER_ARGS              sip, scp
237   #define SIGSEGV_FAULT_ADDRESS                   sip->si_addr
238 + #if (defined(sgi) || defined(__sgi))
239 + #include <ucontext.h>
240 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
241 + #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC]
242 + #if (defined(mips) || defined(__mips))
243 + #define SIGSEGV_REGISTER_FILE                   SIGSEGV_CONTEXT_REGS
244 + #define SIGSEGV_SKIP_INSTRUCTION                mips_skip_instruction
245 + #endif
246 + #endif
247 + #if defined(__sun__)
248 + #if (defined(sparc) || defined(__sparc__))
249 + #include <sys/stack.h>
250 + #include <sys/regset.h>
251 + #include <sys/ucontext.h>
252 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
253 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[REG_PC]
254 + #define SIGSEGV_SPARC_GWINDOWS                  (((ucontext_t *)scp)->uc_mcontext.gwins)
255 + #define SIGSEGV_SPARC_RWINDOW                   (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS)
256 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW
257 + #define SIGSEGV_SKIP_INSTRUCTION                sparc_skip_instruction
258 + #endif
259 + #if defined(__i386__)
260 + #include <sys/regset.h>
261 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
262 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[EIP]
263 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
264 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
265 + #endif
266 + #endif
267 + #if defined(__FreeBSD__) || defined(__OpenBSD__)
268   #if (defined(i386) || defined(__i386__))
269   #define SIGSEGV_FAULT_INSTRUCTION               (((struct sigcontext *)scp)->sc_eip)
270 < #define SIGSEGV_REGISTER_FILE                   ((unsigned int *)&(((struct sigcontext *)scp)->sc_edi))
270 > #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */
271 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
272 > #endif
273 > #endif
274 > #if defined(__NetBSD__)
275 > #if (defined(i386) || defined(__i386__))
276 > #include <sys/ucontext.h>
277 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
278 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_EIP]
279 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
280   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
281   #endif
282 + #if (defined(powerpc) || defined(__powerpc__))
283 + #include <sys/ucontext.h>
284 + #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.__gregs)
285 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[_REG_PC]
286 + #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0]
287 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
288 + #endif
289 + #endif
290   #if defined(__linux__)
291   #if (defined(i386) || defined(__i386__))
292   #include <sys/ucontext.h>
293   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
294   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */
295 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)SIGSEGV_CONTEXT_REGS
295 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
296 > #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
297 > #endif
298 > #if (defined(x86_64) || defined(__x86_64__))
299 > #include <sys/ucontext.h>
300 > #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.gregs)
301 > #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */
302 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)SIGSEGV_CONTEXT_REGS
303   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
304   #endif
305   #if (defined(ia64) || defined(__ia64__))
# Line 235 | Line 309 | static void powerpc_decode_instruction(i
309   #include <sys/ucontext.h>
310   #define SIGSEGV_CONTEXT_REGS                    (((ucontext_t *)scp)->uc_mcontext.regs)
311   #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS->nip)
312 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned int *)(SIGSEGV_CONTEXT_REGS->gpr)
312 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr)
313   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
314   #endif
315 + #if (defined(hppa) || defined(__hppa__))
316 + #undef  SIGSEGV_FAULT_ADDRESS
317 + #define SIGSEGV_FAULT_ADDRESS                   sip->si_ptr
318 + #endif
319 + #if (defined(arm) || defined(__arm__))
320 + #include <asm/ucontext.h> /* use kernel structure, glibc may not be in sync */
321 + #define SIGSEGV_CONTEXT_REGS                    (((struct ucontext *)scp)->uc_mcontext)
322 + #define SIGSEGV_FAULT_INSTRUCTION               (SIGSEGV_CONTEXT_REGS.arm_pc)
323 + #define SIGSEGV_REGISTER_FILE                   (&SIGSEGV_CONTEXT_REGS.arm_r0)
324 + #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
325 + #endif
326   #endif
327   #endif
328  
# Line 248 | Line 333 | static void powerpc_decode_instruction(i
333   #if (defined(i386) || defined(__i386__))
334   #include <asm/sigcontext.h>
335   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext scs
336 < #define SIGSEGV_FAULT_ADDRESS                   scs.cr2
337 < #define SIGSEGV_FAULT_INSTRUCTION               scs.eip
338 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)(&scs)
336 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
337 > #define SIGSEGV_FAULT_HANDLER_ARGS              &scs
338 > #define SIGSEGV_FAULT_ADDRESS                   scp->cr2
339 > #define SIGSEGV_FAULT_INSTRUCTION               scp->eip
340 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)scp
341   #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
342   #endif
343   #if (defined(sparc) || defined(__sparc__))
344   #include <asm/sigcontext.h>
345   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
346 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
347   #define SIGSEGV_FAULT_ADDRESS                   addr
348   #endif
349   #if (defined(powerpc) || defined(__powerpc__))
350   #include <asm/sigcontext.h>
351   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, struct sigcontext *scp
352 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, scp
353   #define SIGSEGV_FAULT_ADDRESS                   scp->regs->dar
354   #define SIGSEGV_FAULT_INSTRUCTION               scp->regs->nip
355 < #define SIGSEGV_REGISTER_FILE                   (unsigned int *)&scp->regs->nip, (unsigned int *)(scp->regs->gpr)
355 > #define SIGSEGV_REGISTER_FILE                   (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr)
356   #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
357   #endif
358   #if (defined(alpha) || defined(__alpha__))
359   #include <asm/sigcontext.h>
360   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
361 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
362   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
363   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
364 <
365 < // From Boehm's GC 6.0alpha8
366 < static sigsegv_address_t get_fault_address(struct sigcontext *scp)
367 < {
368 <        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
369 <        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
370 <        fault_address += (signed long)(signed short)(instruction & 0xffff);
371 <        return (sigsegv_address_t)fault_address;
372 < }
364 > #endif
365 > #if (defined(arm) || defined(__arm__))
366 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int r1, int r2, int r3, struct sigcontext sc
367 > #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp
368 > #define SIGSEGV_FAULT_HANDLER_ARGS              &sc
369 > #define SIGSEGV_FAULT_ADDRESS                   scp->fault_address
370 > #define SIGSEGV_FAULT_INSTRUCTION               scp->arm_pc
371 > #define SIGSEGV_REGISTER_FILE                   &scp->arm_r0
372 > #define SIGSEGV_SKIP_INSTRUCTION                arm_skip_instruction
373   #endif
374   #endif
375  
376   // Irix 5 or 6 on MIPS
377 < #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4))
377 > #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4))
378   #include <ucontext.h>
379   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
380 < #define SIGSEGV_FAULT_ADDRESS                   scp->sc_badvaddr
380 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
381 > #define SIGSEGV_FAULT_ADDRESS                   (unsigned long)scp->sc_badvaddr
382 > #define SIGSEGV_FAULT_INSTRUCTION               (unsigned long)scp->sc_pc
383   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
384   #endif
385  
386   // HP-UX
387   #if (defined(hpux) || defined(__hpux__))
388   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
389 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
390   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_sl.sl_ss.ss_narrow.ss_cr21
391   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS)
392   #endif
# Line 302 | Line 395 | static sigsegv_address_t get_fault_addre
395   #if defined(__osf__)
396   #include <ucontext.h>
397   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
398 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
399   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_traparg_a0
400   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
401   #endif
# Line 309 | Line 403 | static sigsegv_address_t get_fault_addre
403   // AIX
404   #if defined(_AIX)
405   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
406 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
407   #define SIGSEGV_FAULT_ADDRESS                   scp->sc_jmpbuf.jmp_context.o_vaddr
408   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
409   #endif
410  
411 < // NetBSD or FreeBSD
412 < #if defined(__NetBSD__) || defined(__FreeBSD__)
411 > // NetBSD
412 > #if defined(__NetBSD__)
413   #if (defined(m68k) || defined(__m68k__))
414   #include <m68k/frame.h>
415   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
416 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
417   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
418   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
419  
# Line 341 | Line 437 | static sigsegv_address_t get_fault_addre
437          }
438          return (sigsegv_address_t)fault_addr;
439   }
440 < #else
441 < #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, void *scp, char *addr
442 < #define SIGSEGV_FAULT_ADDRESS                   addr
440 > #endif
441 > #if (defined(alpha) || defined(__alpha__))
442 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
443 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
444 > #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
445 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
446 > #endif
447 > #if (defined(i386) || defined(__i386__))
448 > #error "FIXME: need to decode instruction and compute EA"
449 > #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
450 > #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
451 > #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
452 > #endif
453 > #endif
454 > #if defined(__FreeBSD__)
455 > #if (defined(i386) || defined(__i386__))
456   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
457 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp, char *addr
458 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp, addr
459 + #define SIGSEGV_FAULT_ADDRESS                   addr
460 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_eip
461 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&scp->sc_edi)
462 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
463   #endif
464 + #if (defined(alpha) || defined(__alpha__))
465 + #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGSEGV)
466 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, char *addr, struct sigcontext *scp
467 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, addr, scp
468 + #define SIGSEGV_FAULT_ADDRESS                   addr
469 + #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_pc
470 + #endif
471 + #endif
472 +
473 + // Extract fault address out of a sigcontext
474 + #if (defined(alpha) || defined(__alpha__))
475 + // From Boehm's GC 6.0alpha8
476 + static sigsegv_address_t get_fault_address(struct sigcontext *scp)
477 + {
478 +        unsigned int instruction = *((unsigned int *)(scp->sc_pc));
479 +        unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f];
480 +        fault_address += (signed long)(signed short)(instruction & 0xffff);
481 +        return (sigsegv_address_t)fault_address;
482 + }
483   #endif
484  
485 < // MacOS X
485 >
486 > // MacOS X, not sure which version this works in. Under 10.1
487 > // vm_protect does not appear to work from a signal handler. Under
488 > // 10.2 signal handlers get siginfo type arguments but the si_addr
489 > // field is the address of the faulting instruction and not the
490 > // address that caused the SIGBUS. Maybe this works in 10.0? In any
491 > // case with Mach exception handlers there is a way to do what this
492 > // was meant to do.
493 > #ifndef HAVE_MACH_EXCEPTIONS
494   #if defined(__APPLE__) && defined(__MACH__)
495   #if (defined(ppc) || defined(__ppc__))
496   #define SIGSEGV_FAULT_HANDLER_ARGLIST   int sig, int code, struct sigcontext *scp
497 + #define SIGSEGV_FAULT_HANDLER_ARGS              sig, code, scp
498   #define SIGSEGV_FAULT_ADDRESS                   get_fault_address(scp)
499   #define SIGSEGV_FAULT_INSTRUCTION               scp->sc_ir
500   #define SIGSEGV_ALL_SIGNALS                             FAULT_HANDLER(SIGBUS)
# Line 371 | Line 514 | static sigsegv_address_t get_fault_addre
514   #endif
515   #endif
516   #endif
517 + #endif
518 +
519 + #if HAVE_WIN32_EXCEPTIONS
520 + #define WIN32_LEAN_AND_MEAN /* avoid including junk */
521 + #include <windows.h>
522 + #include <winerror.h>
523 +
524 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   EXCEPTION_POINTERS *ExceptionInfo
525 + #define SIGSEGV_FAULT_HANDLER_ARGS              ExceptionInfo
526 + #define SIGSEGV_FAULT_ADDRESS                   ExceptionInfo->ExceptionRecord->ExceptionInformation[1]
527 + #define SIGSEGV_CONTEXT_REGS                    ExceptionInfo->ContextRecord
528 + #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_CONTEXT_REGS->Eip
529 + #define SIGSEGV_REGISTER_FILE                   ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi)
530 + #define SIGSEGV_SKIP_INSTRUCTION                ix86_skip_instruction
531 + #endif
532 +
533 + #if HAVE_MACH_EXCEPTIONS
534 +
535 + // This can easily be extended to other Mach systems, but really who
536 + // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
537 + // Mach 2.5/3.0?
538 + #if defined(__APPLE__) && defined(__MACH__)
539 +
540 + #include <sys/types.h>
541 + #include <stdlib.h>
542 + #include <stdio.h>
543 + #include <pthread.h>
544 +
545 + /*
546 + * If you are familiar with MIG then you will understand the frustration
547 + * that was necessary to get these embedded into C++ code by hand.
548 + */
549 + extern "C" {
550 + #include <mach/mach.h>
551 + #include <mach/mach_error.h>
552 +
553 + extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
554 + extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t,
555 +        mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t);
556 + extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t,
557 +        exception_type_t, exception_data_t, mach_msg_type_number_t);
558 + extern kern_return_t exception_raise_state(mach_port_t, exception_type_t,
559 +        exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
560 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
561 + extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
562 +        exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
563 +        thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
564 + }
565 +
566 + // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
567 + #define HANDLER_COUNT 64
568 +
569 + // structure to tuck away existing exception handlers
570 + typedef struct _ExceptionPorts {
571 +        mach_msg_type_number_t maskCount;
572 +        exception_mask_t masks[HANDLER_COUNT];
573 +        exception_handler_t handlers[HANDLER_COUNT];
574 +        exception_behavior_t behaviors[HANDLER_COUNT];
575 +        thread_state_flavor_t flavors[HANDLER_COUNT];
576 + } ExceptionPorts;
577 +
578 + // exception handler thread
579 + static pthread_t exc_thread;
580 +
581 + // place where old exception handler info is stored
582 + static ExceptionPorts ports;
583 +
584 + // our exception port
585 + static mach_port_t _exceptionPort = MACH_PORT_NULL;
586 +
587 + #define MACH_CHECK_ERROR(name,ret) \
588 + if (ret != KERN_SUCCESS) { \
589 +        mach_error(#name, ret); \
590 +        exit (1); \
591 + }
592 +
593 + #define SIGSEGV_FAULT_ADDRESS                   code[1]
594 + #define SIGSEGV_FAULT_INSTRUCTION               get_fault_instruction(thread, state)
595 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE)
596 + #define SIGSEGV_FAULT_HANDLER_ARGLIST   mach_port_t thread, exception_data_t code, ppc_thread_state_t *state
597 + #define SIGSEGV_FAULT_HANDLER_ARGS              thread, code, &state
598 + #define SIGSEGV_SKIP_INSTRUCTION                powerpc_skip_instruction
599 + #define SIGSEGV_REGISTER_FILE                   &state->srr0, &state->r0
600 +
601 + // Given a suspended thread, stuff the current instruction and
602 + // registers into state.
603 + //
604 + // It would have been nice to have this be ppc/x86 independant which
605 + // could have been done easily with a thread_state_t instead of
606 + // ppc_thread_state_t, but because of the way this is called it is
607 + // easier to do it this way.
608 + #if (defined(ppc) || defined(__ppc__))
609 + static inline sigsegv_address_t get_fault_instruction(mach_port_t thread, ppc_thread_state_t *state)
610 + {
611 +        kern_return_t krc;
612 +        mach_msg_type_number_t count;
613 +
614 +        count = MACHINE_THREAD_STATE_COUNT;
615 +        krc = thread_get_state(thread, MACHINE_THREAD_STATE, (thread_state_t)state, &count);
616 +        MACH_CHECK_ERROR (thread_get_state, krc);
617 +
618 +        return (sigsegv_address_t)state->srr0;
619 + }
620 + #endif
621 +
622 + // Since there can only be one exception thread running at any time
623 + // this is not a problem.
624 + #define MSG_SIZE 512
625 + static char msgbuf[MSG_SIZE];
626 + static char replybuf[MSG_SIZE];
627 +
628 + /*
629 + * This is the entry point for the exception handler thread. The job
630 + * of this thread is to wait for exception messages on the exception
631 + * port that was setup beforehand and to pass them on to exc_server.
632 + * exc_server is a MIG generated function that is a part of Mach.
633 + * Its job is to decide what to do with the exception message. In our
634 + * case exc_server calls catch_exception_raise on our behalf. After
635 + * exc_server returns, it is our responsibility to send the reply.
636 + */
637 + static void *
638 + handleExceptions(void *priv)
639 + {
640 +        mach_msg_header_t *msg, *reply;
641 +        kern_return_t krc;
642 +
643 +        msg = (mach_msg_header_t *)msgbuf;
644 +        reply = (mach_msg_header_t *)replybuf;
645 +
646 +        for (;;) {
647 +                krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
648 +                                _exceptionPort, 0, MACH_PORT_NULL);
649 +                MACH_CHECK_ERROR(mach_msg, krc);
650 +
651 +                if (!exc_server(msg, reply)) {
652 +                        fprintf(stderr, "exc_server hated the message\n");
653 +                        exit(1);
654 +                }
655 +
656 +                krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
657 +                                 msg->msgh_local_port, 0, MACH_PORT_NULL);
658 +                if (krc != KERN_SUCCESS) {
659 +                        fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
660 +                                krc, mach_error_string(krc));
661 +                        exit(1);
662 +                }
663 +        }
664 + }
665 + #endif
666 + #endif
667  
668  
669   /*
# Line 379 | Line 672 | static sigsegv_address_t get_fault_addre
672  
673   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
674   // Decode and skip X86 instruction
675 < #if (defined(i386) || defined(__i386__))
675 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
676   #if defined(__linux__)
677   enum {
678 + #if (defined(i386) || defined(__i386__))
679          X86_REG_EIP = 14,
680          X86_REG_EAX = 11,
681          X86_REG_ECX = 10,
# Line 391 | Line 685 | enum {
685          X86_REG_EBP = 6,
686          X86_REG_ESI = 5,
687          X86_REG_EDI = 4
688 + #endif
689 + #if defined(__x86_64__)
690 +        X86_REG_R8  = 0,
691 +        X86_REG_R9  = 1,
692 +        X86_REG_R10 = 2,
693 +        X86_REG_R11 = 3,
694 +        X86_REG_R12 = 4,
695 +        X86_REG_R13 = 5,
696 +        X86_REG_R14 = 6,
697 +        X86_REG_R15 = 7,
698 +        X86_REG_EDI = 8,
699 +        X86_REG_ESI = 9,
700 +        X86_REG_EBP = 10,
701 +        X86_REG_EBX = 11,
702 +        X86_REG_EDX = 12,
703 +        X86_REG_EAX = 13,
704 +        X86_REG_ECX = 14,
705 +        X86_REG_ESP = 15,
706 +        X86_REG_EIP = 16
707 + #endif
708   };
709   #endif
710 < #if defined(__NetBSD__) || defined(__FreeBSD__)
710 > #if defined(__NetBSD__)
711   enum {
712 + #if (defined(i386) || defined(__i386__))
713 +        X86_REG_EIP = _REG_EIP,
714 +        X86_REG_EAX = _REG_EAX,
715 +        X86_REG_ECX = _REG_ECX,
716 +        X86_REG_EDX = _REG_EDX,
717 +        X86_REG_EBX = _REG_EBX,
718 +        X86_REG_ESP = _REG_ESP,
719 +        X86_REG_EBP = _REG_EBP,
720 +        X86_REG_ESI = _REG_ESI,
721 +        X86_REG_EDI = _REG_EDI
722 + #endif
723 + };
724 + #endif
725 + #if defined(__FreeBSD__)
726 + enum {
727 + #if (defined(i386) || defined(__i386__))
728          X86_REG_EIP = 10,
729          X86_REG_EAX = 7,
730          X86_REG_ECX = 6,
# Line 404 | Line 734 | enum {
734          X86_REG_EBP = 2,
735          X86_REG_ESI = 1,
736          X86_REG_EDI = 0
737 + #endif
738 + };
739 + #endif
740 + #if defined(__OpenBSD__)
741 + enum {
742 + #if defined(__i386__)
743 +        // EDI is the first register we consider
744 + #define OREG(REG) offsetof(struct sigcontext, sc_##REG)
745 + #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4)
746 +        X86_REG_EIP = DREG(eip), // 7
747 +        X86_REG_EAX = DREG(eax), // 6
748 +        X86_REG_ECX = DREG(ecx), // 5
749 +        X86_REG_EDX = DREG(edx), // 4
750 +        X86_REG_EBX = DREG(ebx), // 3
751 +        X86_REG_ESP = DREG(esp), // 10
752 +        X86_REG_EBP = DREG(ebp), // 2
753 +        X86_REG_ESI = DREG(esi), // 1
754 +        X86_REG_EDI = DREG(edi)  // 0
755 + #undef DREG
756 + #undef OREG
757 + #endif
758 + };
759 + #endif
760 + #if defined(__sun__)
761 + // Same as for Linux, need to check for x86-64
762 + enum {
763 + #if defined(__i386__)
764 +        X86_REG_EIP = EIP,
765 +        X86_REG_EAX = EAX,
766 +        X86_REG_ECX = ECX,
767 +        X86_REG_EDX = EDX,
768 +        X86_REG_EBX = EBX,
769 +        X86_REG_ESP = ESP,
770 +        X86_REG_EBP = EBP,
771 +        X86_REG_ESI = ESI,
772 +        X86_REG_EDI = EDI
773 + #endif
774 + };
775 + #endif
776 + #if defined(_WIN32)
777 + enum {
778 + #if (defined(i386) || defined(__i386__))
779 +        X86_REG_EIP = 7,
780 +        X86_REG_EAX = 5,
781 +        X86_REG_ECX = 4,
782 +        X86_REG_EDX = 3,
783 +        X86_REG_EBX = 2,
784 +        X86_REG_ESP = 10,
785 +        X86_REG_EBP = 6,
786 +        X86_REG_ESI = 1,
787 +        X86_REG_EDI = 0
788 + #endif
789   };
790   #endif
791   // FIXME: this is partly redundant with the instruction decoding phase
# Line 440 | Line 822 | static inline int ix86_step_over_modrm(u
822          return offset;
823   }
824  
825 < static bool ix86_skip_instruction(unsigned int * regs)
825 > static bool ix86_skip_instruction(unsigned long * regs)
826   {
827          unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
828  
829          if (eip == 0)
830                  return false;
831 + #ifdef _WIN32
832 +        if (IsBadCodePtr((FARPROC)eip))
833 +                return false;
834 + #endif
835          
836 <        transfer_type_t transfer_type = TYPE_UNKNOWN;
836 >        transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
837          transfer_size_t transfer_size = SIZE_LONG;
838          
839          int reg = -1;
840          int len = 0;
841 <        
841 >
842 > #if DEBUG
843 >        printf("IP: %p [%02x %02x %02x %02x...]\n",
844 >                   eip, eip[0], eip[1], eip[2], eip[3]);
845 > #endif
846 >
847          // Operand size prefix
848          if (*eip == 0x66) {
849                  eip++;
# Line 460 | Line 851 | static bool ix86_skip_instruction(unsign
851                  transfer_size = SIZE_WORD;
852          }
853  
854 +        // REX prefix
855 + #if defined(__x86_64__)
856 +        struct rex_t {
857 +                unsigned char W;
858 +                unsigned char R;
859 +                unsigned char X;
860 +                unsigned char B;
861 +        };
862 +        rex_t rex = { 0, 0, 0, 0 };
863 +        bool has_rex = false;
864 +        if ((*eip & 0xf0) == 0x40) {
865 +                has_rex = true;
866 +                const unsigned char b = *eip;
867 +                rex.W = b & (1 << 3);
868 +                rex.R = b & (1 << 2);
869 +                rex.X = b & (1 << 1);
870 +                rex.B = b & (1 << 0);
871 + #if DEBUG
872 +                printf("REX: %c,%c,%c,%c\n",
873 +                           rex.W ? 'W' : '_',
874 +                           rex.R ? 'R' : '_',
875 +                           rex.X ? 'X' : '_',
876 +                           rex.B ? 'B' : '_');
877 + #endif
878 +                eip++;
879 +                len++;
880 +                if (rex.W)
881 +                        transfer_size = SIZE_QUAD;
882 +        }
883 + #else
884 +        const bool has_rex = false;
885 + #endif
886 +
887          // Decode instruction
888 +        int target_size = SIZE_UNKNOWN;
889          switch (eip[0]) {
890          case 0x0f:
891 <            if (eip[1] == 0xb7) { // MOVZX r32, r/m16
892 <                switch (eip[2] & 0xc0) {
893 <                case 0x80:
894 <                    reg = (eip[2] >> 3) & 7;
895 <                    transfer_type = TYPE_LOAD;
896 <                    break;
897 <                case 0x40:
898 <                    reg = (eip[2] >> 3) & 7;
899 <                    transfer_type = TYPE_LOAD;
900 <                    break;
901 <                case 0x00:
902 <                    reg = (eip[2] >> 3) & 7;
903 <                    transfer_type = TYPE_LOAD;
904 <                    break;
905 <                }
906 <                len += 3 + ix86_step_over_modrm(eip + 2);
891 >                target_size = transfer_size;
892 >            switch (eip[1]) {
893 >                case 0xbe: // MOVSX r32, r/m8
894 >            case 0xb6: // MOVZX r32, r/m8
895 >                        transfer_size = SIZE_BYTE;
896 >                        goto do_mov_extend;
897 >                case 0xbf: // MOVSX r32, r/m16
898 >            case 0xb7: // MOVZX r32, r/m16
899 >                        transfer_size = SIZE_WORD;
900 >                        goto do_mov_extend;
901 >                  do_mov_extend:
902 >                        switch (eip[2] & 0xc0) {
903 >                        case 0x80:
904 >                                reg = (eip[2] >> 3) & 7;
905 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
906 >                                break;
907 >                        case 0x40:
908 >                                reg = (eip[2] >> 3) & 7;
909 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
910 >                                break;
911 >                        case 0x00:
912 >                                reg = (eip[2] >> 3) & 7;
913 >                                transfer_type = SIGSEGV_TRANSFER_LOAD;
914 >                                break;
915 >                        }
916 >                        len += 3 + ix86_step_over_modrm(eip + 2);
917 >                        break;
918              }
919            break;
920          case 0x8a: // MOV r8, r/m8
# Line 487 | Line 923 | static bool ix86_skip_instruction(unsign
923                  switch (eip[1] & 0xc0) {
924                  case 0x80:
925                          reg = (eip[1] >> 3) & 7;
926 <                        transfer_type = TYPE_LOAD;
926 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
927                          break;
928                  case 0x40:
929                          reg = (eip[1] >> 3) & 7;
930 <                        transfer_type = TYPE_LOAD;
930 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
931                          break;
932                  case 0x00:
933                          reg = (eip[1] >> 3) & 7;
934 <                        transfer_type = TYPE_LOAD;
934 >                        transfer_type = SIGSEGV_TRANSFER_LOAD;
935                          break;
936                  }
937                  len += 2 + ix86_step_over_modrm(eip + 1);
# Line 506 | Line 942 | static bool ix86_skip_instruction(unsign
942                  switch (eip[1] & 0xc0) {
943                  case 0x80:
944                          reg = (eip[1] >> 3) & 7;
945 <                        transfer_type = TYPE_STORE;
945 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
946                          break;
947                  case 0x40:
948                          reg = (eip[1] >> 3) & 7;
949 <                        transfer_type = TYPE_STORE;
949 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
950                          break;
951                  case 0x00:
952                          reg = (eip[1] >> 3) & 7;
953 <                        transfer_type = TYPE_STORE;
953 >                        transfer_type = SIGSEGV_TRANSFER_STORE;
954                          break;
955                  }
956                  len += 2 + ix86_step_over_modrm(eip + 1);
957                  break;
958          }
959 +        if (target_size == SIZE_UNKNOWN)
960 +                target_size = transfer_size;
961  
962 <        if (transfer_type == TYPE_UNKNOWN) {
962 >        if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
963                  // Unknown machine code, let it crash. Then patch the decoder
964                  return false;
965          }
966  
967 <        if (transfer_type == TYPE_LOAD && reg != -1) {
968 <                static const int x86_reg_map[8] = {
967 > #if defined(__x86_64__)
968 >        if (rex.R)
969 >                reg += 8;
970 > #endif
971 >
972 >        if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
973 >                static const int x86_reg_map[] = {
974                          X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
975 <                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI
975 >                        X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
976 > #if defined(__x86_64__)
977 >                        X86_REG_R8,  X86_REG_R9,  X86_REG_R10, X86_REG_R11,
978 >                        X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
979 > #endif
980                  };
981                  
982 <                if (reg < 0 || reg >= 8)
982 >                if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
983                          return false;
984  
985 +                // Set 0 to the relevant register part
986 +                // NOTE: this is only valid for MOV alike instructions
987                  int rloc = x86_reg_map[reg];
988 <                switch (transfer_size) {
988 >                switch (target_size) {
989                  case SIZE_BYTE:
990 <                        regs[rloc] = (regs[rloc] & ~0xff);
990 >                        if (has_rex || reg < 4)
991 >                                regs[rloc] = (regs[rloc] & ~0x00ffL);
992 >                        else {
993 >                                rloc = x86_reg_map[reg - 4];
994 >                                regs[rloc] = (regs[rloc] & ~0xff00L);
995 >                        }
996                          break;
997                  case SIZE_WORD:
998 <                        regs[rloc] = (regs[rloc] & ~0xffff);
998 >                        regs[rloc] = (regs[rloc] & ~0xffffL);
999                          break;
1000                  case SIZE_LONG:
1001 +                case SIZE_QUAD: // zero-extension
1002                          regs[rloc] = 0;
1003                          break;
1004                  }
# Line 551 | Line 1006 | static bool ix86_skip_instruction(unsign
1006  
1007   #if DEBUG
1008          printf("%08x: %s %s access", regs[X86_REG_EIP],
1009 <                   transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : "long",
1010 <                   transfer_type == TYPE_LOAD ? "read" : "write");
1009 >                   transfer_size == SIZE_BYTE ? "byte" :
1010 >                   transfer_size == SIZE_WORD ? "word" :
1011 >                   transfer_size == SIZE_LONG ? "long" :
1012 >                   transfer_size == SIZE_QUAD ? "quad" : "unknown",
1013 >                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1014          
1015          if (reg != -1) {
1016 <                static const char * x86_reg_str_map[8] = {
1017 <                        "eax", "ecx", "edx", "ebx",
1018 <                        "esp", "ebp", "esi", "edi"
1016 >                static const char * x86_byte_reg_str_map[] = {
1017 >                        "al",   "cl",   "dl",   "bl",
1018 >                        "spl",  "bpl",  "sil",  "dil",
1019 >                        "r8b",  "r9b",  "r10b", "r11b",
1020 >                        "r12b", "r13b", "r14b", "r15b",
1021 >                        "ah",   "ch",   "dh",   "bh",
1022 >                };
1023 >                static const char * x86_word_reg_str_map[] = {
1024 >                        "ax",   "cx",   "dx",   "bx",
1025 >                        "sp",   "bp",   "si",   "di",
1026 >                        "r8w",  "r9w",  "r10w", "r11w",
1027 >                        "r12w", "r13w", "r14w", "r15w",
1028 >                };
1029 >                static const char *x86_long_reg_str_map[] = {
1030 >                        "eax",  "ecx",  "edx",  "ebx",
1031 >                        "esp",  "ebp",  "esi",  "edi",
1032 >                        "r8d",  "r9d",  "r10d", "r11d",
1033 >                        "r12d", "r13d", "r14d", "r15d",
1034                  };
1035 <                printf(" %s register %%%s", transfer_type == TYPE_LOAD ? "to" : "from", x86_reg_str_map[reg]);
1035 >                static const char *x86_quad_reg_str_map[] = {
1036 >                        "rax", "rcx", "rdx", "rbx",
1037 >                        "rsp", "rbp", "rsi", "rdi",
1038 >                        "r8",  "r9",  "r10", "r11",
1039 >                        "r12", "r13", "r14", "r15",
1040 >                };
1041 >                const char * reg_str = NULL;
1042 >                switch (target_size) {
1043 >                case SIZE_BYTE:
1044 >                        reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
1045 >                        break;
1046 >                case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
1047 >                case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
1048 >                case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
1049 >                }
1050 >                if (reg_str)
1051 >                        printf(" %s register %%%s",
1052 >                                   transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
1053 >                                   reg_str);
1054          }
1055          printf(", %d bytes instruction\n", len);
1056   #endif
# Line 571 | Line 1062 | static bool ix86_skip_instruction(unsign
1062  
1063   // Decode and skip PPC instruction
1064   #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__))
1065 < static bool powerpc_skip_instruction(unsigned int * nip_p, unsigned int * regs)
1065 > static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs)
1066   {
1067          instruction_t instr;
1068          powerpc_decode_instruction(&instr, *nip_p, regs);
1069          
1070 <        if (instr.transfer_type == TYPE_UNKNOWN) {
1070 >        if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1071                  // Unknown machine code, let it crash. Then patch the decoder
1072                  return false;
1073          }
1074  
1075   #if DEBUG
1076          printf("%08x: %s %s access", *nip_p,
1077 <                   instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : "long",
1078 <                   instr.transfer_type == TYPE_LOAD ? "read" : "write");
1077 >                   instr.transfer_size == SIZE_BYTE ? "byte" :
1078 >                   instr.transfer_size == SIZE_WORD ? "word" :
1079 >                   instr.transfer_size == SIZE_LONG ? "long" : "quad",
1080 >                   instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
1081          
1082          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1083                  printf(" r%d (ra = %08x)\n", instr.ra, instr.addr);
1084 <        if (instr.transfer_type == TYPE_LOAD)
1084 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1085                  printf(" r%d (rd = 0)\n", instr.rd);
1086   #endif
1087          
1088          if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX)
1089                  regs[instr.ra] = instr.addr;
1090 <        if (instr.transfer_type == TYPE_LOAD)
1090 >        if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD)
1091                  regs[instr.rd] = 0;
1092          
1093          *nip_p += 4;
1094          return true;
1095   }
1096   #endif
1097 +
1098 + // Decode and skip MIPS instruction
1099 + #if (defined(mips) || defined(__mips))
1100 + enum {
1101 + #if (defined(sgi) || defined(__sgi))
1102 +  MIPS_REG_EPC = 35,
1103 + #endif
1104 + };
1105 + static bool mips_skip_instruction(greg_t * regs)
1106 + {
1107 +  unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC];
1108 +
1109 +  if (epc == 0)
1110 +        return false;
1111 +
1112 + #if DEBUG
1113 +  printf("IP: %p [%08x]\n", epc, epc[0]);
1114 + #endif
1115 +
1116 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1117 +  transfer_size_t transfer_size = SIZE_LONG;
1118 +  int direction = 0;
1119 +
1120 +  const unsigned int opcode = epc[0];
1121 +  switch (opcode >> 26) {
1122 +  case 32: // Load Byte
1123 +  case 36: // Load Byte Unsigned
1124 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1125 +        transfer_size = SIZE_BYTE;
1126 +        break;
1127 +  case 33: // Load Halfword
1128 +  case 37: // Load Halfword Unsigned
1129 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1130 +        transfer_size = SIZE_WORD;
1131 +        break;
1132 +  case 35: // Load Word
1133 +  case 39: // Load Word Unsigned
1134 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1135 +        transfer_size = SIZE_LONG;
1136 +        break;
1137 +  case 34: // Load Word Left
1138 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1139 +        transfer_size = SIZE_LONG;
1140 +        direction = -1;
1141 +        break;
1142 +  case 38: // Load Word Right
1143 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1144 +        transfer_size = SIZE_LONG;
1145 +        direction = 1;
1146 +        break;
1147 +  case 55: // Load Doubleword
1148 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1149 +        transfer_size = SIZE_QUAD;
1150 +        break;
1151 +  case 26: // Load Doubleword Left
1152 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1153 +        transfer_size = SIZE_QUAD;
1154 +        direction = -1;
1155 +        break;
1156 +  case 27: // Load Doubleword Right
1157 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1158 +        transfer_size = SIZE_QUAD;
1159 +        direction = 1;
1160 +        break;
1161 +  case 40: // Store Byte
1162 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1163 +        transfer_size = SIZE_BYTE;
1164 +        break;
1165 +  case 41: // Store Halfword
1166 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1167 +        transfer_size = SIZE_WORD;
1168 +        break;
1169 +  case 43: // Store Word
1170 +  case 42: // Store Word Left
1171 +  case 46: // Store Word Right
1172 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1173 +        transfer_size = SIZE_LONG;
1174 +        break;
1175 +  case 63: // Store Doubleword
1176 +  case 44: // Store Doubleword Left
1177 +  case 45: // Store Doubleword Right
1178 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1179 +        transfer_size = SIZE_QUAD;
1180 +        break;
1181 +  /* Misc instructions unlikely to be used within CPU emulators */
1182 +  case 48: // Load Linked Word
1183 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1184 +        transfer_size = SIZE_LONG;
1185 +        break;
1186 +  case 52: // Load Linked Doubleword
1187 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1188 +        transfer_size = SIZE_QUAD;
1189 +        break;
1190 +  case 56: // Store Conditional Word
1191 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1192 +        transfer_size = SIZE_LONG;
1193 +        break;
1194 +  case 60: // Store Conditional Doubleword
1195 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1196 +        transfer_size = SIZE_QUAD;
1197 +        break;
1198 +  }
1199 +
1200 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1201 +        // Unknown machine code, let it crash. Then patch the decoder
1202 +        return false;
1203 +  }
1204 +
1205 +  // Zero target register in case of a load operation
1206 +  const int reg = (opcode >> 16) & 0x1f;
1207 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD) {
1208 +        if (direction == 0)
1209 +          regs[reg] = 0;
1210 +        else {
1211 +          // FIXME: untested code
1212 +          unsigned long ea = regs[(opcode >> 21) & 0x1f];
1213 +          ea += (signed long)(signed int)(signed short)(opcode & 0xffff);
1214 +          const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7);
1215 +          unsigned long value;
1216 +          if (direction > 0) {
1217 +                const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1);
1218 +                value = regs[reg] & rmask;
1219 +          }
1220 +          else {
1221 +                const unsigned long lmask = (1L << (offset * 8)) - 1;
1222 +                value = regs[reg] & lmask;
1223 +          }
1224 +          // restore most significant bits
1225 +          if (transfer_size == SIZE_LONG)
1226 +                value = (signed long)(signed int)value;
1227 +          regs[reg] = value;
1228 +        }
1229 +  }
1230 +
1231 + #if DEBUG
1232 + #if (defined(_ABIN32) || defined(_ABI64))
1233 +  static const char * mips_gpr_names[32] = {
1234 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1235 +        "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",
1236 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1237 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1238 +  };
1239 + #else
1240 +  static const char * mips_gpr_names[32] = {
1241 +        "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",
1242 +        "a4",   "a5",   "a6",   "a7",   "t0",   "t1",   "t2",   "t3",
1243 +        "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",
1244 +        "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra"
1245 +  };
1246 + #endif
1247 +  printf("%s %s register %s\n",
1248 +                 transfer_size == SIZE_BYTE ? "byte" :
1249 +                 transfer_size == SIZE_WORD ? "word" :
1250 +                 transfer_size == SIZE_LONG ? "long" :
1251 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1252 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1253 +                 mips_gpr_names[reg]);
1254 + #endif
1255 +
1256 +  regs[MIPS_REG_EPC] += 4;
1257 +  return true;
1258 + }
1259 + #endif
1260 +
1261 + // Decode and skip SPARC instruction
1262 + #if (defined(sparc) || defined(__sparc__))
1263 + enum {
1264 + #if (defined(__sun__))
1265 +  SPARC_REG_G1 = REG_G1,
1266 +  SPARC_REG_O0 = REG_O0,
1267 +  SPARC_REG_PC = REG_PC,
1268 + #endif
1269 + };
1270 + static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin)
1271 + {
1272 +  unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC];
1273 +
1274 +  if (pc == 0)
1275 +        return false;
1276 +
1277 + #if DEBUG
1278 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1279 + #endif
1280 +
1281 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1282 +  transfer_size_t transfer_size = SIZE_LONG;
1283 +  bool register_pair = false;
1284 +
1285 +  const unsigned int opcode = pc[0];
1286 +  if ((opcode >> 30) != 3)
1287 +        return false;
1288 +  switch ((opcode >> 19) & 0x3f) {
1289 +  case 9: // Load Signed Byte
1290 +  case 1: // Load Unsigned Byte
1291 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1292 +        transfer_size = SIZE_BYTE;
1293 +        break;
1294 +  case 10:// Load Signed Halfword
1295 +  case 2: // Load Unsigned Word
1296 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1297 +        transfer_size = SIZE_WORD;
1298 +        break;
1299 +  case 8: // Load Word
1300 +  case 0: // Load Unsigned Word
1301 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1302 +        transfer_size = SIZE_LONG;
1303 +        break;
1304 +  case 11:// Load Extended Word
1305 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1306 +        transfer_size = SIZE_QUAD;
1307 +        break;
1308 +  case 3: // Load Doubleword
1309 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1310 +        transfer_size = SIZE_LONG;
1311 +        register_pair = true;
1312 +        break;
1313 +  case 5: // Store Byte
1314 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1315 +        transfer_size = SIZE_BYTE;
1316 +        break;
1317 +  case 6: // Store Halfword
1318 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1319 +        transfer_size = SIZE_WORD;
1320 +        break;
1321 +  case 4: // Store Word
1322 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1323 +        transfer_size = SIZE_LONG;
1324 +        break;
1325 +  case 14:// Store Extended Word
1326 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1327 +        transfer_size = SIZE_QUAD;
1328 +        break;
1329 +  case 7: // Store Doubleword
1330 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1331 +        transfer_size = SIZE_WORD;
1332 +        register_pair = true;
1333 +        break;
1334 +  }
1335 +
1336 +  if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
1337 +        // Unknown machine code, let it crash. Then patch the decoder
1338 +        return false;
1339 +  }
1340 +
1341 +  // Zero target register in case of a load operation
1342 +  const int reg = (opcode >> 25) & 0x1f;
1343 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) {
1344 +        // FIXME: code to handle local & input registers is not tested
1345 +        if (reg >= 1 && reg <= 7) {
1346 +          // global registers
1347 +          regs[reg - 1 + SPARC_REG_G1] = 0;
1348 +        }
1349 +        else if (reg >= 8 && reg <= 15) {
1350 +          // output registers
1351 +          regs[reg - 8 + SPARC_REG_O0] = 0;
1352 +        }
1353 +        else if (reg >= 16 && reg <= 23) {
1354 +          // local registers (in register windows)
1355 +          if (gwins)
1356 +                gwins->wbuf->rw_local[reg - 16] = 0;
1357 +          else
1358 +                rwin->rw_local[reg - 16] = 0;
1359 +        }
1360 +        else {
1361 +          // input registers (in register windows)
1362 +          if (gwins)
1363 +                gwins->wbuf->rw_in[reg - 24] = 0;
1364 +          else
1365 +                rwin->rw_in[reg - 24] = 0;
1366 +        }
1367 +  }
1368 +
1369 + #if DEBUG
1370 +  static const char * reg_names[] = {
1371 +        "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
1372 +        "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
1373 +        "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
1374 +        "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7"
1375 +  };
1376 +  printf("%s %s register %s\n",
1377 +                 transfer_size == SIZE_BYTE ? "byte" :
1378 +                 transfer_size == SIZE_WORD ? "word" :
1379 +                 transfer_size == SIZE_LONG ? "long" :
1380 +                 transfer_size == SIZE_QUAD ? "quad" : "unknown",
1381 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1382 +                 reg_names[reg]);
1383 + #endif
1384 +
1385 +  regs[SPARC_REG_PC] += 4;
1386 +  return true;
1387 + }
1388 + #endif
1389 + #endif
1390 +
1391 + // Decode and skip ARM instruction
1392 + #if (defined(arm) || defined(__arm__))
1393 + enum {
1394 + #if (defined(__linux__))
1395 +  ARM_REG_PC = 15,
1396 +  ARM_REG_CPSR = 16
1397 + #endif
1398 + };
1399 + static bool arm_skip_instruction(unsigned long * regs)
1400 + {
1401 +  unsigned int * pc = (unsigned int *)regs[ARM_REG_PC];
1402 +
1403 +  if (pc == 0)
1404 +        return false;
1405 +
1406 + #if DEBUG
1407 +  printf("IP: %p [%08x]\n", pc, pc[0]);
1408 + #endif
1409 +
1410 +  transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
1411 +  transfer_size_t transfer_size = SIZE_UNKNOWN;
1412 +  enum { op_sdt = 1, op_sdth = 2 };
1413 +  int op = 0;
1414 +
1415 +  // Handle load/store instructions only
1416 +  const unsigned int opcode = pc[0];
1417 +  switch ((opcode >> 25) & 7) {
1418 +  case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH)
1419 +        op = op_sdth;
1420 +        // Determine transfer size (S/H bits)
1421 +        switch ((opcode >> 5) & 3) {
1422 +        case 0: // SWP instruction
1423 +          break;
1424 +        case 1: // Unsigned halfwords
1425 +        case 3: // Signed halfwords
1426 +          transfer_size = SIZE_WORD;
1427 +          break;
1428 +        case 2: // Signed byte
1429 +          transfer_size = SIZE_BYTE;
1430 +          break;
1431 +        }
1432 +        break;
1433 +  case 2:
1434 +  case 3: // Single Data Transfer (LDR, STR)
1435 +        op = op_sdt;
1436 +        // Determine transfer size (B bit)
1437 +        if (((opcode >> 22) & 1) == 1)
1438 +          transfer_size = SIZE_BYTE;
1439 +        else
1440 +          transfer_size = SIZE_LONG;
1441 +        break;
1442 +  default:
1443 +        // FIXME: support load/store mutliple?
1444 +        return false;
1445 +  }
1446 +
1447 +  // Check for invalid transfer size (SWP instruction?)
1448 +  if (transfer_size == SIZE_UNKNOWN)
1449 +        return false;
1450 +
1451 +  // Determine transfer type (L bit)
1452 +  if (((opcode >> 20) & 1) == 1)
1453 +        transfer_type = SIGSEGV_TRANSFER_LOAD;
1454 +  else
1455 +        transfer_type = SIGSEGV_TRANSFER_STORE;
1456 +
1457 +  // Compute offset
1458 +  int offset;
1459 +  if (((opcode >> 25) & 1) == 0) {
1460 +        if (op == op_sdt)
1461 +          offset = opcode & 0xfff;
1462 +        else if (op == op_sdth) {
1463 +          int rm = opcode & 0xf;
1464 +          if (((opcode >> 22) & 1) == 0) {
1465 +                // register offset
1466 +                offset = regs[rm];
1467 +          }
1468 +          else {
1469 +                // immediate offset
1470 +                offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f);
1471 +          }
1472 +        }
1473 +  }
1474 +  else {
1475 +        const int rm = opcode & 0xf;
1476 +        const int sh = (opcode >> 7) & 0x1f;
1477 +        if (((opcode >> 4) & 1) == 1) {
1478 +          // we expect only legal load/store instructions
1479 +          printf("FATAL: invalid shift operand\n");
1480 +          return false;
1481 +        }
1482 +        const unsigned int v = regs[rm];
1483 +        switch ((opcode >> 5) & 3) {
1484 +        case 0: // logical shift left
1485 +          offset = sh ? v << sh : v;
1486 +          break;
1487 +        case 1: // logical shift right
1488 +          offset = sh ? v >> sh : 0;
1489 +          break;
1490 +        case 2: // arithmetic shift right
1491 +          if (sh)
1492 +                offset = ((signed int)v) >> sh;
1493 +          else
1494 +                offset = (v & 0x80000000) ? 0xffffffff : 0;
1495 +          break;
1496 +        case 3: // rotate right
1497 +          if (sh)
1498 +                offset = (v >> sh) | (v << (32 - sh));
1499 +          else
1500 +                offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000);
1501 +          break;
1502 +        }
1503 +  }
1504 +  if (((opcode >> 23) & 1) == 0)
1505 +        offset = -offset;
1506 +
1507 +  int rd = (opcode >> 12) & 0xf;
1508 +  int rn = (opcode >> 16) & 0xf;
1509 + #if DEBUG
1510 +  static const char * reg_names[] = {
1511 +        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1512 +        "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc"
1513 +  };
1514 +  printf("%s %s register %s\n",
1515 +                 transfer_size == SIZE_BYTE ? "byte" :
1516 +                 transfer_size == SIZE_WORD ? "word" :
1517 +                 transfer_size == SIZE_LONG ? "long" : "unknown",
1518 +                 transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from",
1519 +                 reg_names[rd]);
1520 + #endif
1521 +
1522 +  unsigned int base = regs[rn];
1523 +  if (((opcode >> 24) & 1) == 1)
1524 +        base += offset;
1525 +
1526 +  if (transfer_type == SIGSEGV_TRANSFER_LOAD)
1527 +        regs[rd] = 0;
1528 +
1529 +  if (((opcode >> 24) & 1) == 0)                // post-index addressing
1530 +        regs[rn] += offset;
1531 +  else if (((opcode >> 21) & 1) == 1)   // write-back address into base
1532 +        regs[rn] = base;
1533 +
1534 +  regs[ARM_REG_PC] += 4;
1535 +  return true;
1536 + }
1537   #endif
1538  
1539 +
1540   // Fallbacks
1541   #ifndef SIGSEGV_FAULT_INSTRUCTION
1542   #define SIGSEGV_FAULT_INSTRUCTION               SIGSEGV_INVALID_PC
1543   #endif
1544 + #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
1545 + #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
1546 + #endif
1547 + #ifndef SIGSEGV_FAULT_HANDLER_INVOKE
1548 + #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP)  sigsegv_fault_handler(ADDR, IP)
1549 + #endif
1550  
1551   // SIGSEGV recovery supported ?
1552   #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
# Line 618 | Line 1558 | static bool powerpc_skip_instruction(uns
1558   *  SIGSEGV global handler
1559   */
1560  
1561 < #ifdef HAVE_SIGSEGV_RECOVERY
1562 < static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1561 > // This function handles the badaccess to memory.
1562 > // It is called from the signal handler or the exception handler.
1563 > static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
1564   {
1565          sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS;
1566          sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION;
626        bool fault_recovered = false;
1567          
1568          // Call user's handler and reinstall the global handler, if required
1569 <        if (sigsegv_fault_handler(fault_address, fault_instruction)) {
1570 < #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1571 <                sigsegv_do_install_handler(sig);
1569 >        switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) {
1570 >        case SIGSEGV_RETURN_SUCCESS:
1571 >                return true;
1572 >
1573 > #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1574 >        case SIGSEGV_RETURN_SKIP_INSTRUCTION:
1575 >                // Call the instruction skipper with the register file
1576 >                // available
1577 >                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
1578 > #ifdef HAVE_MACH_EXCEPTIONS
1579 >                        // Unlike UNIX signals where the thread state
1580 >                        // is modified off of the stack, in Mach we
1581 >                        // need to actually call thread_set_state to
1582 >                        // have the register values updated.
1583 >                        kern_return_t krc;
1584 >
1585 >                        krc = thread_set_state(thread,
1586 >                                                                   MACHINE_THREAD_STATE, (thread_state_t)state,
1587 >                                                                   MACHINE_THREAD_STATE_COUNT);
1588 >                        MACH_CHECK_ERROR (thread_get_state, krc);
1589 > #endif
1590 >                        return true;
1591 >                }
1592 >                break;
1593   #endif
1594 <                fault_recovered = true;
1594 >        case SIGSEGV_RETURN_FAILURE:
1595 >                // We can't do anything with the fault_address, dump state?
1596 >                if (sigsegv_state_dumper != 0)
1597 >                        sigsegv_state_dumper(fault_address, fault_instruction);
1598 >                break;
1599          }
1600 < #if HAVE_SIGSEGV_SKIP_INSTRUCTION
1601 <        else if (sigsegv_ignore_fault) {
1602 <                // Call the instruction skipper with the register file available
1603 <                if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE))
1604 <                        fault_recovered = true;
1600 >
1601 >        return false;
1602 > }
1603 >
1604 >
1605 > /*
1606 > * There are two mechanisms for handling a bad memory access,
1607 > * Mach exceptions and UNIX signals. The implementation specific
1608 > * code appears below. Its reponsibility is to call handle_badaccess
1609 > * which is the routine that handles the fault in an implementation
1610 > * agnostic manner. The implementation specific code below is then
1611 > * reponsible for checking whether handle_badaccess was able
1612 > * to handle the memory access error and perform any implementation
1613 > * specific tasks necessary afterwards.
1614 > */
1615 >
1616 > #ifdef HAVE_MACH_EXCEPTIONS
1617 > /*
1618 > * We need to forward all exceptions that we do not handle.
1619 > * This is important, there are many exceptions that may be
1620 > * handled by other exception handlers. For example debuggers
1621 > * use exceptions and the exception hander is in another
1622 > * process in such a case. (Timothy J. Wood states in his
1623 > * message to the list that he based this code on that from
1624 > * gdb for Darwin.)
1625 > */
1626 > static inline kern_return_t
1627 > forward_exception(mach_port_t thread_port,
1628 >                                  mach_port_t task_port,
1629 >                                  exception_type_t exception_type,
1630 >                                  exception_data_t exception_data,
1631 >                                  mach_msg_type_number_t data_count,
1632 >                                  ExceptionPorts *oldExceptionPorts)
1633 > {
1634 >        kern_return_t kret;
1635 >        unsigned int portIndex;
1636 >        mach_port_t port;
1637 >        exception_behavior_t behavior;
1638 >        thread_state_flavor_t flavor;
1639 >        thread_state_t thread_state;
1640 >        mach_msg_type_number_t thread_state_count;
1641 >
1642 >        for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
1643 >                if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
1644 >                        // This handler wants the exception
1645 >                        break;
1646 >                }
1647 >        }
1648 >
1649 >        if (portIndex >= oldExceptionPorts->maskCount) {
1650 >                fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
1651 >                return KERN_FAILURE;
1652 >        }
1653 >
1654 >        port = oldExceptionPorts->handlers[portIndex];
1655 >        behavior = oldExceptionPorts->behaviors[portIndex];
1656 >        flavor = oldExceptionPorts->flavors[portIndex];
1657 >
1658 >        /*
1659 >         fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
1660 >         */
1661 >
1662 >        if (behavior != EXCEPTION_DEFAULT) {
1663 >                thread_state_count = THREAD_STATE_MAX;
1664 >                kret = thread_get_state (thread_port, flavor, thread_state,
1665 >                                                                 &thread_state_count);
1666 >                MACH_CHECK_ERROR (thread_get_state, kret);
1667 >        }
1668 >
1669 >        switch (behavior) {
1670 >        case EXCEPTION_DEFAULT:
1671 >          // fprintf(stderr, "forwarding to exception_raise\n");
1672 >          kret = exception_raise(port, thread_port, task_port, exception_type,
1673 >                                                         exception_data, data_count);
1674 >          MACH_CHECK_ERROR (exception_raise, kret);
1675 >          break;
1676 >        case EXCEPTION_STATE:
1677 >          // fprintf(stderr, "forwarding to exception_raise_state\n");
1678 >          kret = exception_raise_state(port, exception_type, exception_data,
1679 >                                                                   data_count, &flavor,
1680 >                                                                   thread_state, thread_state_count,
1681 >                                                                   thread_state, &thread_state_count);
1682 >          MACH_CHECK_ERROR (exception_raise_state, kret);
1683 >          break;
1684 >        case EXCEPTION_STATE_IDENTITY:
1685 >          // fprintf(stderr, "forwarding to exception_raise_state_identity\n");
1686 >          kret = exception_raise_state_identity(port, thread_port, task_port,
1687 >                                                                                        exception_type, exception_data,
1688 >                                                                                        data_count, &flavor,
1689 >                                                                                        thread_state, thread_state_count,
1690 >                                                                                        thread_state, &thread_state_count);
1691 >          MACH_CHECK_ERROR (exception_raise_state_identity, kret);
1692 >          break;
1693 >        default:
1694 >          fprintf(stderr, "forward_exception got unknown behavior\n");
1695 >          break;
1696          }
1697 +
1698 +        if (behavior != EXCEPTION_DEFAULT) {
1699 +                kret = thread_set_state (thread_port, flavor, thread_state,
1700 +                                                                 thread_state_count);
1701 +                MACH_CHECK_ERROR (thread_set_state, kret);
1702 +        }
1703 +
1704 +        return KERN_SUCCESS;
1705 + }
1706 +
1707 + /*
1708 + * This is the code that actually handles the exception.
1709 + * It is called by exc_server. For Darwin 5 Apple changed
1710 + * this a bit from how this family of functions worked in
1711 + * Mach. If you are familiar with that it is a little
1712 + * different. The main variation that concerns us here is
1713 + * that code is an array of exception specific codes and
1714 + * codeCount is a count of the number of codes in the code
1715 + * array. In typical Mach all exceptions have a code
1716 + * and sub-code. It happens to be the case that for a
1717 + * EXC_BAD_ACCESS exception the first entry is the type of
1718 + * bad access that occurred and the second entry is the
1719 + * faulting address so these entries correspond exactly to
1720 + * how the code and sub-code are used on Mach.
1721 + *
1722 + * This is a MIG interface. No code in Basilisk II should
1723 + * call this directley. This has to have external C
1724 + * linkage because that is what exc_server expects.
1725 + */
1726 + kern_return_t
1727 + catch_exception_raise(mach_port_t exception_port,
1728 +                                          mach_port_t thread,
1729 +                                          mach_port_t task,
1730 +                                          exception_type_t exception,
1731 +                                          exception_data_t code,
1732 +                                          mach_msg_type_number_t codeCount)
1733 + {
1734 +        ppc_thread_state_t state;
1735 +        kern_return_t krc;
1736 +
1737 +        if ((exception == EXC_BAD_ACCESS)  && (codeCount >= 2)) {
1738 +                if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
1739 +                        return KERN_SUCCESS;
1740 +        }
1741 +
1742 +        // In Mach we do not need to remove the exception handler.
1743 +        // If we forward the exception, eventually some exception handler
1744 +        // will take care of this exception.
1745 +        krc = forward_exception(thread, task, exception, code, codeCount, &ports);
1746 +
1747 +        return krc;
1748 + }
1749   #endif
1750  
1751 <        if (!fault_recovered) {
1752 <                // FAIL: reinstall default handler for "safe" crash
1751 > #ifdef HAVE_SIGSEGV_RECOVERY
1752 > // Handle bad memory accesses with signal handler
1753 > static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
1754 > {
1755 >        // Call handler and reinstall the global handler, if required
1756 >        if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
1757 > #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
1758 >                sigsegv_do_install_handler(sig);
1759 > #endif
1760 >                return;
1761 >        }
1762 >
1763 >        // Failure: reinstall default handler for "safe" crash
1764   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
1765 <                SIGSEGV_ALL_SIGNALS
1765 >        SIGSEGV_ALL_SIGNALS
1766   #undef FAULT_HANDLER
648                
649                // We can't do anything with the fault_address, dump state?
650                if (sigsegv_state_dumper != 0)
651                        sigsegv_state_dumper(fault_address, fault_instruction);
652        }
1767   }
1768   #endif
1769  
# Line 663 | Line 1777 | static bool sigsegv_do_install_handler(i
1777   {
1778          // Setup SIGSEGV handler to process writes to frame buffer
1779   #ifdef HAVE_SIGACTION
1780 <        struct sigaction vosf_sa;
1781 <        sigemptyset(&vosf_sa.sa_mask);
1782 <        vosf_sa.sa_sigaction = sigsegv_handler;
1783 <        vosf_sa.sa_flags = SA_SIGINFO;
1784 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1780 >        struct sigaction sigsegv_sa;
1781 >        sigemptyset(&sigsegv_sa.sa_mask);
1782 >        sigsegv_sa.sa_sigaction = sigsegv_handler;
1783 >        sigsegv_sa.sa_flags = SA_SIGINFO;
1784 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1785   #else
1786          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1787   #endif
# Line 679 | Line 1793 | static bool sigsegv_do_install_handler(i
1793   {
1794          // Setup SIGSEGV handler to process writes to frame buffer
1795   #ifdef HAVE_SIGACTION
1796 <        struct sigaction vosf_sa;
1797 <        sigemptyset(&vosf_sa.sa_mask);
1798 <        vosf_sa.sa_handler = (signal_handler)sigsegv_handler;
1796 >        struct sigaction sigsegv_sa;
1797 >        sigemptyset(&sigsegv_sa.sa_mask);
1798 >        sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
1799 >        sigsegv_sa.sa_flags = 0;
1800   #if !EMULATED_68K && defined(__NetBSD__)
1801 <        sigaddset(&vosf_sa.sa_mask, SIGALRM);
1802 <        vosf_sa.sa_flags = SA_ONSTACK;
688 < #else
689 <        vosf_sa.sa_flags = 0;
1801 >        sigaddset(&sigsegv_sa.sa_mask, SIGALRM);
1802 >        sigsegv_sa.sa_flags |= SA_ONSTACK;
1803   #endif
1804 <        return (sigaction(sig, &vosf_sa, 0) == 0);
1804 >        return (sigaction(sig, &sigsegv_sa, 0) == 0);
1805   #else
1806          return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
1807   #endif
1808   }
1809   #endif
1810  
1811 < bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1811 > #if defined(HAVE_MACH_EXCEPTIONS)
1812 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1813   {
1814 < #ifdef HAVE_SIGSEGV_RECOVERY
1814 >        /*
1815 >         * Except for the exception port functions, this should be
1816 >         * pretty much stock Mach. If later you choose to support
1817 >         * other Mach's besides Darwin, just check for __MACH__
1818 >         * here and __APPLE__ where the actual differences are.
1819 >         */
1820 > #if defined(__APPLE__) && defined(__MACH__)
1821 >        if (sigsegv_fault_handler != NULL) {
1822 >                sigsegv_fault_handler = handler;
1823 >                return true;
1824 >        }
1825 >
1826 >        kern_return_t krc;
1827 >
1828 >        // create the the exception port
1829 >        krc = mach_port_allocate(mach_task_self(),
1830 >                          MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
1831 >        if (krc != KERN_SUCCESS) {
1832 >                mach_error("mach_port_allocate", krc);
1833 >                return false;
1834 >        }
1835 >
1836 >        // add a port send right
1837 >        krc = mach_port_insert_right(mach_task_self(),
1838 >                              _exceptionPort, _exceptionPort,
1839 >                              MACH_MSG_TYPE_MAKE_SEND);
1840 >        if (krc != KERN_SUCCESS) {
1841 >                mach_error("mach_port_insert_right", krc);
1842 >                return false;
1843 >        }
1844 >
1845 >        // get the old exception ports
1846 >        ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
1847 >        krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
1848 >                                &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
1849 >        if (krc != KERN_SUCCESS) {
1850 >                mach_error("thread_get_exception_ports", krc);
1851 >                return false;
1852 >        }
1853 >
1854 >        // set the new exception port
1855 >        //
1856 >        // We could have used EXCEPTION_STATE_IDENTITY instead of
1857 >        // EXCEPTION_DEFAULT to get the thread state in the initial
1858 >        // message, but it turns out that in the common case this is not
1859 >        // neccessary. If we need it we can later ask for it from the
1860 >        // suspended thread.
1861 >        //
1862 >        // Even with THREAD_STATE_NONE, Darwin provides the program
1863 >        // counter in the thread state.  The comments in the header file
1864 >        // seem to imply that you can count on the GPR's on an exception
1865 >        // as well but just to be safe I use MACHINE_THREAD_STATE because
1866 >        // you have to ask for all of the GPR's anyway just to get the
1867 >        // program counter. In any case because of update effective
1868 >        // address from immediate and update address from effective
1869 >        // addresses of ra and rb modes (as good an name as any for these
1870 >        // addressing modes) used in PPC instructions, you will need the
1871 >        // GPR state anyway.
1872 >        krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
1873 >                                EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
1874 >        if (krc != KERN_SUCCESS) {
1875 >                mach_error("thread_set_exception_ports", krc);
1876 >                return false;
1877 >        }
1878 >
1879 >        // create the exception handler thread
1880 >        if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
1881 >                (void)fprintf(stderr, "creation of exception thread failed\n");
1882 >                return false;
1883 >        }
1884 >
1885 >        // do not care about the exception thread any longer, let is run standalone
1886 >        (void)pthread_detach(exc_thread);
1887 >
1888 >        sigsegv_fault_handler = handler;
1889 >        return true;
1890 > #else
1891 >        return false;
1892 > #endif
1893 > }
1894 > #endif
1895 >
1896 > #ifdef HAVE_WIN32_EXCEPTIONS
1897 > static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo)
1898 > {
1899 >        if (sigsegv_fault_handler != NULL
1900 >                && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION
1901 >                && ExceptionInfo->ExceptionRecord->NumberParameters == 2
1902 >                && handle_badaccess(ExceptionInfo))
1903 >                return EXCEPTION_CONTINUE_EXECUTION;
1904 >
1905 >        return EXCEPTION_CONTINUE_SEARCH;
1906 > }
1907 >
1908 > #if defined __CYGWIN__ && defined __i386__
1909 > /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin
1910 >   installs a global exception handler.  We have to dig deep in order to install
1911 >   our main_exception_filter.  */
1912 >
1913 > /* Data structures for the current thread's exception handler chain.
1914 >   On the x86 Windows uses register fs, offset 0 to point to the current
1915 >   exception handler; Cygwin mucks with it, so we must do the same... :-/ */
1916 >
1917 > /* Magic taken from winsup/cygwin/include/exceptions.h.  */
1918 >
1919 > struct exception_list {
1920 >    struct exception_list *prev;
1921 >    int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1922 > };
1923 > typedef struct exception_list exception_list;
1924 >
1925 > /* Magic taken from winsup/cygwin/exceptions.cc.  */
1926 >
1927 > __asm__ (".equ __except_list,0");
1928 >
1929 > extern exception_list *_except_list __asm__ ("%fs:__except_list");
1930 >
1931 > /* For debugging.  _except_list is not otherwise accessible from gdb.  */
1932 > static exception_list *
1933 > debug_get_except_list ()
1934 > {
1935 >  return _except_list;
1936 > }
1937 >
1938 > /* Cygwin's original exception handler.  */
1939 > static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *);
1940 >
1941 > /* Our exception handler.  */
1942 > static int
1943 > libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch)
1944 > {
1945 >  EXCEPTION_POINTERS ExceptionInfo;
1946 >  ExceptionInfo.ExceptionRecord = exception;
1947 >  ExceptionInfo.ContextRecord = context;
1948 >  if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH)
1949 >    return cygwin_exception_handler (exception, frame, context, dispatch);
1950 >  else
1951 >    return 0;
1952 > }
1953 >
1954 > static void
1955 > do_install_main_exception_filter ()
1956 > {
1957 >  /* We cannot insert any handler into the chain, because such handlers
1958 >     must lie on the stack (?).  Instead, we have to replace(!) Cygwin's
1959 >     global exception handler.  */
1960 >  cygwin_exception_handler = _except_list->handler;
1961 >  _except_list->handler = libsigsegv_exception_handler;
1962 > }
1963 >
1964 > #else
1965 >
1966 > static void
1967 > do_install_main_exception_filter ()
1968 > {
1969 >  SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter);
1970 > }
1971 > #endif
1972 >
1973 > static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
1974 > {
1975 >        static bool main_exception_filter_installed = false;
1976 >        if (!main_exception_filter_installed) {
1977 >                do_install_main_exception_filter();
1978 >                main_exception_filter_installed = true;
1979 >        }
1980          sigsegv_fault_handler = handler;
1981 +        return true;
1982 + }
1983 + #endif
1984 +
1985 + bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
1986 + {
1987 + #if defined(HAVE_SIGSEGV_RECOVERY)
1988          bool success = true;
1989   #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
1990          SIGSEGV_ALL_SIGNALS
1991   #undef FAULT_HANDLER
1992 +        if (success)
1993 +            sigsegv_fault_handler = handler;
1994          return success;
1995 + #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS)
1996 +        return sigsegv_do_install_handler(handler);
1997   #else
1998          // FAIL: no siginfo_t nor sigcontext subterfuge is available
1999          return false;
# Line 717 | Line 2007 | bool sigsegv_install_handler(sigsegv_fau
2007  
2008   void sigsegv_deinstall_handler(void)
2009   {
2010 +  // We do nothing for Mach exceptions, the thread would need to be
2011 +  // suspended if not already so, and we might mess with other
2012 +  // exception handlers that came after we registered ours. There is
2013 +  // no need to remove the exception handler, in fact this function is
2014 +  // not called anywhere in Basilisk II.
2015   #ifdef HAVE_SIGSEGV_RECOVERY
2016          sigsegv_fault_handler = 0;
2017   #define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
2018          SIGSEGV_ALL_SIGNALS
2019   #undef FAULT_HANDLER
2020   #endif
2021 < }
2022 <
2023 <
729 < /*
730 < *  SIGSEGV ignore state modifier
731 < */
732 <
733 < void sigsegv_set_ignore_state(bool ignore_fault)
734 < {
735 <        sigsegv_ignore_fault = ignore_fault;
2021 > #ifdef HAVE_WIN32_EXCEPTIONS
2022 >        sigsegv_fault_handler = NULL;
2023 > #endif
2024   }
2025  
2026  
# Line 754 | Line 2042 | void sigsegv_set_dump_state(sigsegv_stat
2042   #include <stdio.h>
2043   #include <stdlib.h>
2044   #include <fcntl.h>
2045 + #ifdef HAVE_SYS_MMAN_H
2046   #include <sys/mman.h>
2047 + #endif
2048   #include "vm_alloc.h"
2049  
2050 + const int REF_INDEX = 123;
2051 + const int REF_VALUE = 45;
2052 +
2053   static int page_size;
2054   static volatile char * page = 0;
2055   static volatile int handler_called = 0;
2056  
2057 < static bool sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2057 > #ifdef __GNUC__
2058 > // Code range where we expect the fault to come from
2059 > static void *b_region, *e_region;
2060 > #endif
2061 >
2062 > static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2063   {
2064 + #if DEBUG
2065 +        printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
2066 +        printf("expected fault at %p\n", page + REF_INDEX);
2067 + #ifdef __GNUC__
2068 +        printf("expected instruction address range: %p-%p\n", b_region, e_region);
2069 + #endif
2070 + #endif
2071          handler_called++;
2072 <        if ((fault_address - 123) != page)
2073 <                exit(1);
2072 >        if ((fault_address - REF_INDEX) != page)
2073 >                exit(10);
2074 > #ifdef __GNUC__
2075 >        // Make sure reported fault instruction address falls into
2076 >        // expected code range
2077 >        if (instruction_address != SIGSEGV_INVALID_PC
2078 >                && ((instruction_address <  (sigsegv_address_t)b_region) ||
2079 >                        (instruction_address >= (sigsegv_address_t)e_region)))
2080 >                exit(11);
2081 > #endif
2082          if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
2083 <                exit(1);
2084 <        return true;
2083 >                exit(12);
2084 >        return SIGSEGV_RETURN_SUCCESS;
2085   }
2086  
2087   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2088 < static bool sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2088 > static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address)
2089   {
2090 <        return false;
2090 > #if DEBUG
2091 >        printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
2092 > #endif
2093 >        if (((unsigned long)fault_address - (unsigned long)page) < page_size) {
2094 > #ifdef __GNUC__
2095 >                // Make sure reported fault instruction address falls into
2096 >                // expected code range
2097 >                if (instruction_address != SIGSEGV_INVALID_PC
2098 >                        && ((instruction_address <  (sigsegv_address_t)b_region) ||
2099 >                                (instruction_address >= (sigsegv_address_t)e_region)))
2100 >                        return SIGSEGV_RETURN_FAILURE;
2101 > #endif
2102 >                return SIGSEGV_RETURN_SKIP_INSTRUCTION;
2103 >        }
2104 >
2105 >        return SIGSEGV_RETURN_FAILURE;
2106 > }
2107 >
2108 > // More sophisticated tests for instruction skipper
2109 > static bool arch_insn_skipper_tests()
2110 > {
2111 > #if (defined(i386) || defined(__i386__)) || defined(__x86_64__)
2112 >        static const unsigned char code[] = {
2113 >                0x8a, 0x00,                    // mov    (%eax),%al
2114 >                0x8a, 0x2c, 0x18,              // mov    (%eax,%ebx,1),%ch
2115 >                0x88, 0x20,                    // mov    %ah,(%eax)
2116 >                0x88, 0x08,                    // mov    %cl,(%eax)
2117 >                0x66, 0x8b, 0x00,              // mov    (%eax),%ax
2118 >                0x66, 0x8b, 0x0c, 0x18,        // mov    (%eax,%ebx,1),%cx
2119 >                0x66, 0x89, 0x00,              // mov    %ax,(%eax)
2120 >                0x66, 0x89, 0x0c, 0x18,        // mov    %cx,(%eax,%ebx,1)
2121 >                0x8b, 0x00,                    // mov    (%eax),%eax
2122 >                0x8b, 0x0c, 0x18,              // mov    (%eax,%ebx,1),%ecx
2123 >                0x89, 0x00,                    // mov    %eax,(%eax)
2124 >                0x89, 0x0c, 0x18,              // mov    %ecx,(%eax,%ebx,1)
2125 > #if defined(__x86_64__)
2126 >                0x44, 0x8a, 0x00,              // mov    (%rax),%r8b
2127 >                0x44, 0x8a, 0x20,              // mov    (%rax),%r12b
2128 >                0x42, 0x8a, 0x3c, 0x10,        // mov    (%rax,%r10,1),%dil
2129 >                0x44, 0x88, 0x00,              // mov    %r8b,(%rax)
2130 >                0x44, 0x88, 0x20,              // mov    %r12b,(%rax)
2131 >                0x42, 0x88, 0x3c, 0x10,        // mov    %dil,(%rax,%r10,1)
2132 >                0x66, 0x44, 0x8b, 0x00,        // mov    (%rax),%r8w
2133 >                0x66, 0x42, 0x8b, 0x0c, 0x10,  // mov    (%rax,%r10,1),%cx
2134 >                0x66, 0x44, 0x89, 0x00,        // mov    %r8w,(%rax)
2135 >                0x66, 0x42, 0x89, 0x0c, 0x10,  // mov    %cx,(%rax,%r10,1)
2136 >                0x44, 0x8b, 0x00,              // mov    (%rax),%r8d
2137 >                0x42, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%ecx
2138 >                0x44, 0x89, 0x00,              // mov    %r8d,(%rax)
2139 >                0x42, 0x89, 0x0c, 0x10,        // mov    %ecx,(%rax,%r10,1)
2140 >                0x48, 0x8b, 0x08,              // mov    (%rax),%rcx
2141 >                0x4c, 0x8b, 0x18,              // mov    (%rax),%r11
2142 >                0x4a, 0x8b, 0x0c, 0x10,        // mov    (%rax,%r10,1),%rcx
2143 >                0x4e, 0x8b, 0x1c, 0x10,        // mov    (%rax,%r10,1),%r11
2144 >                0x48, 0x89, 0x08,              // mov    %rcx,(%rax)
2145 >                0x4c, 0x89, 0x18,              // mov    %r11,(%rax)
2146 >                0x4a, 0x89, 0x0c, 0x10,        // mov    %rcx,(%rax,%r10,1)
2147 >                0x4e, 0x89, 0x1c, 0x10,        // mov    %r11,(%rax,%r10,1)
2148 > #endif
2149 >                0                              // end
2150 >        };
2151 >        const int N_REGS = 20;
2152 >        unsigned long regs[N_REGS];
2153 >        for (int i = 0; i < N_REGS; i++)
2154 >                regs[i] = i;
2155 >        const unsigned long start_code = (unsigned long)&code;
2156 >        regs[X86_REG_EIP] = start_code;
2157 >        while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
2158 >                   && ix86_skip_instruction(regs))
2159 >                ; /* simply iterate */
2160 >        return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
2161 > #endif
2162 >        return true;
2163   }
2164   #endif
2165  
# Line 783 | Line 2168 | int main(void)
2168          if (vm_init() < 0)
2169                  return 1;
2170  
2171 <        page_size = getpagesize();
2171 >        page_size = vm_get_page_size();
2172          if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
2173 <                return 1;
2173 >                return 2;
2174          
2175 +        memset((void *)page, 0, page_size);
2176          if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
2177 <                return 1;
2177 >                return 3;
2178          
2179          if (!sigsegv_install_handler(sigsegv_test_handler))
2180 <                return 1;
795 <        
796 <        page[123] = 45;
797 <        page[123] = 45;
2180 >                return 4;
2181          
2182 + #ifdef __GNUC__
2183 +        b_region = &&L_b_region1;
2184 +        e_region = &&L_e_region1;
2185 + #endif
2186 + L_b_region1:
2187 +        page[REF_INDEX] = REF_VALUE;
2188 +        if (page[REF_INDEX] != REF_VALUE)
2189 +          exit(20);
2190 +        page[REF_INDEX] = REF_VALUE;
2191 + L_e_region1:
2192 +
2193          if (handler_called != 1)
2194 <                return 1;
2194 >                return 5;
2195  
2196   #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
2197          if (!sigsegv_install_handler(sigsegv_insn_handler))
2198 <                return 1;
2198 >                return 6;
2199          
2200          if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
2201 <                return 1;
2201 >                return 7;
2202          
2203          for (int i = 0; i < page_size; i++)
2204                  page[i] = (i + 1) % page_size;
2205          
2206          if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
2207 <                return 1;
2207 >                return 8;
2208          
815        sigsegv_set_ignore_state(true);
816
2209   #define TEST_SKIP_INSTRUCTION(TYPE) do {                                \
2210 <                const unsigned int TAG = 0x12345678;                    \
2210 >                const unsigned long TAG = 0x12345678 |                  \
2211 >                (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0);   \
2212                  TYPE data = *((TYPE *)(page + sizeof(TYPE)));   \
2213 <                volatile unsigned int effect = data + TAG;              \
2213 >                volatile unsigned long effect = data + TAG;             \
2214                  if (effect != TAG)                                                              \
2215 <                        return 1;                                                                       \
2215 >                        return 9;                                                                       \
2216          } while (0)
2217          
2218 + #ifdef __GNUC__
2219 +        b_region = &&L_b_region2;
2220 +        e_region = &&L_e_region2;
2221 + #endif
2222 + L_b_region2:
2223          TEST_SKIP_INSTRUCTION(unsigned char);
2224          TEST_SKIP_INSTRUCTION(unsigned short);
2225          TEST_SKIP_INSTRUCTION(unsigned int);
2226 +        TEST_SKIP_INSTRUCTION(unsigned long);
2227 +        TEST_SKIP_INSTRUCTION(signed char);
2228 +        TEST_SKIP_INSTRUCTION(signed short);
2229 +        TEST_SKIP_INSTRUCTION(signed int);
2230 +        TEST_SKIP_INSTRUCTION(signed long);
2231 + L_e_region2:
2232 +
2233 +        if (!arch_insn_skipper_tests())
2234 +                return 20;
2235   #endif
2236  
2237          vm_exit();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines